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Abstract

In this paper a facial feature point tracker that is motivated by applications

such as human-computer interfaces and facial expression analysis systems is

proposed. The proposed tracker is based on a graphical model framework. The

facial features are tracked through video streams by incorporating statistical re-

lations in time as well as spatial relations between feature points. By exploiting

the spatial relationships between feature points, the proposed method provides

robustness in real-world conditions such as arbitrary head movements and oc-

clusions. A Gabor feature-based occlusion detector is developed and used to

handle occlusions. The performance of the proposed tracker has been evaluated

on real video data under various conditions including occluded facial gestures

and head movements. It is also compared to two popular methods, one based

on Kalman filtering exploiting temporal relations, and the other based on active

appearance models (AAM). Improvements provided by the proposed approach

are demonstrated through both visual displays and quantitative analysis.
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1. Introduction

1.1. Motivation & Problem Statement

During the past decades, facial expression analysis has attracted significant

interest in the scientific community due to its importance for human-computer

interfaces in a number of contexts including smart environments, virtual reality,

video conferencing, model-based facial image coding.

A facial expression analysis system can be divided into three parts: detection,

tracking, and recognition1. The tracking part can be defined as a bridge be-

tween the detection and recognition part, hence it is a very important part of

a facial expression analysis system. However facial feature tracking is a very

challenging problem because each facial expression is generated by non-rigid

object deformations and these deformations are person-dependent. Other than

the complex movement of these facial components, there is the movement of

the head that makes the problem even more complicated. In addition to these

internal problems, there are also external problems caused by events such as

external occlusions, etc.

Motivated by these observations, we propose a new solution to the facial feature

tracking problem described above.

1.2. Previous Work

To provide a solution to the tracking problems discussed above, a variety of

methods have been proposed. Earlier pieces of work in this domain are based

on low-level image processing techniques. There are methods based on template

matching which use the intensity pattern as the template and search for a region

that has the closest pattern [1, 2, 3, 4, 5]. There are many methods in which

1A facial system that operates on static, single-image frames would not have the track-

ing part. However, in order to fully exploit the temporal structure of the data for better

performance, tracking is required.
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Gabor features are used for tracking [6, 7, 8, 9, 10] in which the disparity of

a point from one frame to the next is estimated in terms of phase differences

of Gabor jets. In [6, 7], the motion of facial features are modeled statistically,

and a Kalman filter exploiting such temporal information is used for tracking.

Active contours or curve evolution methods have been used to track the shape

of facial features. In such methods, intensity values [11, 12, 13, 14] or Ga-

bor features [15] are usually used as part of the data term in curve evolution.

Similarly, in [16, 17, 18] 3-D wire-frame models are constructed and iteratively

deformed using intensity values. Spatial relations are taken into account by

constraining the shape of facial features using subspace representations, such as

principal component analysis (PCA), in the shape space, leading to so-called

active shape models (ASM) [11, 12, 13]. This idea has been combined with

subspace representations of appearance, resulting in active appearance models

(AAM) [11, 15, 18]. There is not much work that models spatial and temporal

relations together. There is one paper [19] which uses a directed graphical model

for tracking of contours modeling facial feature motion. The graphical model is

based on non-Gaussian distributions.

Recent methods discussed up to this point have varying levels of success in

handling data quality limitations and real-world conditions such as occlusion

and head movement. Earlier works become fragile when the data quality is low

because of noise, etc. For such cases, temporal relations provide very useful

information. In most of the methods it is assumed that the images are frontal

face images, and occlusion or head movement are not directly addressed. Some

methods have a solution to head movement but in a limited range of head pose

variations [5, 6, 7, 8, 9, 10]. To handle real-world conditions, spatial relations are

utilized using training-based shape constraints. Although they are not adequate

for occlusion, these methods are more robust to head pose variations but within

the limits of the training sets. The more the number of training images with

pose variations, the more robust the technique becomes under pose variations.

Of course, a training phase is an additional step that causes extra computational
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load to the system and this is a disadvantage. On the other hand, in systems

which do not incorporate spatial relations, as the methods that use only tempo-

ral relations, this lack of relations also causes drifts and poor performance. For

this reason these relations should be considered as well. In this manner, there

are some methods in which ASM is extended using temporal relations [20].

1.3. Contributions of this Paper

In this paper facial feature point tracking is performed in a graphical model-

based framework that incorporates both temporal and spatial information about

the feature points. There has been some methods that incorporate temporal

and spatial relations [20, 19]. Unlike these methods, we propose an approach

based on graphical models that can effectively handle both temporal and spatial

information within a single, unified framework. This framework is the main con-

tribution of this paper. The temporal relation in the model is similar to Kalman

filtering type models. A point-to-point interaction model is constructed for spa-

tial relationships. The overall model is formed as a Markov random field (MRF).

It is based on a parametric statistical model in which the probability densities in-

volved are Gaussian and belief propagation algorithm is used for inference. The

parametric nature of the models makes the method computationally efficient.

Constructing both the temporal and spatial relations allows us to have the ad-

vantages of both approaches in a coherent framework. The spatial connections

between points allow the tracking to continue reasonably well by exploiting the

information from neighboring points, even if a point disappears from the scene

or cannot be observed, e.g. due to occlusions. Another advantage of the spatial

connections is to build a whole model by binding the feature points and prevent

possible drifts occurring because of head movements. The feature values from

video sequences are based on Gabor filters that are sensitive to different poses,

orientations and different feature sizes. Also, an occlusion detector based on the

Gabor filter outputs is proposed to automatically detect occluded points. The

proposed tracker has been applied on real video data under various conditions

including occluded facial gestures and 3-D head movements, and performance of
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the proposed approach is demonstrated through both visual displays and quan-

titative analysis.

The rest of this paper is organized as follows. Section 2 briefly introduces

graphical models and describes the components of the proposed framework. In

Section 3, we explain our algorithmic solution of the posed tracking problem .

Then, Section 4 focuses on the treatment of real-world conditions. In Section 5,

experimental results are presented demonstrating the performance of the pro-

posed approach as well the improvements it provides over two existing methods.

Conclusions are drawn in Section 6.

2. Graphical Models for Facial Feature Tracking

2.1. Overview

Graphical models can be defined as a combination of graph theory and prob-

ability theory. They provide a tool for approaching two major problems of engi-

neering: uncertainty and complexity. Efficient probabilistic inference algorithms

defined on graphs make this structure computationally attractive.

Generally a graph G is defined by a set of nodes V , and a corresponding set of

edges E. The neighborhood of a node s ∈ V is defined as N(s) = {t|(s, t) ∈ E}.

The models are divided into two main categories: directed and undirected

graphs. Directed graphs are graphs in which there is a causal relation between

random variables. In undirected graphs the relation is bidirectional. A sample

undirected graph, or MRF, is shown in Fig. 1. The graphical models of interest

in this paper are undirected.

We associate each node s ∈ V with an unobserved, hidden random variable

xs which can be drawn from a wide range of probability distributions, and a

noisy local observation ys. Sometimes the observations are represented as sep-

arate nodes connected to the nodes corresponding to the hidden variables. Let
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Figure 1: An example for an undirected graph.

x = {xs|s ∈ V } and y = {ys|s ∈ V } denote the sets of all hidden and observed

variables, respectively. Considering pairwise MRFs, a graphical model encodes

the factorization of a joint probability density function p(x, y) as shown below.

p(x, y) =
1
Z

∏
(s,t)∈E

ψs,t(xs, xt)
∏

(s)∈V

ψs(xs, ys) (1)

Here, ψs,t(xs, xt) is the edge compatibility function between hidden variables,

and ψs(xs, ys) is the node compatibility function.

The graphical model that is used in the proposed method consists of three

sub-models: a temporal model, an observation model, and a spatial model. A

representative version of the model that can be used only for two facial features

is illustrated in Fig. 2 (An example set of facial feature points is shown in Fig.

3). Considering real-world coordinates, the hidden variables should ideally be

3-D points that move in the real-world coordinate system. However, because of

the ill-posed structure of the problem (2-D observations, 3-D hidden variables)

the tracking problem becomes quite challenging. To simplify this, the feature

points are taken as 2-D points that move on the camera plane (see Section 4.2

). The hidden variables xs are vectors, each with four elements: x-coordinates,

y-coordinates, velocity of the point in the x direction, and velocity of the point

in the y direction. The observed variables ys are vectors, each with two ele-

ments; x-coordinates and y-coordinates of observed data. So in this notation,

xi(t) means hidden variable of the ith feature point at discrete time point t and

yj(t) is the observed variable of the jth feature point at discrete time point t.
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The relations between nodes are represented by edge compatibility functions,

as in (1). In this paper, these functions are selected as Gaussian distributions.

In the next subsections, construction of edge and node compatibility functions

in the sub-models will be explained in detail.

2.2. Temporal Model

The temporal model captures the temporal behavior of each facial feature

point. In this paper, these relations are modeled using linear dynamics. Since

this modeling is the same for each feature, for simplicity, we suppress the sub-

script notation in the variable xi(t) and define x(t) as the state variable of a

generic feature point.

x(t+ 1) = A · x(t) + w(t) w(t) v N(0, Q) (2)

Here, A is the state transition matrix and w(t) is the process noise, which is nor-

mally distributed with mean zero and covariance matrix Q, and is independent

of x(t). It is assumed that the points move with a constant velocity. Therefore

the state transition matrix is selected as:

A =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 (3)

The temporal connection between two nodes involves a Gaussian distribution

and the edge compatibility function can be defined as follows:

ψt+1,t(x(t+ 1), x(t)) =p(x(t+ 1)|x(t)) = N(A · x(t), Q) (4)

=α exp
{
(x(t+ 1) −A · x(t))TQ−1(x(t+ 1) −A · x(t))

}
2.3. Spatial Model

The spatial model contains one of the main contributions of this paper. This

part models the spatial relations between facial features. Here a model is intro-

duced which brings in prior information about the expected spatial distances
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between feature points. The spatial model between ith and jth feature points

is represented as a Gaussian distribution as follows. For simplicity of notation,

we consider the spatial relation at a single time point and neglect the time

arguments in the variables xi(t), xj(t).

ψi,j(xi, xj) = α exp{
h

xi − (xj − µ△x)
iT

Σ−1
h

xi − (xj − µ△x)
i

} (5)

where µ△x represents the mean of the random vector △x = (xj − xi) and

Σ represents its covariance matrix. Since the hidden variables, xi, xj , are

four-element vectors, the random vector, △x, is also a four-element vector

△x = [ △xx △xy △xu △xv ]T where △xx and △xy represent the spatial

differences between facial features on the x-axis and y-axis respectively; △xu

and △xv represent the differences between velocity components in the x and

y directions, respectively. As mentioned in Section 2.1, the proposed method

tracks the locations of the projection of the feature points on the camera plane.

Hence, the spatial differences are simply the 2-D spatial distances on the camera

plane.

When it is not possible to observe certain data because of occlusion, noise etc.,

incorporating spatial constraints becomes very important. For instance; when

an eye corner point cannot be observed properly because of occlusion, it is hard

to continue tracking with uncertain data. But, since this point is spatially con-

nected with the other eye corner point (see Fig. 2), the spatial information from

neighboring points can prevent drifts and make accurate tracking possible.

2.4. Observation Model

This subsection is about the relations between the hidden variables and the

corresponding noisy observations. The relation is modeled in a linear form as

follows. Again, for simplicity of notation, we neglect the subscript notation and

define x(t) and y(t) as the state variable and observation corresponding to a

generic feature point.

y(t) = C · x(t) + v(t) v(t) v N(0, R) (6)
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Here, C is the observation matrix and v(t) is the observation noise, which is nor-

mally distributed with mean zero and covariance matrix R, and is independent

of x(t). The observation matrix is selected as follows:

C =
(

1 0 0 0

0 1 0 0

)
(7)

As a result, we have

ψs(x(t), y(t)) = p(y(t)|x(t)) = N(C · x(t), R) (8)

Extraction of y(t) from the video data is explained in detail in the next section.

3. Algorithmic Solution

3.1. Data Preprocessing

To extract the 2-D feature point observations from images, some data pre-

processing is performed. For any given image from a video sequence, the feature

point of interest is searched in a search region by comparing groups of pixels with

a template patch that is selected as a reference for the corresponding feature.

This comparison is based on the Gabor filter outputs of both the template image

and the given image region. Gabor wavelets are a time-frequency representation

tool used in many computer vision problems. They achieve robust performance

for feature extraction under illumination and appearance variations.

In this paper, the Gabor filters are selected as in [21]. Then as in [6], im-

age regions are convolved with 24 filters consisting of 6 different orientations

and 4 different wavelengths. The magnitude and phase of the complex outputs

of the filtering at different spatial locations are compared using the similarity

metric in [21]. This produces similarity values for every point in the convolution

region. The location of the best match, with the highest similarity value, is used

as the observation data for the corresponding feature point. The overall flow of

the preprocessing is illustrated in Fig. 4. We select the search region around the

estimated location of feature point from the previous frame. Template patches
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could be based on marked first frame or the previous frame. In [6], the fea-

ture point of interest is searched by comparing with the template patch that

is obtained from the previous frame. But our experiments show that this kind

of consecutive comparison causes drifts and error accumulation. Thus in our

work, we generate the template patches from the first frame of the sequence.

Extreme changes in the appearance of facial features, for instance because of

facial gestures, may result in the failure of the feature extraction process. One

way to address this issue might be to use a bank of template patches that rep-

resent the appearances for different facial gestures. But, in practice, because of

the variability of facial gestures, constructing such a database is a hard prob-

lem. Rather than using such a complex feature extraction process, we use one

template patch for each facial feature (generated from the first frame of the

sequence) and benefit from the power of our statistical model when feature ex-

traction fails.

In this work we focus on facial features located in parts of the face with an

inhomogeneous texture pattern. This is motivated by the observation that in

the context of facial expression analysis, feature points in inhomogeneous regions

such as eye corners and lips have proven to be more important than points in

regions with homogeneous texture. For such points, Gabor filters provide an

appropriate mechanism for feature extraction. If one is interested in other fea-

tures, such as those in more homogeneous parts of the face including the cheeks

and the forehead, then one would need to use a feature extractor appropriate

for tho se features.

The output value of the similarity metric also provides quantitative information

about how similar the best match in the search region and the initial feature

point are. This information can be used to detect frames in which there is an

occlusion in the region of interest of a feature point. The occlusion detection

part, another contribution of this paper, is explained in Section 4.1 in detail.
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3.2. Loopy Belief Propagation Algorithm

In many computer vision applications, the main goal is to find the marginal

conditional density function p(xs|y) ∀s. In our work we want to find the

marginal conditional density function of each feature point at each time in-

dex (Fig. 2). Up to this point we used the notation xi(t) for the ith feature

point at discrete time point t. Here, we combine these indices and use the no-

tation xs, where s represents both feature point and temporal indices.

For graphs which are acyclic or tree–structured, the desired conditional distri-

butions can be directly calculated by a local message–passing algorithm known

as belief propagation (BP) [22]. In chain-structured graphs, this algorithm is

equal to Kalman filtering. For cyclic graphs, Weiss [23] as well as others showed

that BP produces excellent empirical results in many cases. BP is typically de-

scribed as a parallel message-passing algorithm which is iteratively applied. In

particular, in the nth iteration, each node t ∈ V calculates a message mn
t,s(xs)

to be sent to each neighboring node s ∈ N(t):

mn
t,s(xs) = α

Z

xt

ψs,t(xs, xt)ψt(xt, yt) ×
Y

u∈N(t)\s

mn−1
u,t (xt)dxt (9)

Each node combines these messages with its own observation and produces its

own conditional density function:

p(xs|y) = αψs(xs, ys)
∏

t∈N(s)

mn
t,s(xs) (10)

In our graphical model, the algorithm is applied and the marginal conditional

density function p(xs|y) is updated at each time step for each feature point.

These message-passing operations can be analytically computed only in special

cases, such as that of Gaussian or discrete random variables. In our model,

we use Gaussian densities, which appear to provide accurate statistical descrip-

tions for our problem. In this case, the two steps of the algorithm stated above

simplify to updating means and covariances. If non-Gaussian densities were

used, one would have to resort to approximate, possibly non-parametric itera-

tive methods, which would be slower than our approach. To make the proposed
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tracker usable in real-time applications, each update step is done using the cur-

rent and the previous data (and not the future data). As a result the algorithm

used becomes a filtering (rather than smoothing) algorithm. For the details of

the update equations for the Gaussian case please see [24].

4. Tracking under Real-World Conditions

As a natural human action people move their head, hands all the time. Thus,

in real-world conditions there can be external occlusion problems (because of

moving hands etc. in front of the face) and/or problems due to 3-D head move-

ment. To build a facial feature tracker that is robust to real-world conditions,

these cases should be handled properly. The proposed method is designed in a

way to deal with these problems. This is one of the contributions of this pa-

per. The proposed solutions for these problems are explained in the following

subsections.

4.1. External Occlusions

Considering real-world scenarios of computer vision applications, the occlu-

sion problem can be divided into two categories: external occlusion and self-

occlusion. Self-occlusion can be defined as the case when the object of interest

occludes (parts of) itself. Most of the time this occurs because of the movements

(e.g. rotation) of the object. Contrarily, external occlusion is the occlusion that

is caused by other objects occluding the object of interest. In the context of

this paper, self-occlusion can be defined as the occlusion when there is out-of-

plane motion of the head. This case is handled in the next subsection. In this

subsection the external occlusion problem is considered.

When occlusion occurs, the observed data become useless for the occluded fea-

ture point and should be disregarded. Therefore, we first need to detect the

occlusion. We have observed that when occlusion occurs, the similarity values

in our Gabor filter-based search begin to drop (illustrated in Fig. 5). By thresh-

olding similarity values, this quantitative information can be used to detect the
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occlusions of various features in the video frames. When an occlusion is de-

tected for a feature point at a particular time instant, the observed data for the

feature point is disregarded. Although one might be concerned that this lack of

data will have a dramatic effect on tracking, the proposed tracker can continue

tracking using the information contributed by the temporal dynamics and the

spatial constraints without incorporating any observation at that time instant.

4.2. 3-D Head Movements

To deal with the 3-D movements of the head, ideally (and unlike the develop-

ment up to this point) a framework in which the feature points are represented

as 3-D points would be needed. In a real-world coordinate system, facial fea-

ture points are 3-D points, but the observations are 2-D videos taken from a

monocular camera. This produces the need for a mechanism to associate 2-D

observations to 3-D real-world points.

Going from 2-D to 3-D is a hard problem which does not have an exact so-

lution because of its ill-posed structure. In the literature, there are two main

approaches to this problem. One approach is stereo vision. In stereo vision

applications, one needs to take advantage of stereo cameras. Since in this pa-

per a monocular camera is used, this approach is out of the scope. The other

approach is to use a monocular camera and try to extract 3-D information.

There are a number of proposed methods in the literature to obtain 3-D in-

formation from motion [25, 26, 27, 28]. These methods are mostly based on

point-correspondence and assume that there is one moving object in the scene.

This assumption is clearly not satisfied in our problem, as we are interested in

tracking multiple facial features on a head, which itself can be moving as well.

Also, the point-correspondence can be very fragile in the case of out-of-plane

head movements. Considering these potential issues, it has been decided not to

use this approach. In [29, 30, 31, 32], the 3-D model of the object of interest is

used as prior knowledge to extract 3-D information. However, given that face
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has a non-rigid, person-dependent structure, constructing a generic, accurate

3D model of the face is not a trivial task. Because of the complexities of these

methods, it has also been decided not to pursue this path. Instead, we develop a

simpler solution matched to the structure of the facial feature tracking problem.

To suppress this deficiency of the 2-D data for 3-D movements, incorporat-

ing side information about the head pose can be a solution. If this information

is obtained somehow and incorporated into the model, then our model that uses

2-D states can be adapted to the pose of the head and our method can con-

tinue tracking in the case of 3-D head movements. We can take advantage of

what we will call reliably tracked points to extract partial information about the

head pose 2. We define reliably tracked points as the feature points that do not

move significantly due to facial expressions. Namely, their motion is almost due

entirely to head pose change. We assume that these points are not occluded,

hence we can track them reliably.

The motion of inner eye corners is mostly because of head pose change. Since

these points are in the middle of the face, the self-occlusion problem for these

points can be negligible, provided that the head does not go through extreme

3-D rotations. Thus, inner eye corner points can be selected as reliably tracked

points and they can be used to get the head pose information.

Consider a moving plane in space. Let there be n 3-D points on the plane

each represented by Pi = [Xi, Yi, Zi]T , i = 1, ..., n, and let pi = [xi, yi]T be

the projection of each point onto the camera plane. In the perspective camera

2If an external head pose tracker is available, our algorithm could exploit the accurate head

pose information provided by such a tracker. In the context of this paper, we assume that

such a tracker is not available, and demonstrate how our algorithm can incorporate partial

information provided through the use of reliably tracked points.
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model, 3-D points and their projections are related by

xi = f
Xi

Zi
yi = f

Yi

Zi
(11)

where f denotes the focal length. Since the points are on the plane, the 2-D

motion of each point pi on the camera plane can be represented by the well

known “optical flow” equation [33] as
0

@

ẋi

ẏi

1

A =

0

@

a

b

1

A +

0

@

c d

e f

1

A

0

@

xi

yi

1

A +

0

@

gx2
i + hxiyi

hy2
i + gxiyi

1

A (12)

For simplicity, the last term of (12) can be neglected and the motion of each

point pi can be represented as an affine motion. By this assumption, affine

camera model (i.e. scaled orthography) and affine invariances can be used.

Under affine transformation, the ratio of distances between collinear points is

preserved [34]. Consider Fig. 6. Let line l go through an affine transformation

A and become line l′. Since the transformation is affine, the ratio between

distances is preserved:
|PQ|
|QR|

=
|P ′Q′|
|Q′R′|

(13)

Assuming the face is a planar surface and facial feature points are moving on

this plane, this invariance can be used to adapt to distances between feature

points to the new head pose. Let points P ,Q,R represent the locations of three

feature points at the reference head pose, with spatial connections between Q

and R. Then assume that, P ′,Q′,R′ are the new point locations after the head

pose changed. If P ′,Q′ points are assumed to be reliably tracked points then the

expected spatial distance between Q′ and R′ can be found based on the affine

ratio relationship in (13), and the parameters of the spatial model in (5) can be

updated accordingly.A more general approach can be to assume feature points

are nonplanar and to use a perspective camera model. In this way, projective

invariance (i.e. cross-ratio) can be used to update the coordinates of the mean

vector [33]. But to update the coordinates using cross-ratio, there is a need of

three reliable points that are on the same line (see Chapter 10 of [33]). Since it

is difficult to find three reliable points on the face that are on the same line and

since feature points are almost on a plane, using affine ratio is expected to be
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sufficient and appropriate for the particular problem of interest in this paper.

Therefore, affine-ratio is used in our work.

In the case of head rotations around x-axis and y-axis the inner eye corner

points can be occluded by other feature points because of the head movement.

In this case our tracker would work accurately up to the point where what we

use as reliable points remain unoccluded.

5. Experimental Results

5.1. Setup & Parameter Selection

The data used in our experiments are grayscale videos with 640x480 reso-

lution. Videos are recorded with a rate of 30 frames per second without com-

pression. Assuming the point coordinates and velocities are independent of each

other, all covariance matrices in the framework are constructed in diagonal form.

The covariance matrices Q and R in (4) and (8), respectively, are selected as

follows:

Q =

2

6

6

6

6

6

4

16 0 0 0

0 16 0 0

0 0 4 0

0 0 0 4

3

7

7

7

7

7

5

R =

2

4

4 0

0 4

3

5 (14)

The Gaussian densities involved in the spatial model are formed in information

form. It is assumed that the variance of the distances on x and y axes are 4

pixels. The parameters of the covariance matrix are set according to the spatial

constraints. For the case in which there are constraints only on x and y axis po-

sitions, the inverse covariance matrix (Σ−1) in (5) for the corresponding spatial

model is selected as follows:

Σ
−1

=

2

6

6

6

6

6

4

1/4 0 0 0

0 1/4 0 0

0 0 0 0

0 0 0 0

3

7

7

7

7

7

5

(15)

By setting the last two diagonal elements of the inverse covariance matrix zero,

we do not impose any prior information on relative velocities of feature points.
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The x and y coordinates of the mean vector (µ△x) in the spatial model are

selected using the 2-D distance between the feature points in the first frame of

the sequence.

For the initial covariances of each hidden variable, we choose large values reflect-

ing the assumption that the initial uncertainty is large, and letting the algorithm

refine these values based on observed data. In particular, we initialize the prior

covariance for each feature point as follows:

Σx0 =

2

6

6

6

6

6

4

100 0 0 0

0 100 0 0

0 0 25 0

0 0 0 25

3

7

7

7

7

7

5

(16)

An ideal way of determining the parameters above would be to learn them from

the experimental data in each scenario. Here, we illustrate the use of learning

by providing a simple example. Of course, in a learning task we would need

sufficient amount of labeled training data providing the ground truth for feature

points. A manual feature point marking procedure is performed to compose this

ground truth data. Consider determining the parameters of the spatial model

describing the relationship between the inner and outer corner points of the

right eye. In Fig. 7, the histogram of 2-D spatial distances (in pixels) on the x-

axis for this particular scenario is shown. The histogram is constructed by using

1109 sample images. The mean and variance of this data are given in Table 1.

This information can be used to set the parameters of the Gaussian density in

the spatial model. However, the parameter selection from learning will produce

the need of ground truth data of each feature point for every scenario of interest.

For the illustrative set of experiments in this paper, we do not carry out such

a detailed learning process for all the feature points, but rather we select the

covariance matrices as in (14), (15) and specify the x and y coordinates of the

mean vector simply using the manually-marked first frame in each sequence, as

described in the beginning of this section. In practical use of our approach in

a real tracking scenario, one may of course not have access to the marking of

the initial frame for the test sequence, and would use parameters learned from
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offline training data as described above, in the latter portion of this section.

Mean Var

The spatial distance on x-axis 55.6177 4.119

Table 1: The mean and variance of the distribution in Fig. 7

5.2. Basic Experiments

Based on the main motivations of this paper, the proposed method is tested

in scenarios involving facial expressions. A number of distinct facial gestures

are selected for the experiments. These include mouth opening, eye closure,

smiling, and eye (wide) opening. The sequence consisting of such gestures is

recorded continuously, and also includes natural eye blinking movements. 16

feature points are selected including 2 points for each eye brow, 4 points for

each eye and 4 points for the mouth. In Fig. 8, the selected feature points and

the spatial connections, we have decided to exploit for such an experiment are

illustrated. In Table 2, the spatial constraints of the corresponding connections

are shown.

The results for a sequence in which there are facial expressions described above

and there is no head movement are shown in Fig. 9-b. To make a comparison,

an algorithm that uses only temporal relations and that is based on Kalman

filtering [6] is also applied to the same sequence and the results are shown in

Fig. 9-a. It can be clearly seen that the proposed method gives more accurate

results, while drifts occur for the other algorithm. Most of the drifts occur in the

eye region points because eye blinking and eye closure cause the observed region

to change rapidly. Since the other algorithm does not use spatial relations, these

rapid changes result in loss of tracking performance. To perform a quantitative

evaluation, the Euclidean errors of the trackers for estimating the position of

each feature point are evaluated by using the ground truth data. Ground truth

data were labelled by one person. But, for accuracy, the markings were checked

and corrected by another person. The quantitative errors (in pixel) of the tracker
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Connected Couples △x

△xx △xy △xu △xv

1-2 • • - -

4-3 • • - -

5-8 • - - -

7-8 • - - -

11-8 • - - -

6-9 • - - -

8-9 - • - -

10-9 • - - -

12-9 • - - -

13-15 • - - -

14-15 - • - -

16-15 • - - -

Table 2: The selected spatial constraints of the corresponding spatial connections shown in

Fig. 8. Dots indicate the constraint used.

in [6] and the proposed tracker are shown in Table 3. Due to the imperfection of

ground truth, because of manual marking, errors of 2-3 pixels can be negligible.

The quantitative results confirm our observations above. The overall errors

show that the results of the proposed method are more accurate. The movement

of eye lid features provides information about the status of the eye (blinking,

closure,... etc). For this reason, a tracking algorithm in a facial expression

recognition system should robustly track eye lid features. The method in [6]

makes very large errors for the eye lid feature points whereas the errors of the

proposed method are negligibly low.

5.3. Experiments Involving External Occlusion

The purpose of this experiment is to test the performance of our facial fea-

ture tracker under occlusion and the performance of our occlusion detector,

described in Section 4.1, in facial expression sequences. Here, a sequence that

consists of the occlusion of a mouth feature point and an eye corner point, as

well as facial gestures such as mouth opening and wide opening eyes is used.
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Errors Method in [6] Proposed method

Feature Point No. Mean Var Mean Var

1 2.9515 1.6815 3.2449 2.1996

2 5.2828 4.4396 5.3056 3.7691

3 2.7997 1.6815 3.0503 1.9411

4 3.5312 1.8122 2.895 1.6714

5 21.8701 202.6687 3.3094 4.2972

6 7.0232 74.1023 6.6992 68.102

7 2.6495 2.8636 6.605 6.1585

8 2.6055 3.9925 2.7635 3.789

9 2.823 3.05 3.3881 5.7874

10 2.736 3.4941 3.747 3.3388

11 43.8116 552.5629 4.7928 32.6585

12 16.8808 187.4258 4.1475 22.1235

13 1.9145 1.0547 3.1186 2.1213

14 4.2243 4.4301 4.6351 4.5915

15 5.2805 5.5958 5.3156 13.8288

16 6.0641 22.4314 5.1734 19.5062

Overall 8.278 173.3266 4.2619 22.5933

Table 3: Quantitative errors of the tracker in [6] and the proposed tracker in the sequence

shown in Fig. 9.

There are also natural eye blinking movements in the sequence. The proposed

tracker’s performance in such a sequence is illustrated in Fig. 10-b. In Fig. 10-a,

the results of an existing technique [6] is shown. To make a proper comparison,

the same occlusion detector in our approach is also used for the technique in [6].

It can be observed that in the case of data loss because of occlusion, spa-

tial constraints in our approach enable the tracking to continue. Without the

spatial relations, the positions of the points cannot be accurately estimated, as

demonstrated by the results of [6] in Fig. 10-a. When the occlusion occurs, the

information coming from the data term of the occluded feature is neglected in
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both tests. The proposed method continues to track using the spatial informa-

tion and temporal information, but the other algorithm fails to track because

only temporal information is insufficient for accurate tracking. Using only tem-

poral relationships will cause the feature points to go on with constant velocity

(due to the nature of the linear, constant velocity dynamical model used). The

drifts are because of this lack of information. These drifts can also be observed

in the quantitative results for the corresponding feature points in Table 4. Here,

the ground truth data for occluded feature points are obtained by marking the

likely positions of the points as estimated by the person performing the label-

ing. The errors for occluded points are also included in the quantitative results.

The overall errors in Table 4 show that the proposed method is more capable

of tracking in scenarios including external occlusion. One may obtain a rough

assessment of how occlusion affects the performance of our tracker by compar-

ing the results in Table 3 and 4. As explained in Section 4.1, the best match

similarity outputs for the corresponding feature points provide quantitative in-

formation about occlusion. These similarity values for four eye corner points

are plotted in Fig. 11. It can be clearly seen that thresholding the similarity

values below 0.95 (red line) can detect the occlusion.

Up to this point the proposed method has been compared with the method in

[6], which involves no spatial constraints. To compare the performance of the

proposed tracker this time with a technique involving spatial constraints, Active

Appearance Models [11], a widely known technique used for facial expression

analysis, is also applied to the same sequence. The results of the AAM method

are shown in Fig. 10-c. The AAM-API library [35] is used for implementation

of the AAM method. A training set that consists of the same facial gestures

described above is composed from the Cohn-Kanade database [36] and AAM

is trained with these images. The results show that AAM cannot be sufficient

for tracking facial features under external occlusion. The main reason of this is

that the AAM method demonstrated here does not use the occlusion informa-

tion and it is dependent on the training set. Since external occlusion is a case
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Errors Method in [6] Proposed method

Feature Points No. Mean Var Mean Var

1* 74.9623 899.8539 13.5749 38.8698

2 8.5802 22.9464 8.5421 23.485

3 10.0582 26.2468 9.3382 22.7377

4 10.2098 13.2184 10.5673 14.6818

5 8.4403 14.7268 8.247 15.274

6 7.7024 14.3648 6.5375 12.4466

7* 33.0846 156.0525 6.4674 12.8102

8 5.0784 8.7588 5.1565 7.9788

9 5.7576 10.2903 5.8035 9.764

10 4.9655 8.3805 4.5125 7.7788

11 4.989 10.4318 5.2705 10.3697

12 6.3485 12.1798 6.3323 12.1276

13 6.7574 20.5591 6.668 20.4128

14* 23.6016 656.7814 7.9048 19.8647

15 6.2903 17.2305 5.9772 15.3571

16 10.9803 64.1293 10.9873 64.254

Overall 14.2379 326.6216 7.6179 65.8467

Table 4: Quantitative errors of the tracker in [6] and the proposed tracker in the sequence

shown in Fig. 10. The points marked with “*” correspond to the points that are occluded in

a particular time of this sequence.

that cannot be fully represented by sample images, including some images in

which the facial components are occluded in the training set cannot be sufficient

for general occlusion scenarios. However, there are methods in which AAM is

used together with occlusion information by robust error functions [37] or de-

tecting outliers [38]. Also, there is some drift on the unoccluded left eye brow

which is because of the limits of the training set. As a result it can be concluded

that the performance of the proposed method is better than the performance of

the methods in [11] and [6] under external occlusion.

22



5.4. Experiments Involving Head Movement

Head movement is an important issue in facial feature tracking problems. In

this section, we present results on the application of the proposed method on

sequences that include rotation around x-axis (θx), rotation around y-axis (θy)

and translation on z-axis (Tz), which are types of ”out-of-plane” motion, as well

as mouth opening gesture. In these types of head movements, it is clear that

the appearance and edge structure of some feature points will undergo a major

change. Since the template patches are generated from the first frame of the

sequence (Section 3.1), it may be difficult to extract correct observations. How-

ever, with the use of our occlusion detector, these incorrect observations can be

omitted and our statistical model can continue tracking by incorporating both

spatial and temporal information.

Here, the left and right inner eye corner points are selected as reliably tracked

points and they are used to obtain some information regarding the head pose (by

affine invariance). The head pose in the first frame of the sequence is selected

as the reference head pose. The results of our approach for the “out-of-plane“

head motion sequences are shown in Fig. 12-b, Fig. 13-b and Fig. 14-b. We

also present results of the method in [6] and the AAM method in [11] on the

same sequences. These results are given in Fig. 12-a, Fig. 13-a, Fig. 14-a and

in Fig. 12-c, Fig. 13-c, Fig. 14-c respectively. The quantitative results for these

experiments are given in Table 5, Table 6 and Table 7. First, we note that our

method outperforms the method in [6] in the overall errors. A detailed analysis

is given below.

While the overall performance of our method is better than the other

methods in these experiments, we also observe that that our method has certain

limitations in getting the 3-D head pose information based on reliably tracked

points (left and right eye inner corners). In particular, for sequences that contain

θx and θy motion (Fig. 12-b and 13-b) drifts occur, especially for eye feature

points. As explained in Section 4.2 when the feature points that are taken as
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Errors Method in [6] Proposed method

Feature Points No. Mean Var Mean Var

1 7.7547 6.0941 7.9711 8.0411

2 6.2688 7.7507 6.0041 6.7594

3 3.8367 4.4322 3.6256 4.6126

4 3.4234 2.4056 3.1331 2.42

5 10.0875 41.3224 9.1781 34.0289

6 10.7619 55.7967 8.9935 38.574

7 4.5767 13.1218 6.6986 20.99

8 4.8406 16.6608 3.9675 5.3031

9 5.2186 29.9649 6.2543 7.704

10 13.0865 108.2725 13.5364 55.4233

11 30.2639 614.7551 5.4531 10.9155

12 6.818 28.3884 6.0795 29.5396

13 2.263 1.8954 2.6063 2.0324

14 3.6134 3.9564 6.8595 14.5613

15 16.4026 159.9598 13.8698 105.1156

16 4.81 11.4739 4.7797 11.6641

Overall 8.3766 115.0337 6.8131 32.5431

Table 5: Quantitative errors of the tracker in [6] and the proposed tracker in the sequence

shown in Fig. 12.

reliably tracked points cannot be tracked well, the proposed method can lose

some accuracy in tracking. Because of the head movement in these sequences,

in particular in the sequence in Figure 13, there occurs self-occlusion on the eye

feature points and this affects the tracking performance of the reliable points.

For this reason, head pose information cannot be obtained very accurately based

on the reliably tracked points approach, and drifts occur in some feature points.

This result can also be clearly seen in the quantitative results. For the proposed

method, the errors of the inner eye corner points in θy motion sequence (Table

6) are much bigger than the errors in previous experiments. This increases the

errors in other feature points as well. For this reason, the overall error of the

proposed method for this sequence is also much bigger than the overall errors in
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Errors The method in [6] The proposed method

Feature Points No. Mean Var Mean Var

1 8.5874 3.6709 8.9523 31.5737

2 3.6896 3.7212 4.9679 10.2338

3 4.8703 8.1034 15.4902 362.119

4 24.6714 1149.1813 23.0897 1000.3765

5 67.5781 1576.4321 21.6335 107.3603

6 36.9113 2676.2937 22.5722 988.0865

7 25.9111 274.3535 13.0587 72.5457

8 70.0671 1642.8216 12.9896 83.3209

9 15.9406 271.5229 18.3194 528.204

10 3.9114 5.3791 29.3009 1403.7654

11 49.5711 1158.2236 9.4916 64.7557

12 37.645 1565.7496 23.9482 929.2606

13 2.3963 1.652 7.4228 64.9385

14 3.8976 8.3061 7.9202 40.0682

15 3.3282 3.5374 3.7145 3.5187

16 7.1848 24.0822 6.8959 18.7617

Overall 22.8851 1151.871 14.3605 414.3141

Table 6: Quantitative errors of the tracker in [6] and the proposed tracker in the sequence

shown in Fig. 13.

previous experiments. On the other hand, in the Tz motion sequence (Fig. 14

and Table 7), except a small drift in the left mouth corner, there is no significant

error in any feature point. Although the errors of the proposed method increase

in sequences involving occlusion of reliably tracked feature points, the overall

errors of the method in [6] are larger in general. This can also be observed in

Fig. 12, 13 and 14 by visually comparing the proposed method and the method

in [6]. The method in [6] suffers due to lack of spatial information for eye feature

points especially in θx and Tz motion sequences (Fig. 12-a and 14-a). Besides,

comparing the proposed method with the AAM method in [11] shows that the

AAM method fails to fit on the face in the case of head movement, especially

when self-occlusion occurs. The reason of failure of the AAM method is again

because the technique does not use the occlusion information and cannot adapt
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Errors The method in [6] The proposed method

Feature Points No. Mean Var Mean Var

1 10.0086 4.2787 10.2397 3.2059

2 2.5805 2.0985 2.9314 2.5856

3 6.2958 4.2993 5.5194 3.8763

4 3.6411 1.7353 4.1643 1.7968

5 58.6924 2312.5091 6.7089 32.8487

6 5.8923 11.2332 4.1303 4.9833

7 3.7021 2.9566 4.1804 4.4403

8 2.3474 3.5049 3.0666 2.3461

9 12.2222 38.909 4.8284 9.4

10 13.7604 112.8223 5.1722 29.9485

11 12.8666 40.4387 6.1376 8.7468

12 32.9484 182.0606 3.9329 6.9234

13 2.2256 1.2406 3.6931 1.921

14 3.4794 5.3327 5.4026 11.4034

15 40.1732 303.3658 17.9888 45.3846

16 5.1407 10.4991 5.2426 10.0153

Overall 13.4985 438.8398 5.8337 23.8907

Table 7: Quantitative errors of the tracker in [6] and the proposed tracker in the sequence

shown in Fig. 14.

well to scenarios not covered in the training set. As in the case of external

occlusions, composing a training set that can fully represent head movements

is very hard. Because of this, the AAM method can be useful for facial feature

tracking only within the limits of the scenarios covered by the training set.

The reliably tracked points approach may have limitations when these points

are occluded (e.g., because of large head movements). But, the approach is

valid for certain amount of head movement. For instance, in the θy motion

sequence in Fig. 13-b, there are no drifts in the beginning. But when head

turns too much (there occurs self-occlusion on the eye feature points), drifts

begin to occur (frame no. 147 and 297). Despite the fact that there can occur

drifts in the results of the proposed method, considering the results of all three
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methods, the proposed method appears to be a better tracker. If the head pose

information can be obtained from an external source then these results will be

improved even further.

For further evaluation we have used the Boston head tracking database [39],

which includes similar head movements. The results of the proposed method,

the method in [6], and the AAM method are shown in Fig. 15. It can be seen

that the results of the proposed method are better than the results of the other

methods. The method in [6] loses tracking of some eye feature points because

temporal information is not enough when the head turns. Again, the AAM

method in [11] cannot track facial features accurately since it cannot adapt to

head movements not covered in the training set. On the other hand, our method

deals well with this kind of head movement. Except some small drifts in eye

feature points, there are no significant drifts in the other feature points. This

result also shows that although the reliably tracked points approach may have

limitations, it outperforms the other techniques, and usually deals well with 3-D

head movements.

In addition to the experiments shown here, we have also applied our method

to sequences in which video resolution is low, there are illumination changes,

sequences in which there are in-plane head movements, and as a real-world ap-

plication sequences taken in a vehicle environment [40]. For these extensive

experiments please refer to [41].

6. Conclusion

In this paper a facial feature point tracker that can be used in applications

such as human-computer interfaces and facial expression analysis systems is

proposed. The proposed tracker is based on a graphical model framework. The

facial features are tracked through video streams by incorporating statistical

relations in time as well as spatial relations between feature points. By con-
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structing both the temporal and spatial relations using graphical models, the

proposed method exploits information from both types of relationships in a sin-

gle, coherent framework. The role of the spatial connections is to build a whole

model by binding the feature points and prevent possible drifts occurring due

to a number of factors including data quality limitations, occlusions, and head

movements. In the case of occlusions, the data in the occluded region become

useless. To overcome this, a Gabor feature based occlusion detector is devel-

oped and spatial constraints are utilized to prevent drifts because of occlusions.

The tracking problem posed in a graphical model framework is solved using a

message passing algorithm.

The performance of the tracker is evaluated under various conditions by com-

paring with two different popular methods which are methods based on Kalman

filtering and AAM. Both qualitative visual results and a quantitative evaluation

are presented. Our results contain examples demonstrating both successful and

imperfect tracking performance of the proposed method. An interesting quan-

titative result could be the amount of drift present in a feature point before

the model breaks down. But, since the spatio-temporal constraints in the pro-

posed method can ensure recovery even in some challenging scenarios, it is not

straightforward to characterize this quantitatively. Based on the results we have

obtained, it can be concluded that the proposed method provides a promising

framework for facial feature tracking. It is a robust tracker for facial expres-

sion tracking especially in challenging scenarios involving head movements and

occlusions.
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Figure 2: The graphical model used in our framework for the

particular case of two feature points.

Figure 3: An example set of

facial feature points.

Figure 4: The overall flow of the preprocessing
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Figure 5: Similarity value outputs of the eye corner feature point when (a) there is no occlusion,

(b) there is occlusion

Figure 6: Illustration of line l going through an affine transformation.
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Figure 7: The distribution of the spatial distances on x-axis between the right eye corner

feature points for a scenario involving facial expressions without any head movement and/or

occlusion.

35



1 2 3
4

5 6

7 8 9
10

11 12

13

14 15

16

Figure 8: The selected feature points and the spatial connections for the experiments.
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Figure 9: Tracking results of (a) the method in [6] (b) the proposed method for a sequence

that includes facial gestures.
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Figure 10: Tracking results of (a) the method in [6] (b) the proposed method (c) the AAM

method in [11] for a sequence that includes facial gestures and external occlusion by hand.

38



Figure 11: The similarity outputs of four eye corner points for the sequence shown in Fig. 10.

Red line represents the threshold value.
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Figure 12: Tracking results of (a) the method in [6] (b) the proposed method (c) the AAM

method in [11] for a sequence that includes rotation around x-axis (θx) and mouth opening.
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Figure 13: Tracking results of (a) the method in [6] (b) the proposed method (c) the AAM

method in [11] for a sequence that includes rotation around x-axis (θx) and mouth opening.
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Figure 14: Tracking results of (a) the method in [6] (b) the proposed method (c) the AAM

method in [11] for a sequence that includes translation on z-axis and mouth opening.
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Figure 15: Tracking results of (a) the method in [6] (b) the proposed method (c) the AAM

method in [11] for a sequence from Boston head tracking database [39].
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