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Abstract—Prediction of the three-dimensional structure greatly benefits from the information related to secondary structure, solvent
accessibility, and non-local contacts that stabilize a protein’s structure. We address the problem of β-sheet prediction defined as the
prediction of β-strand pairings, interaction types (parallel or anti-parallel), and β-residue interactions (or contact maps). We introduce a
Bayesian approach for proteins with six or less β-strands, in which we model the conformational features in a probabilistic framework
by combining the amino acid pairing potentials with a priori knowledge of β-strand organizations. To select the optimum β-sheet
architecture, we significantly reduce the search space by heuristics that enforce the amino acid pairs with strong interaction potentials.
In addition, we find the optimum pairwise alignment between β-strands using dynamic programming, in which we allow any number of
gaps in an alignment to model β-bulges more effectively. For proteins with more than six β-strands, we first compute β-strand pairings
using the BetaPro method. Then, we compute gapped alignments of the paired β-strands and choose the interaction types and β-
residue pairings with maximum alignment scores. We performed a 10-fold cross validation experiment on the BetaSheet916 set and
obtained significant improvements in the prediction accuracy.

Index Terms—Protein β-sheets, open β-sheets, β-sheet prediction, contact map prediction, Bayesian modeling.
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1 INTRODUCTION

A β-sheet is a set of β-strand segments, which are
involved in hydrogen bonding interactions. The

association of β-sheets has been implicated in the forma-
tion of protein aggregates and fibrils observed in many
human diseases, including Alzheimer’s and mad cow
diseases [1]. β-sheets can be open, meaning that they
have two edge strands (as in the flavodoxin fold or the
immunoglobulin fold) or they can be closed β-barrels
(such as the TIM barrel). Open β-sheets are the most
common sheet types observed in cellular proteins. An
example is shown in Fig. 1, where four β-strands interact
pairwise to form an open β-sheet. The conformational
arrangement of β-strands that form β-sheets can be
described by the following components: the assignment
(or grouping) of β-strands into β-sheets, the spatial or-
dering of β-strand segments in each sheet, the interaction
types of β-strand segment pairs, and amino acid residue
interactions also known as contact maps. For instance, in
Fig. 1, four β-strands interact to form a single β-sheet.
Here, the β-strand segments are ordered as (1-2-4-3) in
the spatial direction, in which the numbers represent
the sequential indices of the β-strands1. The interaction
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1. For convenience, we start with the segment with smaller sequen-
tial index.
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Fig. 1. Secondary structure of the Rnase P protein (PDB
id: 1A6F). β-strands that form the β-sheet are numbered
in sequential order.

types of the segments are such that the first and the
second segments make an anti-parallel interaction, the
second and the fourth segments make the second anti-
parallel interaction, while the third and the fourth seg-
ments make a parallel interaction. As the fourth com-
ponent of the β-sheet formation, a contact map defines
the amino acid pairs that make non-local interactions (or
residue pairs). In Fig. 2, two possibilities are shown for
the residue pairing pattern of a β-sheet with three β-
strands. Both β-sheets have the same grouping, ordering
and interaction type combination but their contact map
is different. The β-sheet conformation of a protein is
essential for understanding its structure [2]. Prediction
of β-sheet conformation from amino acid sequence is
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Fig. 2. Two possibilities for the residue pairing pattern of
a β-sheet with three β-strands. The letters represent the
amino acids in β-strand segments.

useful not only for predicting the tertiary structure [3],
[4] but also for elucidating folding pathways [5], [6]
and designing new proteins [7], [8]. Several methods
have been proposed to understand and predict topolog-
ical features of β-sheets. Methods that aim to improve
our understanding of β-sheet formation analyzed the
intrinsic and statistical propensities of amino acids [4],
[9]–[12], their evolutionary conservation [3], [6] and the
contribution of these factors to local structure and β-
sheet stability [10], [13]–[15]. Methods that predict β-
strand interactions and/or amino acid residue contacts
utilize statistical potentials [12], [16]–[19], information
theory [20] and machine learning [21]–[31]. Note that all
these methods are developed for global proteins though
similar ideas were also applied to predict contacts in
specific folds [32] as well as transmembrane proteins that
contain β-strand interactions [33], [34]. In this paper, we
are concentrating on globular proteins only.

Cheng and Baldi [26] proposed BetaPro, which is a
three stage modular approach that predicts and assem-
bles the β-sheets of a native protein. BetaPro utilizes
recursive neural networks followed by dynamic pro-
gramming and graph theory to exploit global covariation
and constraints characteristic of β-sheets. To derive the
residue interaction propensities, BetaPro utilizes infor-
mation from 10 surrounding residues instead of mod-
eling each pair as independent. In a cross validation
setting, BetaPro had 68% sensitivity and 61% positive
predictive value (PPV) in the segment pairing category
when true secondary structure and solvent accessibility

information is used, which is a significant improvement
over statistical data-driven approaches. BetaPro was fol-
lowed by SVMcon, a new contact map predictor that
uses support vector machines to predict medium- and
long-range contacts [31]. Although SVMcon utilized a
larger feature set, its performance was not better than
BetaPro when evaluated on CASP datasets [31].

The BetaPro method [26] does not explicitly employ
folding rules and does not discriminate between possible
topological organizations. In other words, it treats possi-
ble groupings of β-strands into β-sheets, spatial ordering
of β-strands within a sheet and interaction types of β-
strand pairs equally. In a related study, Ruczinski et
al. [4] showed that the organization of β-strands into
β-sheets is not random and shows a distinct pattern.
Some of the conformations are physically unstable and
are never observed. For the remaining ones, there is a
preference for particular orientations, which are favored
more than the others. Another aspect of BetaPro is that it
employs a simple greedy algorithm to compute β strand
pairings and interaction types. This leaves room for more
sophisticated algorithms to be developed. To address
these problems, Jeong et al. [35] investigated two new
algorithms for predicting β-strand partners. To make
direct comparisons, they used the same scoring function
as of BetaPro. The objective of the first algorithm is very
similar to BetaPro. Instead of having a two-stage greedy
selection heuristic, it poses the problem as integer linear
programming optimization problem and solves it using
the ILOG CPLEXTM package. The second approach is
greedy and it explicitly encourages two simple folding
rules. This is achieved by dynamically increasing the
scores of strand pairs that are potential partners depend-
ing on the pairs predicted so far. The second algorithm
performed better than the first one but the improvement
over BetaPro was not drastic (a 0.7% improvement in
sensitivity and 2.7% improvement in positive predic-
tive value evaluated in the β-strand pairing category).
Also they did not report the accuracy in interaction
type and contact map predictions. Furthermore, their
accuracy was not better than BetaPro for all separation
distances between contacts. For some distances the ac-
curacy decreased slightly. More importantly, although
Jeong et al. [35] aimed to enforce physical constraints by
incorporating folding rules into BetaPro, they considered
only two simple folding rules. Therefore, for an elaborate
treatment of the problem, one has to include a more
comprehensive set of rules and physical preferences that
guide the formation of β-sheets.

In this paper, we address the problem of β-sheet
prediction defined as the prediction of β-strand pairings,
interaction types (parallel or anti-parallel), and β-residue
interactions (or contact maps). We analyze proteins ac-
cording to the number of β-strands they contain. We
consider two categories: (1) proteins with six or less β-
strands; (2) proteins with more than six β-strands. In
Fig. 3, histogram plots are shown for the number of
β-strands in BetaSheet916 and CulledPDB datasets (see
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Fig. 3. Histograms for the number of β-strands in an amino acid chain: (a) BetaSheet916 set; (b) CulledPDB set.

Section 2.3). The percentage of proteins with six or less
β-strands is calculated as 20.41% in BetaSheet916 and
25.51% in CulledPDB. For proteins with six or less β-
strands, we introduce a Bayesian approach, in which
we model the conformational features in a probabilistic
framework by combining the amino acid pairing po-
tentials with a priori knowledge of β-strand organiza-
tions. Starting from the amino acid sequence, secondary
structure, and the amino acid pairing probability matrix
computed by BetaPro, we assign probability scores to
possible β-sheet architectures by considering four struc-
ture levels: (1) groupings of β-strands into β-sheets; (2)
spatial arrangement of β-strands in each β-sheet; (3) in-
teraction types of β-strands (parallel or anti-parallel); (4)
residue pairing patterns (or contact maps). For the first
three levels, we utilize the results of Ruczinski et al. [4],
who performed a statistical analysis of the frequency of
β-strand groupings and β-sheet motifs. For the fourth
level, we use the raw amino acid pairing probabilities
that are derived from the DSSP database [36], [37]2. This
approach allows us to enforce a large set of physical
rules that characterize the intrinsic preferences of β-sheet
formation.

To select the optimum β-sheet architecture, we search
the space of possible conformations by efficient heuris-
tics. In our computations, we significantly reduce the
search space by enforcing the amino acid pairs with
strong interaction propensities derived from the residue
pairing propensity matrix. On this reduced search space,
we sample the first three levels using a brute-force
sampling approach. To derive the optimum amino acid
pairing combination (i.e., the contact map), we apply dy-
namic programming and compute pairwise alignments
of β-strand pairs. For this purpose, we employ an al-

2. The BetaPro’s pairing probability matrix is not used in scoring the
conformations

gorithm that finds the optimum pairwise alignment of
β-strands. In this algorithm, we define match as well as
gap scores and perform global alignments (Needleman-
Wunsch algorithm). This is a more elaborate approach as
compared to the earlier work by Cheng and Baldi [26]
and Jeong et al. [35]. Although Cheng and Baldi [26]
defined and introduced a gapped alignment algorithm,
they did not implement gapped alignments in BetaPro.
They simply ignored gaps by sliding one segment along
with the other. On the other side, Jeong et al. [35] only al-
lowed a single gap in an alignment. We further improved
the dynamic programming approach by allowing any
number of gaps. The gapped nature of the alignments
enables us to model β-bulges more effectively.

For proteins with more than six β-strands, the discrim-
inative power of the Ruczinski model reduces signifi-
cantly due to an exponential increase in the number of
possible β-strand organizations and insufficient training
data to reliably represent such conformations. Therefore,
for such proteins, we first use BetaPro to compute β-
strand pairings. Then, we compute gapped alignments
of the paired β-strands in parallel and anti-parallel di-
rections and choose the interaction types and β-residue
pairing patterns with maximum alignment scores.

2 METHODS

2.1 β-sheet Prediction for Proteins with ≤ 6 β-
strands: A Bayesian Approach
We will formulate the β-sheet prediction in a proba-
bilistic framework. Before providing the mathematical
details, we first define our model parameters.

2.1.1 Model Parameters
The input parameters are the amino acid sequence, the
secondary structure, and an amino acid pairing propen-
sity matrix. The amino acid sequence is denoted by R ,
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where R i is the ith amino acid. Similarly, the secondary
structure is represented by SS , where SS i is the sec-
ondary structure state of the ith amino acid (whether it
is α-helix, β-strand or loop). Note that, as a necessary
condition for β-sheet formation, SS should contain at
least two β-strand segments. The third parameter is
denoted by PP , where PP ij is the probability of the
ith and jth β-residues to make a pair (or contact). In this
matrix, only the amino acids in β-strands or β-bridges
are considered (i.e., E or B states in the DSSP assign-
ment [37]). The pairing probability matrix is computed
using the BetaPro method [26] and is utilized to reduce
the space of possible β-sheet conformations.

The output parameters are the grouping sequence G ,
the ordering sequence O , the interaction type sequence
I , and the contact map (or the residue pairing sequence)
C . We explain each parameter in more detail.

• G defines the number of β-sheets as well as the
grouping of β-strands into β-sheets. In other words,
G contains the information about which β-strands
appear together in each β-sheet. Here, the ordering
of β-strands is not important, therefore they are or-
dered in the sequential order to remove ambiguity.
G is a 2D sequence, where G (p, l) is the sequence
index of the lth β-strand in the pth β-sheet. For the
β-sheet in Fig. 1(a), G = (1, 2, 3, 4) meaning that all
β-strands form a single β-sheet.

• O specifies the spatial ordering of β-strands within
each β-sheet. O is a 2D sequence, where O (p, l) is
the spatial order of the lth β-strand in the pth β-
sheet. If the pth β-sheet contains np β-strands, then
O (p, :) (also denoted by O p) is simply a permuta-
tion of the sequence 1:np. Therefore, in this notation,
O can be represented as the concatenation of O p’s.
This is formulated as O = ΥpO p, where Υ is the
sequence concatenation operator. Note that, in our
model, a permutation and its inverse represent the
same spatial ordering because we only keep per-
mutations, in which the sequential index of the first
segment is lower than the index of the last segment.
The spatial ordering information also specifies the
β-strand segments that interact with each other. For
the β-sheet in Fig. 1(a), O = (1, 2, 4, 3) meaning
that the first β-strand interacts with the second,
the second with the fourth, and the fourth with
the third. The pairwise interactions are bidirectional.
Here, for simplicity, we assume that a segment can
interact with up to two neighboring segments. The
percentage of proteins that have six or less β-strands
and that contain interactions with more than two
segments is only 1.7% in the BetaSheet916 set (see
Section 2.3.2). Extension of the model to characterize
interactions with more than two neighbors is not
a difficult task and is left as a future work (see
Section 4). Note that, for proteins with more than
six β-strands, we are not putting any restriction on
the number of interactions a β-strand makes (see

Section 2.2).
• I determines the interaction types (parallel or anti-

parallel) of β-strand pairs in each sheet. I is a
2D sequence, where I (p, l) is the interaction type
between the lth and (l + 1)th β-strands in the pth

β-sheet represented in the spatial order. We set
I (p, l) = P if the lth β-strand is parallel to the
(l + 1)th β-strand. If two neighboring β-strands
are anti-parallel, we set I (p, l) = AP . For the β-
sheet in Fig. 1(a), I = (AP, AP, P ). Similar to the
ordering sequence, I can be decomposed into its
subcomponents denoted by I p = I (p, :). This is
formulated as I = ΥpI p, where Υ is the sequence
concatenation operator.

• C describes the non-local residue pairing pattern
or the contact map arising from the amino acid
interactions in each β-sheet. In our model, we as-
sume that an amino acid can make a residue pairing
interaction with up to 2 other amino acids. There can
be various formats to represent the contact map. The
first one is the classical representation, where a 2D
sequence C̄ of size nR × nR is used. Here, nR is
the total number of amino acids labeled as β-strand
and the amino acid residues in β-strand segments
(β-residues) are indexed following the sequential
order (i.e., from the N-terminus to the C-terminus
of the protein). C̄ (i, j) is set to 1 if the ith β-
residue interacts with the jth β-residue. If there is
no interaction between the residue pair, then C̄ (i, j)
is set to 0. As an alternative representation, we can
only keep the indices of the residue pairs that make
residue pairing interaction and store them in a 2D
sequence denoted by C . In other words, we only
keep the residue indices for which C̄ is 1. In this
representation, each row of C corresponds to a β-
sheet and contains the indices of the amino acid
residue pairs that make chemical interactions. For
instance, if the 5th amino acid interacts with the 3rd

and 21th amino acids, and if they all belong to the
pth β-sheet then C (p, :) = C p contains (3,5,5,21).
This notation is equivalent to the classical contact
map representation in the sense that given the sec-
ondary structure segmentation SS , it is possible to
convert one to the other. Similar to O and I , C
can be decomposed into subcomponents denoted by
C p. In addition, we can decompose each C p into
its subcomponents designated by C m

p . Here, C m
p

contains the set of residue pairs that connect a pair
of β-strands and m runs from 1 to np

S − 1, where
np

S is the number of β-strand segments in the pth β-
sheet. In that case, C m

p can be concatenated to form
C p and likewise C p can be concatenated to form C .
This is expressed as C p = ΥmC m

p and C = ΥpC p,
where Υ is the sequence concatenation operator.

2.1.2 Problem Definition
In β-sheet prediction, the goal is to predict the overall
β-sheet conformation of the protein given the input
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variables. Since the contact map C contains all the
information in the parameter set (G ,O , I ), the problem
reduces to finding the optimum contact map or the
residue pairing structure. This is formulated as

C max = arg max
C

P (C |D ), (1)

where C max is the MAP estimator, which corresponds
to the contact map (or equivalently the conformation)
maximizing the a posteriori probability P (C |D ), and D
is a short-hand notation for (R ,SS ,PP ), i.e., the set of
input variables defined in Section 2.1.1. The posterior
probability can be modeled as

P (C |D ) = P (C ,G ,O , I |D ) (2)
= P (G ,O , I |D )×P (C |G ,O , I ,D )(3)
= P (G |D )×P (O , I |G ,D ) (4)
× P (C |G ,O , I ,D ),

Given the grouping vector, which specifies the assign-
ment of β-strands into β-sheets, we model the terms
P (O , I |G ,D ) and P (C |G ,O , I ,D ) as

P (O , I |G ,D ) =
∏

k

P (O k, I k |G ,D ) (5)

P (C |G ,O , I ,D ) =
∏

k

P (C k |G ,O k, I k,D ), (6)

where the vectors O k, I k, and C k denote the ordering,
interaction type and the contact map of the kth β-sheet,
respectively. With this formulation, we assume that β-
sheets3 are independent from each other. We further
assume that

P (O k, I k |G ,D ) = P (O k, I k |D ) (7)
P (C k |G ,O k, I k,D ) = P (C k |O k, I k,D ), (8)

where the arrangements within a β-sheet is modeled as
independent from the grouping vector G .

2.1.3 Bayesian Models

In this section, we concentrate on the modeling of
P (G |D ), P (O k, I k |D ), and P (C k |O k, I k,D ).

2.1.3.1 P (G |D ): We model the grouping term
using the distributions introduced in Ruczinski [38]:

P (G |D ) = P (SD |nSH , nS)× P (nSH |nS), (9)

where nS is the number of β-strand segments in SS ,
nSH is the number of β-sheets in G , SD is the sheet
decomposition term, which defines the assignment of
β-strands into β-sheets. Analyzing the available data,
Ruczinski [38] derived probability models for computing
P (SD |nSH , nS) and P (nSH |nS) (see the thesis chapter
of Ruczinski [38] for further details). In this paper,
we used the same models as in Ruczinski [38] for
P (SD |nSH , nS) and P (nSH |nS).

3. Note that β-strands are not assumed to be independent.

2.1.3.2 P (O k, I k |D ): The vector (O k, I k) defines
a structural unit known as a β-sheet motif. Ruczinski
et al. [4] developed probabilistic models to compute the
motif-likelihood distribution. We model P (O k, I k |D )
as

P (O k, I k |D ) = P (O k, I k |H, L), (10)

where H is the helical status of the protein (helical or
non-helical), and L is the connector lengths between
the strands given as indicators (short or long). Here, a
protein is considered to be helical if at least 20% of its
amino acids are part of an α-helix, and a connector is
defined as a set of segmental residues, which connect
two β-strands. Note that, connectors can include α-
helices and loops. In BetaZa, we used the same model
as in Ruczinski [38] for the motif distribution term (see
the thesis chapter of Ruczinski [38] for further details).

2.1.3.3 P (C k |O k, I k,D ): Let the kth β-sheet
contain r β-strand segments, which are represented
by B1, B2,...,Br in the spatial order. We model
P (C k |O k, I k,D ) as

P (C k |O k, I k,D ) =
P (C k |D )∑

(C ′
k |O k,I k) P (C ′

k |D )
(11)

P (C k |D ) =
r−1∏
m=1

P (C m
k |D ) (12)

P (C m
k |D ) =

∏
p

P (BP = 1 |Rp
m, Rp

m+1) (13)

×
∏
q

P (BP = 0 |Rq
m)

×
∏
r

P (BP = 0 |Rr
m+1).

Eqs. 13, and 12 simply compute P (C k |D ) and Eq. 11
normalizes it over the possible conformations to obtain
the conditional probability. In Eq. 12, C m

k is the residue
pairing pattern of the mth segment pair (Bm,Bm+1) of
the kth β-sheet. In other words, it is a subset of C k

and defines the interactions (or contacts) between Bm

and Bm+1. Concatenation of C m
k with respect to m gives

C k (see the definition of C in Section 2.1.1). In Eq. 13,
P (BP = 1 |Rp

m, Rp
m+1) represents the probability of an

amino acid pair to make a residue pairing interaction,
and the terms P (BP = 0 |Rq

m), P (BP = 0 |Rr
m+1) rep-

resent the probability of an amino acid in one segment
not to make an interaction with any amino acid in the
opposite segment. In this formulation, BP is an indicator
function that is set to 1 when a pair of amino acid
residues make a residue pairing interaction, and 0 when
an amino acid residue does not make any interaction
with the opposing segment. The range of p, q, and r
depends on the number of contacts defined in C m

k . Fur-
thermore, the residue pairing interactions and residues
not making any interaction with the opposing segment
can be numbered in any order. P (BP = 1 |Rp

m, Rp
m+1),

P (BP = 0 |Rq
m), and P (BP = 0 |Rr

m+1) can be reliably
estimated from the latest available data because they
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∑

(C k |O k,I k)

P (C k |D ) =
∑

(C k |O k,I k)

r−1∏
m=1

P (C m
k |D ) (14)

=
∑

(C 1
k |O k,I k)

...
∑

(C r−1
k |O k,I k)

r−1∏
m=1

P (C m
k |D ) (15)

=
r−1∏
m=1

∑

(C m
k |O k,I k)

P (C m
k |D ). (16)

do not contain any dependency to (O k, I k). Eq. 12
computes the contact map score of the kth β-sheet.

In Eq. 11, the sum of scores is computed for all possible
residue pairing patterns that are realizable for a given
(O k, I k). This value can be efficiently computed as in
Eqs. 14, 15, and 16. Eq. 14 follows from Eq. 12. In Eqs. 15
and 16, instead of sampling all possible C k one by one,
we sample all possible C m

k for the segment pairs in
C k and take the product of sums to get the sum of
P (C k |D ) values. The logic behind this approach can
also be explained by the following equation, where the
sums of products is converted to the product of sums.
∑

i

∑

j

∑

k

XiYjZk = (
∑

i

Xi)× (
∑

j

Yj)× (
∑

k

Zk). (17)

The sum of the scores of all possible contact maps for
a segment pair
(i.e.,

∑
(C m

k |O k,I k) P (C m
k |D )) can be computed

using dynamic programming, which is explained
in Section 2.1.4.1.3.b. To illustrate how the term
P (C k |O k, I k,D ) is computed, it is useful to consider
the example shown in Fig. 2(a). Let the upper β-strand
segment be the first segment of the sheet, which is
denoted by B1. We need to first compute P (C k |D )
using Eqs. 13 and 12:

P (C k |D ) = P (C 1
k |D )× P (C 2

k |D ),

where C 1
k is the contact map (or the residue pairing

interaction pattern) for the segment pair (B1,B2), and
C 2

k is the contact map for the segment pair (B2,B3). The
terms P (C 1

k |D ) and P (C 2
k |D ) become:

P (C 1
k |D ) = P (BP = 1 |Q,V )× P (BP = 1 |D, L)

× ...× P (BP = 0 |G)
P (C 2

k |D ) = P (BP = 0 |V )× P (BP = 0 |L)
×P (BP = 1 | I, R)× ...× P (BP = 1 |G,C),

where P (BP = 1 |Q,V ) is the probability of the amino
acid Q to make a residue pairing interaction with the
amino acid V in the second segment, and P (BP = 0 |G)
is the probability of the amino acid G not to make
a residue pairing interaction with any amino acid in
the second segment. Then, P (C k |O k, I k,D ) can be
computed using Eqs. 11- 16. In the next section, we will
explain the algorithms developed for efficient computa-
tion of the optimum β-sheet conformation.

2.1.4 Computational Methods
2.1.4.1 Sampling the Search Space and Compu-

tation of the Optimum Conformation: To determine
the most likely β-sheet conformation, it is necessary to
search the space of conformations using efficient algo-
rithms. There can be many alternatives for grouping β-
strands into β-sheets, ordering them spatially, defining
their interaction types, and matching their amino acids.
Although the number of possible conformations rises
exponentially with the number of β-strands [4], we can
reduce the computational cost by shrinking the search
space to a reasonable subspace and applying efficient
sampling algorithms. For the first objective, we impose
β-strand segments as well as residue pairs that are pre-
dicted by the BetaPro method [26] as strong interactions.
In addition, we eliminate motifs from the search space
that have reasonably small motif scores. Details on space
reduction methods can be found in Sections 2.1.4.1.1
and 2.1.4.1.2. For the second objective, we follow a
hierarchical approach to sample the search space. We
observed that if we sample the possible C patterns after
sampling (G ,O , I ), then we make redundant computa-
tions for some β-strand pairs. Therefore, given the amino
acid sequence R and the secondary structure SS , we
first compute the optimum residue pairing interactions
(or alignments) between all β-strand segment pairs in
SS , and store them together with their alignment scores
in a table. For a protein with nS β-strands, there are
nS(nS − 1)/2 possible segment pairs. For each segment
pair, we compute both parallel and anti-parallel align-
ments. Hence, the total number of segment alignments
becomes nS(nS − 1). The optimum alignment between
two β-strand segments can be computed using the
Needleman-Wunsch algorithm [39], [40], which is the
global pairwise sequence alignment algorithm. Details of
the Needleman-Wunsch implementation can be found in
Section 2.1.4.1.3. After computing pairwise alignments of
all possible segment pairs, we sample β-sheet conforma-
tions hierarchically. We first sample G , and for each G ,
we sample (O , I ). Here, we assume that the β-sheets in
G are independent and sample possible (O k, I k) values
for each β-sheet separately4. If a particular (O k, I k)
combination contradicts with the significant segment
pairs and their directions derived using BetaPro, then

4. k = 1, ..., r, where r is the number of β-sheets in G .
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we eliminate that (O k, I k) from the search space. For
instance, if segments 1 and 2 have strong interaction
propensity but O k pairs segment 1 with segment 3, then
we eliminate O k from the search space. In the next step,
for a given (O k, I k) and G , we simply select the best
scoring residue pairing pattern C ∗

k using the alignments
we computed earlier. This is formulated as:

C ∗
k = arg max

C k

P (C k |O k, I k,G ,D ). (18)

Since C k can be represented as the concatenation of
(C m

k ), the following relation holds for the optimum
contact map of the kth β-sheet:

C ∗
k = Υm(C m

k )∗, (19)

where Υ is the concatenation operator, (C m
k ) is the

subset of (C k) that defines the contact map (or the
alignment) between the mth β-strand pair of the kth β-
sheet, and (C m

k )∗ is the optimum contact map for that
segment pair. Hence, for a given (O k, I k,G ) combi-
nation, the optimum contact map of the kth β-sheet is
constructed by concatenating the optimum contact maps
(or the alignments) of the individual β-strand pairs (see
the definition of C in Section 2.1.1).

After computing the optimum contact map for a given
(O k, I k,G ), we select the best scoring ordering and
interaction pattern (O ∗

k, I ∗k) for the kth β-sheet as

(O ∗
k, I ∗k) = arg max

(O k,I k)
{P (O k, I k |G ,D ) (20)

× P (C ∗
k |O k, I k,G ,D )}.

Let C ∗∗
k be the optimum contact map for (O ∗

k, I ∗k). In
other words, C ∗∗

k is the optimum among C ∗
k values

derived for each (O k, I k). In the next step, we can
combine the optimum ordering, interaction and contact
map of all β-sheets and obtain (O ∗, I ∗,C ∗) for a given
G

(O ∗, I ∗,C ∗) = Υr
k=1(O

∗
k, I ∗k,C ∗∗

k ) (21)

Finally, the best scoring grouping G max and the best
scoring contact map C max can be found as in Eq. 22. The
algorithm for finding the optimum β-sheet conformation
is summarized in Algorithm 4.

To reduce the number of computations, we applied
various constraints and eliminated the low scoring con-
formations. In the next two sections, we explain space
reduction techniques in more detail. Then, we explain
how we compute the best scoring alignment between a
pair of β-strands.

1. Constraint Based Reduction of the Search Space
To sample possible grouping combinations (i.e., G

values), we utilize a simple recursive algorithm and
perform an exhaustive search. Similarly, for each β-sheet
in G , we sample every possible β-sheet motif, i.e., (O , I )
combinations. If the likelihood of a motif is less than
the motif threshold (P (O k, I k |G ,D ) < t1), then we
eliminate that motif from the search space and do not
make any further computations. We chose t1 = 1e− 20,
a number close to zero to eliminate unlikely motifs.

Algorithm 1: Computation of the Optimum β-
Sheet Conformation

Input: Amino acid sequence R , secondary structure
SS , BetaPro’s residue pairing probability
matrix PP , Bayesian model.

Output: Optimum β-sheet Conformation:
(G max,O max, I max,C max)

Extract β-strand segments and residue pairs with1
strong interaction propensities from PP ;
Compute optimum pairwise alignments of β-strand2
segments both in parallel and anti-parallel orientation.
Impose amino acid pairs with strong interaction
propensities derived in step 1;
maximum overall score = 0;3
for each G do4

grouping score = P (G |D );5
for each β-sheet in G do6

k = index of the β-sheet;7
maximum joint scorek = 0;8
for each (O k, I k) in the β-sheet do9

if (O k, I k) contradicts with the significant10
segment pairs and their directions derived in
step 1 then

continue with the next (O k, I k);11
motif score = P (O k, I k |G ,D );12
if (motif score < motif threshold) then13

continue with the next (O k, I k);14
else15

Find C ∗
k, the optimum contact map of16

the β-sheet for a given (O k, I k) using
the table of alignments computed
earlier.
joint score = P (O k, I k |G ,D )×17
P (C ∗

k |O k, I k,G ,D );
if (joint score > maximum joint scorek)18
then

(O ∗
k, I ∗k) = (O k, I k);19

maximum joint scorek = joint score;20
C ∗∗

k = C ∗
k;21

all sheets score =
∏

k maximum joint scorek;22
(O ∗, I ∗,C ∗) = Υr

k=1(O
∗
k, I ∗k,C ∗∗

k );23
overall score = grouping score × all sheets24
score;
if (overall score > maximum overall score) then25

maximum overall score = overall score;26
G max = G ;27
(O max, I max,C max) = (O ∗, I ∗,C ∗);28

This approach allows us to reduce the set of candidate
conformations. The same approach can also be applied
when sampling the G values, particularly when the
number of β-strands is reasonably high.

2. Search Space Reduction using BetaPro
To further reduce the space of configurations, we

found it useful to utilize the amino acid pairs predicted
by BetaPro [26] with significant scores. BetaPro generates
a pairing probability matrix, for all β-strand residue
pairs using secondary structure, solvent accessibility and
PSSM profiles. In this table, each entry is a real value
in the range [0, 1] and represents the propensity of an
amino acid pair to make a contact. If the total number of
amino acids that are labeled as β-strands is nR, then the
size of the pairing probability matrix becomes nR × nR.
We observed that when the residue pairing score is
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G max = arg max
G
{P (G |D )× P (O ∗, I ∗ |G ,D )× P (C ∗ |O ∗, I ∗,G ,D )} (22)

(O max, I max,C max) = arg max
(O ∗,I ∗,C ∗)

{P (O ∗, I ∗ |G max,D )× P (C ∗ |O ∗, I ∗,G max,D )}

above a certain threshold, then with high confidence
there is a contact between the pair. Let Sres−pair de-
note the residue pairing score for a pair of amino acid
residues. We consider two categories: (1) high scoring
residue pairs (Sres−pair > 0.16); (2) mid scoring residue
pairs (0.02 < Sres−pair ≤ 0.16).5

We apply the following heuristics before aligning the
β-strand segments. For each segment pair, we first select
the corresponding sub-block from the BetaPro’s pairing
probability matrix and identify whether the segments
form a significant pair. To align the ith and jth segments,
we choose the sub-array in the pairing probability matrix
where the rows of the sub-array correspond to the ith

segment and columns to the jth segment. The size of
this block becomes nr × nc, where nr and nc are equal
to the number of amino acid residues in the ith and jth

segments, respectively. Then, we search the diagonals of
the sub-block (both in parallel and anti-parallel direc-
tions) and check if there is a high or mid scoring residue
pair (see Fig. 4). If the number of high scoring residue
pairs in a diagonal is greater than equal to two, then
we flag the segment pair as high scoring and store it
in a table. If the total number of high scoring residue
pairs in all diagonals is less than two, then we check if
there is a mid-scoring residue pair. Similar to the high
scoring case, we search the diagonals of the sub-block
and identify mid-scoring residue pairs. If the number of
mid scoring residue pairs in a diagonal is greater than
equal to three and if the average score of such pairs is
greater than or equal to 0.08, then we flag the segment
pair as mid scoring and store it in a table. The average
score for a set of amino acid pairs is computed simply
as the sum of the residue pairing scores divided by the
total number of residue pairs.

After assigning a segment pair to the high or mid
scoring category, we select the high and mid scoring
residue pairs for those segments. If the segment pair is
in the high scoring category, we first find the diagonal
on the probability matrix that has the highest average
residue pairing score and select the significant residue
pairs on that diagonal. Then, we eliminate the diagonals
that share the same rows and columns with the best
scoring diagonal. Finally, we select the diagonals that
are immediate neighbors of the best diagonal. The steps
of the selection process is illustrated in Fig. 5. This
approach ensures that each amino acid residue makes at
most one contact with the partner β-strands and allows
gapped alignments. For example, the diagonals (a) and
(d) in Fig. 5 should generate the alignment shown in
Fig. 6.

5. All the thresholds used in this section are found empirically.

For mid scoring residue pairs, we scan the diagonals
of the sub-block (both in parallel and anti-parallel direc-
tions) and store the residue pairs for which the average
diagonal score is the highest (see Fig. 7). Here, we do
not consider a second neighboring diagonal because for
mid-scoring segments the residue pairing probabilities
take lower values and hence the signal to noise ratio
is smaller. However, we still allow gapped alignments
for the mid-scoring case. The only difference is gapped
alignments are not imposed by residue pairs derived
from BetaPro as in the high scoring case. The average
score of a diagonal is again computed as the sum of the
mid scoring residue pairs on that diagonal divided by
the total number of residue pairs.

After storing segment and residue pairs with signifi-
cant scores, we sort the segment pairs according to the
average residue pair score. Then, we eliminate segment
pairs that contribute to a cycle using a simple cycle
detection algorithm from the graph theory. This step is
necessary because our model does not cover β-barrels
which are characterized by cyclic segment graphs. As
an example to a cyclic pairing graph we can consider
the following segment pairs 1-2, 2-3, 3-1, in which the
segments 1 to 3 form a cyclic interaction graph. Our
cycle elimination algorithm is as follows. We first check
if the stored segment pairs form a cycle. This could be
achieved using a simple cycle detection algorithm [41]. If
there is a cycle, then we remove a segment pair with the
lowest average residue pair score and check for cycles
again. If there is no cycle, we terminate. If there is still a
cycle, then we insert the removed segment pair back to
the table and remove the second lowest segment pair. We
continue until no cycle condition is satisfied. If no cycle

 M K T V D A S D P 
H          
D          
V          
S          
K          
R          
S          
 

(a) 

(b) 

Fig. 4. A sub-block of the BetaPro’s residue pairing
probability matrix. Each entry represents the probability
of an amino acid pair to make a contact. In this figure,
the segments being compared are HDVSKRS and MKTV-
DASDP. Diagonals of the sub-block are searched for high
and mid scoring residue pairs: (a) a diagonal in parallel
direction, (b) a diagonal in anti-parallel direction.
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 M K T V D A S D P 
H          
D          
V          
S          
K          
R          
S          
 

 

(a) 

(b) 

(c) 

(d) 

 

Fig. 5. Identifying high-scoring residue pairs for a high
scoring segment pair. (a): The diagonal with the best
average residue pairing score. (b) and (c): Diagonals that
are eliminated for sharing the same rows and columns
with the best scoring diagonal. (d): A neighbor of the top
scoring diagonal. The selected residue pairs are: H-P, D-
D, V-S, S-D, K-V, R-T, S-K.

condition is not satisfied by removing a single segment
pair, then this means that there is more than one cycle.
In that case, we explicitly identify the cycles including
their edges and vertices and remove from each cycle
the lowest scoring segment pair. Details of the heuristics
applied in this section is summarized in Algorithm 18.

After identifying segments and residue pairs that are
going to be imposed in subsequent steps, we align every
possible segment pair considering the residue pairs with
significant scores. This is explained in the next section.

3. Pairwise Alignment of Segments using the Needleman-
Wunsch Algorithm

We used the Needleman-Wunsch algorithm [39], [40]
to compute the optimum alignment between a pair of
β-strand segments. The classical implementation of the
algorithm uses dynamic programming and consists of
three steps: (1) initialization, (2) forward pass, (3) back-
tracking. In Needleman-Wunsch algorithm, the score of
a path is computed by adding match or gap scores since

H D V - S K R S - 
| | |  | | | |  
P D S A D V T K M 
 Fig. 6. The alignment expected from the high scoring

residue pairs for the sub-block of the example pairing
probability matrix.

 M K T V D A S D P 
H          
D          
V          
S          
K          
R          
S          
 

Fig. 7. Identifying mid-scoring residue pairs for a mid-
scoring segment pair. Only the residue pairs on the diag-
onal that have the highest average score are selected.

Algorithm 2: Selecting The Significant β-
Strand Segments and Residue Pairs

Input: β-strand segments (segment of amino
acids) in SS and BetaPro’s residue pairing
probability matrix PP . Number of
segments is nS .

Output: β-strand segments and residue pairs with
strong interaction propensities.

for i = 1 : nS do1
for j = 1 : nS do2

if i = j then3
continue;4

else5

Extract the (i, j)th sub-block of PP ;6
Count the number of high scoring7
residue pairs (nhigh) in parallel and
anti-parallel diagonals of the sub-block;
if (∃ a diagonal with nhigh ≥ 2) then8

Flag (i, j) as a high scoring9
segment pair;
Select the high scoring residue10
pairs;

else11
Count the number of mid scoring12
residue pairs (nmid) in parallel and
anti-parallel diagonals of the
sub-block;
if (∃ a diagonal with nmid ≥ 3) AND13
(average score > 0.08) then

Flag (i, j) as a mid scoring14
segment pair;
Select the mid scoring residue15
pairs;

else16
continue;17

Drop segment pairs that are part of a cycle. Start18
eliminating the segment pairs with the lowest
average score;

they are essentially log-odds values. For the β-strand
alignment problem, we used a similar approach. We first
initialized the dynamic programming matrix at position
(0, 0) to 0. We then set s(i, j) to log P (BP = 1 |Ri, Rj),
which is the match/mismatch score for aligning the
amino acid Ri to Rj (see Section 2.1.3.3). For gap
scores, we chose d(i) as log P (BP = 0 |Ri) and d(j) as
log P (BP = 0 |Rj), where d(i) is the gap penalty score
for aligning the ith amino acid of the first sequence to
a gap symbol, and d(j) is the gap score for aligning the
jth amino acid of the second sequence to a gap symbol.
The dynamic programming matrix is then computed by
adding the match/mismatch and gap scores as formu-
lated in Eqs. 23 to 25.

M(i, 0) = M(i− 1, 0) + d(i) 1 ≤ i ≤ l1 (23)
M(0, j) = M(0, j − 1) + d(j) 1 ≤ j ≤ l2 (24)

M(i, j) = max





M(i− 1, j − 1) + s(i, j)
M(i− 1, j) + d(i)
M(i, j − 1) + d(j)

(25)

After computing the dynamic programming matrix, we
start from the cell indexed as (l1, l2), and perform
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backtracking to find the optimum alignment path. For
this purpose, we used the same backtracking algorithm
as in the classical implementation of the Needleman-
Wunsch algorithm [39], [40], [42]. The alignment score
is then converted to a probability value by computing
its exponential.

a. Enforcing High and Mid Scoring Residue Pairs in the
Alignment

As explained in Section 2.1.4.1, the alignment between
a pair of β-strand segments is computed using the
Needleman-Wunsch algorithm. After identifying high
and mid scoring residue pairs, we need to make sure
that the optimum alignment path passes through such
pairs. This can be achieved by a simple modification
of the Needleman-Wunsch algorithm. Let the β-strand
segments that will be aligned have l1 and l2 amino acids,
respectively. Also, let the mth amino acid of the first
segment and the nth amino acid of the second segment
have a significant residue pairing probability score. In
the classical implementation of the Needleman-Wunsch
algorithm, first, a dynamic programming matrix, which
contains the alignment scores of sub-paths up to a certain
residue pair is computed in the forward pass. Since our
alignment should pair the mth amino acid of the first
segment to the nth amino acid of the second segment,
we need to make sure that the alignment path makes
a transaction from (m − 1, n − 1) to (m, n). This can
be easily guaranteed by setting the scores of the cells
(m, 0), (m, 1), ..., (m, n− 1) and (0, n), (1, n), ..., (m− 1, n)
to 0 as shown in Fig. 8 during the forward pass. When
this step is repeated for all residue pairs in the high or
mid scoring category, they are guaranteed to appear in
the resulting alignment.

b. The Sum of the Alignment Scores
In Eq. 16, for each segment pair in a given β-sheet,

the sum of the alignment scores of all possible residue
pairing combinations has to be computed. This can be
performed efficiently using a dynamic programming
approach. Let Msum denote a dynamic programming
matrix, similar to the M matrix used in the Needleman-
Wunsch algorithm. The only difference is that Msum

includes the sum of the scores of alignment paths instead

 W Y L I T E S 
A    0    
K    0    
V 0 0 0     
D        
Q        
 
 
 

Fig. 8. Modification of the dynamic programming ma-
trix during the forward pass of the Needleman-Wunsch
algorithm. The segments being aligned are AKVDQ and
WYLITES. The amino acid residues V and I are detected
as a significant residue pair. To ensure the alignment path
matches V to I, the cells shown are assigned to zero. This
discards all the paths that do not pair V with I.

of the maximum scores. The initialization of Msum is the
same as that of the M matrix. On the other hand, the
forward pass equation takes the following form:

Msum(i, j) = log{eMsum(i−1,j−1)+s(i,j) (26)
+ eMsum(i−1,j)+d(i)

+ eMsum(i,j−1)+d(j)},
where e is the exponential. Therefore, at each position,
instead of choosing the maximum score, we compute the
sum of scores. Then, the sum of the scores of all pos-
sible alignments expressed as

∑
(C m

k |O k,I k) P (C m
k |D )

becomes equal to exp(Msum(l1, l2)). This can be easily
proved using Eq. 17, which is omitted here for simplicity.

2.1.4.2 Computation Times: The BetaPro method
has three modular blocks. The first block generates a
pairing probability matrix using the amino acid se-
quence, secondary structure, solvent accessibility and
PSSM profiles. The second and third blocks compute the
optimum β-sheet conformation by dynamic program-
ming. Computationally, the first block is more intensive
as compared to the second and third blocks due to
the derivation of PSSM profiles using the PSI-BLAST
algorithm. On average, the last two blocks take at most
a couple of seconds to execute, whereas the first block’s
execution time is on the order of minutes.

Our method uses the pairing probability matrix of
BetaPro to extract the amino acid pairs that have strong
interaction propensities. Therefore, we first execute the
first block of BetaPro and then sample possible con-
formations using efficient algorithms. Since we reduce
the space of conformations significantly through the
utilization of BetaPro’s pairing probability matrix, our
computations are significantly reduced. On average our
method computes the optimum conformation of a pro-
tein with six or less β-strands in 0.31 seconds. For pro-
teins with four β-strands it takes approximately 1 second
to compute the optimum conformation. This is the same
for proteins with five or six β-strands. Therefore, our
method is computationally efficient and the computation
time does not rise exponentially with the number of β-
strands. Note that, we implemented our method on a
Windows XP OS, with an Intel Pentium III Xeon proces-
sor, 930 MHz CPU and 640MB RAM. BetaPro and PSI-
BLAST on the other hand are implemented on a 32-bit
GNU/Linux machine with Intel Pentium IV processor,
3.0 GHz CPU and 2GB RAM.

2.2 β-Sheet Prediction for Proteins with > 6 β-
strands

The Bayesian nature of the Ruczinski model requires
sufficient amount of training data to reliably estimate
probability distributions. As the number of β-strands in-
crease, the number of possible motifs rise exponentially.
For proteins with more than four β-strands, Ruczinski
model reduces the feature set (or dimensions) by group-
ing proteins according to their structural properties. In
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our simulations we observed that, for proteins with more
than six β-strands, the model becomes less specific and
therefore its discriminative power reduces (result not
shown). For such proteins, instead of utilizing a Bayesian
approach, we simply choose the same β-strand pairing
predictions as BetaPro. Then, we compute gapped align-
ments of the paired β-strands both in parallel and anti-
parallel directions. Here, for simplicity, we set the gap
scores to zero and compute the score of an alignment by
taking the sum of the residue pairing probability values
derived using BetaPro. Finally, we select the interaction
type and the residue pairing patterns with maximum
alignment scores.

2.3 Datasets
2.3.1 CulledPDB
The CulledPDB set is compiled from the PDB [43] by
the Dunbrack lab [44]. In this paper and in the work
by Ruczinski et al. [4] the set with sequence identity
percentage cut-off 25% and resolution cut-off 2.5Å is
used. Since the CulledPDB lists are updated periodically,
the datasets grow in time. Therefore the version used by
Ruczinski et al. is smaller in size (approximately 2000
non-homologous chains) than the one we downloaded
in May 2007, which contains 2234 chains. The latest
version of this dataset can be obtained from the PISCES
server [45].

2.3.2 BetaSheet916
The BetaSheet916 set is extracted from the PDB as of May
2004 by Cheng and Baldi [26]. This dataset contains 916
chains with an HSSP threshold of 0, which corresponds
to a sequence identity of 15-20%. The set is splitted
randomly and evenly into 10 folds (subsets) to perform
cross validation. Details of how the set is compiled can
be found in Cheng and Baldi [26] and the set can be
downloaded from [46].

2.4 BetaPro and PSI-BLAST
We downloaded and installed the BetaPro method
from [46]. BetaPro uses PSI-BLAST version 2.2.8 to gener-
ate PSSM profiles. In our simulations, we used the latest
versions of the PSI-BLAST (version 2.2.18) and the NR
database (as of July 2008), which are obtained from the
NCBI’s archives [47].

3 RESULTS

3.1 Accuracy Measures
To assess the prediction performance, we used the sen-
sitivity (TP/(TP+FN)) and the positive predictive value
(TP/(TP+FP)) as the accuracy measures. We evaluated
the predictions in the following categories: β-strand
pairing, pairing direction (parallel or anti-parallel), and
amino acid residue pairing (contact map). In each cate-
gory, we computed the sensitivity and positive predic-
tive value measures separately. For instance, the contact

map sensitivity is computed as the total number of
correctly predicted amino acid pairs divided by the total
number of amino acid pairs in the dataset.

3.2 Experimental Settings

For the BetaPro method, we used the greedy graph
algorithm to predict the β-sheet topology. Similar to the
paper by Cheng and Baldi [26], we used true (native) sec-
ondary structure assignments and solvent accessibility
measures, which are available in the DSSP database [36].
Hence, the results reported in this work serve as an
upper bound on the performance obtained by predicted
versions of secondary structure and solvent accessibility.

3.2.1 Model Training

The following distributions were learned from the train-
ing data: grouping distribution P (G |D ), motif dis-
tribution P (O k, I k |D ), and contact map distribution
P (C k |O k, I k,D ). The parameters used in modeling
the grouping and motif distributions were estimated by
Ruczinski [38] from the Culled PDB database, which is a
database of non-homologous proteins (see Section 2.3.1).
In the Culled PDB release used by Ruczinski, there were
1602 two stranded β-sheets, and 872 four stranded β-
sheets (the number of three stranded β-sheets is not
provided). Out of 96 possible four stranded motifs,
Ruczinski observed only 48 motifs in the database.
Among those, 18 motifs were observed only once and
less than 20 motifs were observed ten times or more.
Ruczinski used 8 bins for two stranded, 96 bins for three
stranded and 1536 bins for four stranded β-sheets to
estimate the probability distributions of motifs condi-
tioned on the helical status and the connector lengths
state between β-strands. Therefore, each bin represents
a different configuration (or folding topology) including
the motif type, helical status and connector lengths state.
Ruczinski also used pseudo-counts and performed bin
collapsing when the number of counts in bins were
significantly low. This prevents the model to overfit to
particular configurations. In the following sections, we
provide details on the estimation of the parameters in
our model.

3.2.1.1 Grouping Distribution: We used the same
parameters as in Ruczinski [38] for P (G |D ). We com-
puted the term #[crossings(SD, nSH , nS)] in Eq. 9.13 of
Ruczinski [38] using the Culled PDB dataset as it was
not available in [38].

3.2.1.2 Motif Distribution: We used the estimated
values in [4], [38] for proteins with two and three β-
strands. For four stranded proteins, only the frequency
information of the most common motifs is available
in [4], [38]. Here, we used those frequencies as the
probability values of the most common motifs and
we assigned equal conditional probabilities to the re-
maining less common motifs. For example, the most
frequent motif for a non-helical protein having short
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connectors (column L1 of Figure 9.9(b) in [38] or col-
umn L1 of Figure 3 in [4]) was O =(1-2-3-4) and
I = (AP,AP, AP ). In our model, the probability of this
motif is represented by P (O k, I k |H = 0, L = (SSS))
(see Eq. 10) and this probability was estimated by
Ruczinski as 0.85. To the remaining 95 possible motifs,
we assigned equal conditional probability values i.e.,
P (O k, I k |H = 0, L = (SSS)) = 0.15/95. For proteins
with higher number of β-strands, we estimated the
parameters P (Pp, J |n,H, L, F ) and kn,L(Pp, P

s
p , J, Js, F )

of the Ruczinski’s model using the CulledPDB dataset
as of May 2007 (see Section 2.3.1) as the estimated
values were not available in [38]. For the remaining
two parameters of the Ruczinski’s model (i.e., P (F |H, L)
and P (P s

p , Js |n,H, L, F, Pp, J)), we used the estimated
values in [38].

3.2.1.3 Contact Map Distribution: Contact map
distribution depends on the parameters P (BP =
1 |Rp

m, Rp
m+1), P (BP = 0 |Rq

m), P (BP = 0 |Rr
m+1) in

Eq. 13. In this paper, we estimated those probability
distributions from the BetaSheet916 dataset (see Sec-
tion 2.3.2) for which, the secondary structure assign-
ments are taken from the DSSP database [36]. In the cross
validation experiment, we only used the folds that form
the training set. To estimate those parameters, we used
the maximum-likelihood estimation procedure where we
count the observed number of occurrences, and apply
a proper normalization factor to compute probability
values.

3.3 10 Fold Cross Validation on BetaSheet916

In the first set of simulations, we performed a 10 fold
cross validation on the BetaSheet916 set, which contains
916 proteins extracted from the Protein Data Bank (PDB)
(see Section 2.3.2 for details). In a cross validation exper-
iment, at each step, a fold is selected as a test data and
remaining folds form the training set. Then predictions
are computed for proteins in the test set with the models
trained on the training set. This process is repeated
until all proteins in the original set are tested. Once
the predictions are complete, then prediction accuracy
is computed.

3.3.1 Performance for Proteins with ≤ 4 β-Strands

In this simulation, we performed a 10 fold cross valida-
tion experiment on BetaSheet916 and evaluated BetaZa
(our method) and BetaPro for proteins with less than or
equal to four β-strands. In each fold of the BetaSheet916,
we only considered proteins with less than or equal to
four β-strands (a total of 67 proteins). Furthermore, since
the current version of our model allows up to two β-
strand partners for proteins with six or less β-strands, we
eliminated proteins that had β-strand segments interact-
ing with more than 2 segments. Among the 67 proteins,
there was only one protein with more than 2 segmental
partner. Therefore, the total number of proteins tested

from all folds becomes 66, which contain a total of 163
β-strand pairs and 1846 β-residue pairs.

Comparing the performances of BetaPro and BetaZa,
we obtained the results summarized in Tables 1, and 2,
for sensitivity and positive predictive value (PPV), re-
spectively. From these results, we can conclude that
BetaZa significantly outperforms BetaPro for proteins
with less than or equal to four β-strands.

TABLE 1
Sensitivity measures, evaluated on the BetaSheet916
set. Proteins with four or less β-strands and less than

three segmental partners are used as test data.

Sensitivity (%) BetaPro BetaZa
Strand Pairing 81.595 90.798

Pairing Direction 79.755 88.344
Contact Map 72.264 82.232

TABLE 2
Positive predictive value measures, evaluated on the

BetaSheet916 set. Proteins with four or less β-strands
and less than three segmental partners are used as test

data.

Positive Predictive Value (%) BetaPro BetaZa
Strand Pairing 85.807 90.244

Pairing Direction 83.871 87.805
Contact Map 73.702 81.965

3.3.2 Performance for Proteins with ≤ 6 β-Strands
In the next step, we extended our test set to include
proteins with six or less β-strands and repeated the
10 fold cross validation experiment performed in Sec-
tion 3.3.1. There were a total of 187 such proteins in
BetaSheet916. Among those, 16 had β-strands with more
than 2 segmental partners. Eliminating those, our test
data contained 171 proteins from all folds with 586 β-
strand pairs and 5838 β-residue pairs.

The sensitivity and positive predictive value measures
are shown in Tables 3, and 4. For proteins with six or
less β-strands, BetaZa is significantly more accurate than
BetaPro. This is also validated by evaluating the accuracy
for proteins with a fixed number of β-strands. Tables 5,
and 6 show the performance for proteins with five β-
strands, whereas Tables 9, and 10 show the performance
for proteins with six β-strands. Although the positive
predictive value measure of BetaPro is slightly better
than BetaZa in segment pairing and interaction type
categories, BetaZa performs better in sensitivity measure
and especially in the contact map category. BetaPro’s
higher positive predictive value measure is caused by its
tendency to generate less number of predictions instead
of generating higher true positives.
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TABLE 3
Sensitivity measures, evaluated on the BetaSheet916
set. Proteins with six or less β-strands and less than

three segmental partners are used as test data.

Sensitivity (%) BetaPro BetaZa
Strand Pairing 79.010 83.27

Pairing Direction 77.133 80.37
Contact Map 71.634 77.66

TABLE 4
Positive predictive value measures, evaluated on the
BetaSheet916 set. Proteins with six or less β-strands

and less than three segmental partners are used as test
data.

Positive Predictive Value (%) BetaPro BetaZa
Strand Pairing 83.877 84.28

Pairing Direction 81.884 81.34
Contact Map 73.575 79.54

TABLE 5
Sensitivity measures, evaluated on the BetaSheet916
set. Proteins with five β-strands and less than three

segmental partners are used as test data.

Sensitivity (%) BetaPro BetaZa
Strand Pairing 80.349 83.843

Pairing Direction 78.603 80.349
Contact Map 74.803 77.865

TABLE 6
Positive predictive value measures, evaluated on the

BetaSheet916 set. Proteins with five β-strands and less
than three segmental partners are used as test data.

Positive Predictive Value (%) BetaPro BetaZa
Strand Pairing 88.462 86.099

Pairing Direction 86.534 82.511
Contact Map 78.947 79.181

TABLE 7
Sensitivity measures, evaluated on the BetaSheet916

set. Proteins with six β-strands and less than three
segmental partners are used as test data.

Sensitivity (%) BetaPro BetaZa
Strand Pairing 75.258 76.289

Pairing Direction 73.196 73.711
Contact Map 66.706 72.333

TABLE 8
Positive predictive value measures, evaluated on the

BetaSheet916 set. Proteins with six β-strands and less
than three segmental partners are used as test data.

Positive Predictive Value (%) BetaPro BetaZa
Strand Pairing 77.249 76.684

Pairing Direction 75.132 74.093
Contact Map 66.628 77.125

3.3.3 Overall Performance
In this simulation, we evaluated the accuracy on the full
set of proteins by performing a 10 fold cross validation
experiment on BeteSheet916. This set contains a total
of 8172 β-strand pairs and 31638 β-residue pairs. For
proteins with six or less β-strands, we computed the pre-
dictions as described in Section 2.1, and for proteins that
contain more than six β-strands as in Section 2.2. Among
proteins with six or less β-strands, we eliminated those
with more than two segmental interactions (removing
only 16 proteins). For the remaining proteins, we allowed
a β-strand to interact with more than two segments
because we used BetaPro to compute β-strand pairing
predictions. Hence, the overall accuracy of BetaZa is not
significantly different from that of BetaPro in the first
two categories. However, due to gapped alignments of
β-strands, the β-residue pairing accuracy of BetaZa is
better than BetaPro by 3% both in sensitivity and positive
predictive value measures.

TABLE 9
Sensitivity measures, evaluated on the BetaSheet916

set. Only 16 proteins that had: (1) ≤ 6 β-strands and (2)
at least one β-strand with more than two segmental

interactions are excluded from the test data.

Sensitivity (%) BetaPro BetaZa
Strand Pairing 68.903 69.075

Pairing Direction 66.072 66.244
Contact Map 63.411 66.477

TABLE 10
Positive predictive value measures, evaluated on the
BetaSheet916 set. Only 16 proteins that had: (1) ≤ 6
β-strands and (2) at least one β-strand with more than
two segmental interactions are excluded from the test

data.

Positive Predictive Value (%) BetaPro BetaZa
Strand Pairing 61.921 61.911

Pairing Direction 59.376 59.373
Contact Map 54.373 57.211

3.3.4 Performance of BetaZa for Individual Configura-
tions
The analysis performed by Ruczinski et al. [4] shows
that a handful of β-sheet configurations are much more
frequent than the others. This means that higher prob-
ability values will be assigned to such configurations.
In that case, it becomes important to verify that our
method is capable of generating accurate predictions
for less frequent configurations. To understand this, we
analyzed the performance on individual proteins. For
this purpose, we considered proteins with less than or
equal to four β-strands as in Section 3.3.1. There are 66
proteins and 39 distinct configurations in this test data.
Here, a configuration is represented by the following
features: β-sheet motif (including spatial ordering and
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TABLE 11
Performance of BetaZa for individual configurations. Proteins with ≤ 4 β-strands are evaluated. The protein that

contains a β-strand with more than two segmental interactions is excluded.

Spatial Interaction Helical Connecting Motif Strand Pairing Strand Pairing Interaction Type Interaction Type Contact Map (%) Contact Map(%)
Ordering Types Status Lengths Probability Sensitivity (%) PPV (%) Sensitivity (%) PPV (%) Sensitivity (%) PPV (%)

1-2 A H S 0.9900 100.0 100.0 100.0 100.0 100.0 100.0
1-2|3-4 A|A NH SSS 0.9801 100.0 100.0 100.0 100.0 100.0 100.0
1-2|3-4 A|A H SSS 0.9801 100.0 100.0 100.0 100.0 94.118 100.0
1-2-3 A-A H SS 0.8970 100.0 100.0 100.0 100.0 97.753 95.604
1-2-3 A-A NH SS 0.8970 100.0 100.0 100.0 100.0 96.0 96.0
1-2 A NH L 0.8700 100.0 100.0 100.0 100.0 100.0 100.0

1-4|2-3 A|A NH LSL 0.8613 75.0 60.0 75.0 60.0 53.846 43.750
1-2-3-4 A-A-A H SSS 0.8500 100.0 100.0 100.0 100.0 87.500 87.500
1-4|2-3 A|A H LSL 0.7227 50.0 33.333 50.0 33.333 42.857 33.333
1-2|3-4 A|A H LSS 0.7227 100.0 100.0 100.0 100.0 100.0 100.0
1-3-2 A-A H LS 0.5472 100.0 100.0 100.0 100.0 96.429 93.103

1-2-4-3 A-A-A H SLS 0.5100 83.333 90.909 83.333 90.909 76.923 75.757
2-3-1-4 A-A-A H LSL 0.3800 100.0 100.0 100.0 100.0 76.667 76.033
2-1-3-4 P-P-P H LLL 0.3600 100.0 100.0 100.0 100.0 100.0 100.0
2-1-3-4 P-A-A H LLS 0.2800 66.667 100.0 66.667 100.0 66.667 100.0

1-2 P H L 0.2700 100.0 50.0 100.0 50.0 100.0 85.714
1-2|3-4 P|A H LSS 0.2673 100.0 100.0 100.0 100.0 100.0 100.0
1-2-3 A-P H SL 0.2622 100.0 100.0 100.0 100.0 92.307 92.307
2-1-3 A-A H SL 0.2587 50.0 50.0 50.0 50.0 46.154 54.545

1-4-2-3 A-A-A H LSL 0.2400 66.667 66.667 66.667 66.667 60.0 64.286
1-4-3-2 A-A-A H LSS 0.1800 100.0 100.0 100.0 100.0 72.500 70.732
2-3-1-4 A-A-A NH LSL 0.1800 100.0 100.0 100.0 100.0 84.0 75.0
2-1-3 A-A H LL 0.1525 100.0 100.0 100.0 100.0 83.333 83.333

1-2-4-3 A-A-A H LLS 0.1200 100.0 100.0 66.667 66.667 77.143 75.0
1-2-4-3 P-A-A H LLS 0.1000 100.0 100.0 100.0 100.0 82.692 81.132
2-3-1-4 A-A-A H LLL 0.0800 100.0 100.0 100.0 100.0 61.905 65.0
2-1-4-3 A-P-A H SLS 0.0800 100.0 100.0 66.667 66.667 78.378 76.316
1-2-3 P-P H LL 0.0491 100.0 100.0 100.0 100.0 100.0 100.0
2-1-3 A-P NH SS 0.0279 50.0 50.0 50.0 50.0 87.500 87.500

1-2-3-4 A-A-A H LSS 0.0090 100.0 100.0 100.0 100.0 100.0 100.0
2-1-4-3 A-A-A NH SLL 0.0049 66.667 66.667 66.667 66.667 70.588 80.0
1-4-3-2 A-A-P H LLL 0.0042 66.667 100.0 66.667 100.0 41.667 62.500
1-4-2-3 A-A-P H LLL 0.0042 66.667 66.667 66.667 66.667 66.667 72.727
1-2-3-4 A-A-A H LLL 0.0042 100.0 100.0 100.0 100.0 92.307 88.889
3-2-1-4 P-A-A H LLL 0.0042 66.667 66.667 66.667 66.667 76.923 71.429
1-3-4-2 A-A-P H LLS 0.0036 66.667 66.667 66.667 66.667 64.286 64.286
1-2-4-3 A-A-P H SSL 0.0025 100.0 100.0 100.0 100.0 86.667 92.857
1-4-3-2 A-A-A NH SSS 0.0015 66.667 66.667 66.667 66.667 91.667 91.667
1-3-4-2 P-A-A NH SSS 0.0015 100.0 100.0 100.0 100.0 80.0 80.0

interaction types), helical status of the protein, and the
length states of the segments that connect β-strands. We
defined a configuration as less frequent when the motif
probability assigned by the model is less than 0.05. The
motif frequencies can be found in Ruczinski et al. [4].

Table 11 shows the sensitivity and positive predictive
value of individual β-sheet configurations. In each row,
the features that characterize the configuration as well as
the motif probabilities conditioned on the helical status
and connecting lengths states are listed. In this table,
the symbol “|” is used to separate β-sheets in the spatial
ordering representation. For instance, 1-2|3-4 means that
the first and the second β-strands form the first β-sheet;
the third and the fourth β-strands form the second β-
sheet; and there is no interaction between the second
and the third segments. Alternatively, 1-2-3-4 shows that
all four β-strands form a single β-sheet. The helical
status and the connecting length states are defined in
Section 2.1.3.2. Here NH stands for non-helical and H
for helical protein. Similarly, S denotes a short connector
and L represents a long connector. A connector is a set
of helix and/or loop segments that are in between β-
strand pairs adjacent in sequence representation. From
this table, we can observe that although the prediction
accuracy of less frequent configurations is in general
lower than the frequent ones, our method was able
to generate highly accurate predictions for five config-
urations that have significantly low probability scores
(marked in boldface). This clearly demonstrates that our
method is able to predict less frequent motifs with high

accuracy and the increase in the performance is not
simply because of an affinity towards for more frequent
motifs or an imbalance of the training data.

4 CONCLUSION

In this paper, we have shown that elaborate mathemati-
cal models combined with efficient algorithms bring sig-
nificant improvements to β-sheet prediction. The perfor-
mance of predictions can be improved even further. First
of all, sophisticated methods for the estimation of residue
pairing propensities will definitely improve the accuracy
and quality of the predictions. For this purpose, one
can incorporate additional informative features such as
HMM profiles, contact potentials, residue types, segment
window information, and protein-level information [31].
In a second avenue, one can develop more elaborate
models for an enhanced scoring of β-strand organi-
zations. We introduced a Bayesian model for proteins
with six or less β-strands and allowed each β-strand
to interact with at most two other segments. Extension
of the model to characterize higher order segmental
interactions can easily be achieved by estimating their
probabilities and sampling them in the search space. For
proteins with more than six β-strands, it is possible to
incorporate a richer set of folding rules as in [35]. Finally,
as new proteins are added to the structure database
it will be possible to extend the motif distribution to
model longer proteins with many β-strands and extend
the coverage of the Bayesian model. Advances in β-sheet
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prediction will contribute substantially to the accurate
prediction of the three dimensional structure.
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