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Abstract—This work addresses the optimal control problem
of dynamical systems with inaccessible outputs. A case in which
dynamical system outputs cannot be measured or inaccessible.
This contradicts with the nature of the optimal controllers which
can be considered without any loss of generality as state feedback
control laws for systems with linear dynamics. Therefore, this
work attempts to estimate dynamical system states through a
novel state observer that does not require injecting the dynamical
system outputs onto the observer structure during its design. A
linear quadratic optimal control law is then realized based on the
estimated states which allows controlling motion along with active
vibration suppression of this class of dynamical systems with
inaccessible outputs. Validity of the proposed control framework
is evaluated experimentally.

Keywords—A ction-reaction state observer, motion control, re-
action force observer, vibration suppression.

I. INTRODUCTION

The optimal linear quadratic control law of the form u*(t) =
—R7!B'KX(#), requires measuring or estimating dynamical
system states. Such problem has been solved by using either
sensors to measure dynamical system states or by designing
state observers. The class of dynamical systems we consider in
this work do not have accessible outputs or measurements can-
not be made due to some constrains, e.g., Mariaana and Heikki
[1] pointed out that there exist at least two major problems that
makes it difficult to automate the micromanipulation systems,
namely the poor understanding of the interaction phenomena
and the difficulty of making measurement at microscale. A
question naturally arises: Can we realize an optimal control
law of a dynamical system when neither of its outputs are
measured or when these dynamical systems are required to be
free from any attached sensors to overcome their associated
problems or even when it is impractical to make measurement
due to limited space constraints ? It would be natural, however,
to devise observers to estimate dynamical system states that
in turn requires having measurements from the dynamical
system to be used as basis of the estimation process during
the design of the state observer. Unfortunately, the dynamical
systems we consider in this work do not have any accessible
outputs. Therefore, we consider a novel state observer, with

a Luenberger [2]-[3] like structure except that it does not
requires measuring dynamical system states to develop the
error variables between the actual and estimated states, it
rather utilizes the incident reaction forces that occurs upon
any excitation generated at the interface plane between these
systems and their actuators. These incident reaction forces are
instantaneous and can be conceptually considered as feedback
like forces from these dynamical systems.

The interaction forces along dynamical systems were
considered as propagating mechanical waves that must be
launched with the proper amount and at the right time in
order to position a non-collocated mass to a reference po-
sition without residual vibrations [4], [5]. However, the wave
transformation was utilized in [14]-[17] in order to preserve
passivity of a communication network in the presence of time
delay. On the other hand, Ohnishi [6]-[10] considered these
interaction forces as disturbances that have to be suppressed
in the attainment of robust motion control [11].

In this work, estimated reaction forces are used as basis
of the state estimation process during the design of the
proposed state observer. The optimal motion control and
vibration suppression control law is then realized based on
the estimated states. This allows performing a motion control
assignment along with vibration suppression without taking
any measurement from the plant side, reaction forces are
rather conceptually considered as natural feedback from these
systems which can be used in the design of state observers.

The remainder of this paper is organized as follows. In
Section II, the energy content of the dynamical system along
with the controller induced energy are used to formulate a
performance index, then the optimal control law is derived. In
Section III, a state observer is presented which consists of a
reaction force observer, disturbance observer and a Luenberger
like state observer. This observer is designed and utilized
to estimate dynamical system states without injecting any
of its outputs onto the observer structure during its design.
The estimated states are then used in the realization of the
optimal control law which guarantees precise motion control
along with vibration suppression at the end of the travel.



Experimental results are included in Section IV, where a
multi degrees of freedom flexible system is conceptually
considered as a dynamical system with inaccessible outputs. A
state observer is designed for this system then the regulation
control law is used to regulate its states to the origin or any
target position. Eventually, conclusions and final remarks are
included in Section V.

II. MOTION CONTROL AND VIBRATION SUPPRESSION

The state space representation of the system we consider
can be written as

x=Ax+Bu, y=Cx @))

where x € R"*! and y € R"*! are system state and output
vectors. A € R™™” B € R™*! and C € R™*" are system
matrix, input and output distribution vectors, respectively. u €
R'*! is a single input to the dynamical system.

In order to perform vibrationless motion control, the fol-
lowing performance index is used
Ty

J(x(t),u(t),t) =T + % / (x'Qx(t) + u(t)' Ru(t))dt (2)

To
T = x'(ty)Hx(ts)

where, R is a symmetric positive definite matrix, i.e., R = R,
R > 0, while Q is at least symmetric semi-definite matrix, i.e.,
Q' =Q, Q> 0. Q and R will be selected such that the first
and second terms of the performance index integrand represent
the energy content of the system and the energy induced by
the control input, respectively.

The previous performance index can be rewritten using the
estimated states which will be discussed in the next section.
Therefore, (2) can be written as

I
JE(t),u(t),t) =T + 3 / (X'QX(t) + u(t)' Ru(t))dt (3)
To
T =X (ty)HR(tf)
consequently the Hamiltonian can be written as follows
H(X(t),u(t),b(t),t) =T + ' (H)[AX + Bu(t)] @)

D2 g(R(1),u(t), 1) = 3 (F7Q% + u'(ORu(r)

X(t) is a vector of the estimated states while p(t) is the
corresponding vector of system co-states. Differentiating the
Hamiltonian with respect to states, co-states and control, the
necessary conditions for the plant sensorless optimal control
can be represented as follows

e OAR(E),u(t), B(E), 1)

< () 5 ®)
/[.3* (t) _ _8%(§(t),gggt)vﬁ(t)a t) (6)

=0 )

the following matrix differential equation can be obtained
using the previous necessary conditions
A —-BRI!B!

X (1)

b () QA
solving the previous matrix differential equation for estimated
states and co-states we obtain

1 )

l X*(ty) ] | ¥ X*(t)
p*(ty) o *(t)

Where W is the state transition matrix. Using the following
boundary condition

Uig
Woo

o)

B(ts) = HX(ty) (10)
combining (9) and (10), we obtain
D(t) = (HU1g — Wap) 1 (Wyy — HE)R(E)  (11)

taking partial derivative of Hamiltonian with respect to the
control input

u*(t) = —R™'B'p(t) (12)
using (11) in (12) we obtain
u*(t) = —KX(t) (13)
where
K=R™'BI(HU 5 — Ug) }(Tyy — HUy;)  (14)

III. ACTION REACTION STATE OBSERVER

It can be shown that the state space representation (1) can
be written as follow

}.(a = AaXa =+ Bau + Breacfreac(xa X) (15)

Xp = Apxp + Bpfreac(xa %) (16)

x=[xa | xp ]

(15) and (16) are the state space representations of the actuator
and the dynamical system required to be controlled in the
absence of its outputs or states (x,). The subscript (a) and (p)
denote the single input and the plant, respectively. feqc(X,X)
is the reaction force between the dynamical system (16)
and its actuator (15). freqe(X,%) is written as an implicit
function of the entire dynamical system (1) states (x) since
the reaction force is a function of the actuator and the plant
states. Therefore, we propose a state observer for the plant
(16) of the following form

X =AX + Bu + M(freac(xaa Xa) - freac(iy /}E))
where f/r;(xa,i(a) is the incident reaction /f(ice which can
be observed using the actuator variables, f,,Aeac(Q,?) is the
computed reaction force using the estimated states and the
reaction force mathematical model which is assumed to be
known a priori. M is the state observer vector gain.
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The estimated reaction force can be observed using the
following reaction force observer

—

freac(xa7 Xa) = &[greacmzia + iaA/k\f + &T

S+ Greac
—_—

7greacAmaza

(18)

where ¢,.q. € RT is the positive reaction force observer gain.
14 is reference current input. m, and %y are the actuator mass
and force constant. A/\ma and A/\kf are the identified actuator
parameter deviations. A procedure to determine A/n?a and Ek\f
can be found in [18]-[19] through an off-line experiment. d
is the observed disturbance force which can be determined
through the following observer [10]

> 9dist . . .
d = $[gdistman$a + Zakfn] — GdistManTa
s+ Gdist
9dist . . dist
= ———|igktn — SMgnite| = ———d (19)
s+ 9dist [ atfn o CL] s+ Gdist
where gg;s: € R is the positive disturbance observer gain.

Mgan and kg, are the nominal actuator mass and nominal
force constant, respectively. Equations (17), (18) and (19)
represent a state observer for dynamical systems with inac-
cessible outputs where measurements have only to be taken
from the actuator side, whereas plant states (z,) are not
measured at all. The estimated states obtained through (17)
can then be used in the optimal control law (13). Figure 1
illustrates the architecture of the control system, where the
disturbance observer (DOB), reaction force observer (RFOB)
and the action reaction state observer (ARSO) are used to
estimate the plant states (x,) from measurement taken from the
single actuator attached to the system. Convergence stability
of the observer (17) along with the necessary and sufficient
conditions of the observability of the dynamical system states
with inaccessible outputs are shown in [12]. However, it was
shown that the action reaction state observer for the dynamical
system of form (1) can be designed if the system matrix (A)
has distinct eigenvalues. Therefore, this condition has to be
checked before designing a state observer of the form (17).
In Fig.1, the function f(.) depends on the model of plant
in contact with the actuator. However, a mass spring model
can be used to model the reaction force between the actuator
and a dynamical system without any loss of generality. Figure
1 indicates that the control system does not depend on any
measurement from the plant (%,), the incident reaction force
is rather considered as a natural feedback from the dynamical
plant on the actuator, then estimated using a reaction force
observer as shown in Fig.1.

IV. EXPERIMENTAL RESULTS

In order to verify the validity of the control system, ex-
periments were conducted on a single input multiple outputs
flexible dynamical system as depicted in Fig.2. The dynamical
plant consists of three degrees of freedom, this plant is
conceptually considered as a dynamical plant with inaccessible
states in order to examine the validity of the proposed control
system. However, encoders are attached to each degree of

freedom in order to compare the estimated states with the
actual ones. The three degrees of freedom plant is attached
to a single input as shown in Fig.2 from which position or
velocity measurement is taken along with the current reference
input. The experimental parameters are included in Table.l

The force observer and the disturbance observer gains were
set to 628 rad/s, whereas the action reaction state observer
gain vector is selected such that observer (17) becomes twice
faster than the control system. However, before selecting
the proper gain of the state observer (17), the observability
condition of this class of dynamical systems has to be checked.
It was shown in [13] that the eigenvalues of the system matrix
(A) have to be distinct in order to design state observers of the
form (17). It can be easily shown that the system matrix for
the dynamical system depicted in Fig.2 under the assumption
that contacts between the lumped masses and their slides are
smooth enough that its behavior can be can be accurately
governed with a linear model in the neighborhood of a given
operating point.

0 1 0 0 0 0 0 0
—a —b a b 0 0 0 0
0 0 0 1 0 0 0 0
d e —2d —2e d e 0 0
A=lo 0o o0 0 0 1 0 0
o 0 f g “2f -29 f g
0 0 0 0 0 0o 0 1
0 0 0 0 h r —-h —-r
aéi7béi’déi,eéi
Mg, Mg, my mi
jak ac ek . c
ma mso ms3 ms3

where, c and k are the viscous damping coefficient and spring
stiffness, respectively, that can be identified. Therefore, using
these identified parameters along with the given ones from
Table.l, eigenvalues of the dynamical system turned out to
be distinct. The following observer vector gain was utilized
through the whole experiment.

M=1[0.3 0.1 03 03 0.1 02 3 3|

An identity regulation matrix (R) was used in the performance
index (2), the diagonal entries of the matrix (Q) were selected
such that the first term of the performance index integrand
represents both potential and kinetic energy of the plant.
Therefore, (2) represent the energy trapped in the system
along with energy induced by the controller. The optimal state
feedback vector gains (K)

K =1[10.03 2.12 6.75 1.43 6.55 1.43 6.45 1.42],

The experimental results of the regulation control law (13)
are depicted in Fig.3, the phase portrait shown in Fig.3-a
illustrates the behavior of the first non-collocated mass while
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Fig. 2. Experimental setup.

Fig.3-b illustrates the second mass phase portrait to the optimal
control law (13) which is used to regulate the second non-
collocated mass to pre-specified reference. The phase portraits
show that the second non-collocated mass is positioned with
minimum residual vibration. Similarly, the phase portrait for
the second and first non-collocated masses are illustrated in
Fig.4 for different target position reference. The previous
phase portraits indicate that the even in the absence of the
plant outputs, an optimal control law can be realized.

In Fig.5 and Fig.6 the optimal regulating control law regu-
lates the system to the origin with minimum residual vibration
of the non-collocated masses.

V. CONCLUSION

Optimal motion control and vibration suppression of sys-
tems with inaccessible outputs can be achieved from measure-
ments taken from their actuators rather than having multiple

I
|
I
I
I

\ /

Plant with inaccessible
outputs

Control system of a dynamical system with inaccessible outputs.

sensors attached to their structure. The reaction forces are
conceptually considered as feedback like forces which can be
used as replacement for system measurements which might
be unavailable or can not be measured. Reaction force at the
point of interface between the flexible dynamical system and
its single input is estimated using a reaction force observer.
The estimated reaction forces is then injected onto the state
observer rather than the flexible system outputs in order to
guarantee convergence of the estimated states to the actual
ones. The estimated states are used instead of the actual ones in
the realization of the optimal motion and vibration suppression
control law.

Experimental results demonstrated the validity of the pro-
posed controller by regulating the system either to the origin
or any target position with minimum residual vibration even in
the complete absence of the dynamical plant states. Therefore,
the proposed controller can be used for a class of dynamical
systems at which measurement cannot be made.

The proposed observer has three degrees of freedom, since
it depends on a reaction force observer, disturbance observer
and a Luenberger like state observer. Therefore, (greqc), (9aist)
and (M) have to be selected such that the overall observer is at
least twice faster than the control system. Experimentally, this
was achieved by tuning the disturbance observer and reaction
force observer gains first. Then, the vector gain vector (M) is

TABLE I
EXPERIMENTAL PARAMETERS

Actuator force constant kfn 6.43 N/A

Actuator Nominal mass Man 0.059 kg

Lumped masses m1,2,3 | 0.019 kg
Force observer gain Greac 628 rad/s
Disturbance observer gain Gdist 628 rad/s

Sampling time H Ts I 1 I ms I
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selected upon the required performance of the state observer.
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