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Abstract—We design and realize a protected zone inside
a reconfigurable and extensible embedded RISC processor
for isolated execution of cryptographic algorithms. The pro-
tected zone is a collection of processor subsystems such as
functional units optimized for high-speed execution of integer
operations, a small amount of local memory, and general-
and special-purpose registers. We outline the principles for
secure software implementation of cryptographic algorithms
in a processor equipped with the protected zone. We also
demonstrate the efficiency and effectiveness of the protected
zone by implementing major cryptographic algorithms, namely
RSA, elliptic curve cryptography, and AES in the protected
zone. In terms of time efficiency, software implementations
of these three cryptographic algorithms outperform equivalent
software implementations on similar processors reported in the
literature. The protected zone is designed in such a modular
fashion that it can easily be integrated into any RISC processor;
its area overhead is considerably moderate in the sense that
it can be used in vast majority of embedded processors.
The protected zone can also provide the necessary support
to implement TPM functionality within the boundary of a
processor.

Keywords-cryptography; cryptographic unit; isolated execu-
tion; secure computing; trusted computing;

I. I NTRODUCTION

Secure and efficient implementations of cryptographic
algorithms become more of a focal point for research in
cryptographic engineering since various attacks [14], [4],
[1] successfully compromiserealizationsof many cryptosys-
tems which are theoretically proved secure otherwise. Since
general-purpose processors fulfill neither the timing nor the
security constraints of cryptographic applications due to
different set of design considerations, special-purpose cryp-
tographic co-processors are built to remedy this problematic.
Nevertheless, the cryptographic processors turn out to be not
entirely free from the security concerns and furthermore,
introduce their own problems such as security risks and
speed considerations accrued in host processor/co-processor
setting.

Aware of the inadequacy of the software-only solutions,
computer manufacturers already introduced hardware exten-
sions to their processor cores to accelerate cryptographic
computations and to provide secure execution environment.
A notable development is that new architectures introduced
by three major manufacturers [6], [8], [2] allow that security-

sensitive applications execute in an environment strictly
free from the intervention of other simultaneously run-
ning processes. This feature is known as process isolation
and enforced by the hardware. A strictly enforced process
isolation is definitely beneficial in thwarting an important
class of attacks known as micro-architectural side-channel
attacks [7], [1]. From these observations, developments and
results, the need for further research in new computer archi-
tectures that support efficient and secure implementationsof
cryptographic algorithms becomes obvious.

In this paper, we investigate the realization of a protected
zone in a reconfigurable embedded processor that pro-
vides cryptographic algorithms with highly secure execution
environment. The protected zone consists of architectural
subsystems of a local memory, registers, and functional
units and enables a much more strict process isolation in
the sense that sensitive information never leaks outside
the zone. Since the units of the protected zone and its
organization are designed with cryptographic constraints, it
also provides superior time performance in comparison with
equivalent architectures. The design of the protected zoneis
highly modular, and complies with the design principles of
RISC processors, therefore, it can be incorporated into any
RISC processor. We also demonstrate that well-know cryp-
tographic algorithms, RSA, ECC, AES can be implemented
on embedded processor equipped with the protected zone
with superior time performance, efficiency, and high-level
security. A similar approach is used in [21] only for AES
implementation; however the proposed techniquein [21]
cannot easily be extended to more complicated public key
algorithms. We provide a complete, generic approach that is
readily applicable to any cryptographic algorithm and does
not necessitate Assembly language implementation which is
essential in [21].

II. PRINCIPLES AND REQUIREMENTS OFSECURE AND

ISOLATED EXECUTION

Software implementations of cryptographic algorithms are
vulnerable to various forms of attacks that can be grouped
into two main classes: side-channel [14], [15] and fault-
injection attacks [4]. Different countermeasures from circuit-
[20] through architectural- [17] to algorithmic-levels [11]
have been proposed. It has, however, been well-understood



that ultimate protection against all kinds of attacks seems
to be impossible and correct combination of the effective
counter-measures need to be deployed for reasonably secure
implementations of cryptographic algorithms. In this paper,
we deal with architecture-level attacks and countermeasures.

Many cryptographic algorithms utilize lookup tables for
fast execution, which makes them vulnerable to cache-based
side-channel attacks [7]. Another side-channel attacks that
utilizes processor micro-architecture is named as branch-
prediction attacks [1]. The main reason that these attacks
are effective is the fact that majority of general-purpose
processors (including many embedded processors) support
multi-tasking and resource sharing as in the cases of cache
memories, branch prediction and target buffers. The pro-
cesses running simultaneously cannot directly access each
other’s data since the operating system enforces process
isolation. However, processes inadvertently (and inevitably
to a certain degree) leave data in shared resources (cache
memories and branch buffers). Another process cannot di-
rectly use or learn the residue data; however, it can make
inferences through carefully timed accesses to these shared
resources. The residue data in shared resources do not have
to be secret or confidential per se; but their presence may
say something about the secret that is used to access to them.
Naturally, during the execution of cryptographic algorithms,
secret keys are used to access lookup tables (hence cache
attacks) and to make decisions in the program execution flow
(hence branch prediction attacks).

Worse yet, the bugs and flaws in operating system render
OS-implemented process isolation ineffective against sophis-
ticated attacks that allow ill-intentioned programs to gain
access to secret information through the violation of process
isolation. This situation calls for a much stronger, and
inevitably hardware-based, mechanism for process isolation.
Supporting this claim, major processor manufacturers such
as Intel, AMD, and ARM, introduced extensions to their
processor cores to fortify the process isolation [6], [8], [2].
The basic principle is making certain parts of memory, of
cache, and of TLB used by a process strictly inaccessible by
other processes. However, the isolation is still virtual rather
than physical since the data from different processes still
occupy the shared resources. For instance, the confidential
data such as secret keys and temporary variables will still be
present in physical memory in certain points of execution.
Recently demonstrated cold-boot attacks [10] efficiently
recover secret keys used in cryptographic operation.

Therefore, to provide even stronger type of process
isolation where the cryptographic algorithms execute free
from vulnerabilities against the attacks mentioned, processor
architecture needs to provide support for keeping all the
confidential information in physically protected zones. The
confidential information not only include secret keys but all
the intermediate values obtained during the cryptographic
computation. For example, an AES block in an interme-

diate round is also confidential since its compromise may
reveal important information on the secret key. Similarly,
an elliptic curve point obtained during elliptic curve scalar
multiplication needs to be protected, since it is possibly
a smaller multiple of the base point which gives away
certain bits of the secret integer (possibly private key).
Therefore, there is a need for a protected zone where we
can keep the confidential information before, during, and
after the cryptographic computation. The protected zone
includes functional units, a small, protected local memory,
a register file that we can use during operations, and some
special registers to keep some intermediate variables. In what
follows, we explain the components of the protected zone.

• Functional units execute the instructions needed in
cryptographic computations, which basically imple-
ments simple arithmetic/logic operations. Some opera-
tions are needed for secure execution of cryptographic
algorithms to prevent branch prediction attacks as well
as to avoid confidential variables appearing in architec-
tural registers of the processor.

• Local memory is used to implement a scratch pad for
temporary variables and lookup tables as well as to keep
secret keys. The local memory can be implemented on-
chip as well as outside of the chip; but the important
feature is that it is physically protected and not a
part of the memory hierarchy to avoid it from being
backed up on higher levels of the hierarchy. The local
memory can be thought of a device that responds to
access requests to a certain range of memory address,
which is especially easy to implement in processors
using memory-mapped I/O technique to access periph-
erals. Its implementation is much easier than a cache
memory since placement scheme is straightforward.
The cache memory usage is always problematic in
cryptographic algorithms and not necessarily as ben-
eficial as a possible local memory so far as the speed
is concerned. Some commercially available processors
such as graphic processors and Cell architecture [5] also
feature local memories. It is important to note that SPE
cores in Cell architecture use on-chip local memories
in isolation.

• Registersare organized as a register file from which the
functional units can operate on. The confidential values
(secret keys and sensitive temporary values) are kept
and operated while they are in these registers. Important
feature of these registers is that they are not spilled onto
the main memory but to the local memory.

• Special registersare used to keep some temporary
values during the long-latency cryptographic compu-
tations such as multi precision modular multiplication
and block cipher round operations.

In the next section, we propose an architecture to realize
such a protected execution zone within a general-purpose



processor.

III. G ENERAL ARCHITECTURE

The architecture in Figure 1 is proposed to fulfill the
requirements of secure and isolated execution of crypto-
graphic algorithms stated in Section II. The base architecture
is basically a 32-bit embedded processor core based on
Xtensa LX2 architecture [19] that provides basic integer
functionality. The architecture is both reconfigurable and
extensible. Basic pipeline structure, a register file of 32 32-
bit registers and a simple ALU are default resources in what
is referred as base architecture whose components are shown
in dark in Figure 1. The resources shown in the lightest
represent configurable parts, which simply means that devel-
oper/designer can choose to add/remove/configure units al-
ready available in the Xtensa LX2 architecture. For instance,
a 16- or 32-bit multiplier (MUL16/32 in Figure 1), multiply-
and-accumulate unit (MAC in Figure 1) can be added to the
base architecture. The cache memory size and configuration
can also be determined by the designer/developer.

The architecture is extensible in the sense that the designer
can add units of her/his own design such as multi-cycle
execution units, register files, special registers for multi-
cycle instructions, even make the basic RISC pipeline into
a multi-issue VLIW processor. This is the feature that we
use to realize our protected zone to execute cryptographic
operations as shown in Figure 1 (enclosed within the dashed
area).

Figure 2 shows the details of the protected zone where
we can perform cryptographic operations safely. The orga-
nization of the zone is very similar to an ordinary RISC
processor core with the exception of 128-bit data path
and block cipher unit. Extension register file consists of
eight 128-bit registers, which we refer ascryptographic
registershenceforth, and are used to hold operands during
the computation. The execution units, namely integer unit
(IU), shifter, and multiplier, are responsible for executing
arithmetic/logic operations common in cryptographic com-
putations in an efficient and secure manner. While 128-bit
shift and arithmetic/logic instructions are single-cycle, the
128 × 128 multiplication is a multi-cycle instruction.

The block cipher unit (BCU) is novel in this design and in-
corporates various operations common in many block cipher
algorithms. In the beginning of each round of the block ci-
pher algorithm, the block is in one (or more depending on the
block length) of the cryptographic registers. Once the round
starts, the block is first transferred into special registers in the
BCU. One of the important operations performed in the BCU
is securetable lookup operation that are employed in many
block cipher implementations to accelerate s-box computa-
tion. The lookup table is formed inside the local memory in
order to avoid cache-based side-channel attacks. RISC-based
processors use architectural base registers to compute the
exact address of the location of the desired data, which may

be directly related to the secret. However, the architectural
registers are not safe places to keep confidential information
since they are backed up on the main memory; a process
that may leak secret information. Therefore, they must be
used carefully. A straightforward approach is to reset the
architectural register used to keep confidential data afterthey
are no longer needed and before they are spilled to the main
memory, which is easy to do in Assembly programming.
However, this is not an easy task in higher level language
implementations since it is up to the compiler to decide
which registers are used in address calculation, which is hard
to predict beforehand. We use basically two techniques to
reset architectural register’s secret content, using highlevel
language constructs that allow inline assembly instructions
and defining local variables on specified registers. This way,
it is easy to keep track of registers that are used to handle
sensitive information to reset them afterward.

Note that certain operations either take multi-cycle or
multi-instruction to complete, therefore certain temporary
values are kept in special-purpose registers. This resembles
multiplication operation that puts the high and low parts of
the result in two special-purpose registers, namelyHI and
LO, respectively. In order to further operate on the result of a
multiplication, instructions such asmfhi andmflo are used
to move the results to the base registers. We adopt the same
approach; however, it is required that these special-purpose
registers be not saved in the main memory before process
switch operation that is supervised by the operating system.
Thus, operating system support is necessary in secure and
isolated execution to time the context switching in order not
to lose data.

IV. T HE NEW INSTRUCTIONSET ARCHITECTURE

Basic integer arithmetic and logic operations are imple-
mented in protected zone to provide a wide range of cryp-
tographic algorithms with a secure and efficient execution
environment. Some of these operations are implemented as
simple single-cycle instructions such as integer additionand
various shift operations while more sophisticated operations
such as wide multiplication are executed in the pipeline
with multi-cycle latency. All instructions comply with RISC
conventions such as maximum three operands per instruc-
tion, simple addressing modes stipulating register-to-register
arithmetic, etc. These conventions help keep the data path as
simple and regular as possible. For instance, the latency for
instruction fetch can be minimized for short and regularly
formed instructions.

The implementation of instructions for efficient integer
and logic operations have been explained earlier in our ear-
lier work [13]. Therefore, we focus only on explaining new
instructions that allow secure execution of cryptographic
operations; but only a couple of instructions, which we think
are the most representative of the adopted methodology, are
explained for space considerations. Firstly, we mention three
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special registers that play key roles in secure computations.
We use two predicate registers, namelyp0 andp1 to allow
predicated (or conditional) execution of certain instructions.
Although the predicated instructions are known, as a novelty
we allow arithmetic on predicate registers so that more
sophisticated conditions can be evaluated before the comple-
tion of an instruction. The other special register,sbox_in,
is useful in table lookup operations used in implementing
s-box computations in block cipher algorithms. Five of the
new instructions are given in Table I.

The first instructionmf_cr2p1 move the most significant
bit of cryptographic registercr to the predicate registerp1
while the other predicate registerp0 is updated by the old
content ofp1 andcr is shifted to the left by one bit. The
instruction is useful in modular exponentiation and ellip-
tic curve scalar multiplication operations where the secret

Table I
SPECIAL INSTRUCTIONS

Instruction Arguments Definition
name
mf_cr2p1 p0, p1, cr p0:=p1;

p1:=cr[127];
cond_mv p1, cr_d, cr_s if p1=1 cr_d:=cr_s;
cond_mv_c p1, cr_d, cr_s if p1=0 cr_d:=cr_s;
shlcr_ cr, sbox_in sbox_in:= r[127:96];
2sbox_in shift left cr by 32 bits;
lookup_ addr, addr:=base_addr +
table_op base_addr, sbox_in[31:24];

sbox_in rotate leftsbox_in
by 8 bits;

exponent (or integer) is kept in the cryptographic register
and moved to the predicate registers when needed. The next
two instructions,cond_mv andcond_mv_c conditionally



Table II
CLOCK COUNT FORRSA AND ECC

Algorithm Base Fast Secure
Architecture on protected protected

RSA-1024 132,334,584 9,215,168 14,831,132
RSA-2048 NA 66,728,848 107,173,686
ECC-160 5,684,844 2,524,498 4,683,325
ECC-256 21,509,576 3,649,338 7,213,678
ECC-512 160,109,439 16,979,307 33,893,033

move cryptographic register contents from one register to
another depending on the value of the predicate register.
These instructions are useful again in the exponentiation
and elliptic curve scalar multiplication operations wherecer-
tain operations are performed (e.g. modular multiplication)
depending on the current value of the exponent bit which
is currently in the predicate register. For instance, in the
Montgomery ladder algorithm [11] for exponentiation, the
result of the modular multiplicationR0 × R1 is assigned
either toR0 or R1 depending on the value of the current
exponent bit. The conditional move instructions are usefulin
performing this assignment without using branch prediction
circuit that leaks information about the secret key [1].
By performing secret key-dependent move instruction, the
branch prediction attacks are thwarted.

The next two instructions in Table I are used in secure
table lookup operations in block cipher algorithms. The
instructionshlcr_2sbox_in moves the highest 32-bit of
cr to the special registersbox_in while the instruction
lookup_table_op computes the address of the s-box
output value precisely, which allows fetch the desired item
from the lookup table securely. The calculated address and
s-box output are placed in architectural base registers which
need to be properly handled and erased afterward.

V. I MPLEMENTATION RESULTS

We synthesized the protected zone into a simple Xtensa
LX2 core and implemented various cryptographic algorithms
such as RSA, elliptic curve cryptography (ECC), and AES
on the resulting processor. The timing results of an RSA
exponentiation and a ECC scalar point multiplication are
given in Table II in terms of number of clock cycles.
Note that all implementations are done in C language and
implementations in Assembly are expected to yield better
performance. Note also that both fast and secure versions
execute completely in isolated manner while the secure ver-
sions are additionally hardened against side-channel (e.g. the
Montgomery Ladder is used), cache and branch prediction
(local memory is used and key dependent branches are
eliminated) attacks. For comparison, our implementations,
both fast and secure, greatly outperform another 1024-bit
RSA implementation on the same Xtensa processor in [18]
that takes24.32 million clock cycles.

Similarly, we implemented the AES algorithm and the

results are given in Table III along with those of other
implementations on similar embedded platforms. As seen
in the table, our implementation outperforms all the other
implementation except for the one in [9], which is a bit-
sliced implementation. Our implementation does not use
bit-slicing technique, therefore, can work in any mode of
operation. A bit-sliced implementation in our architecture
would possibly yield a better performance, which we leave
as a future work.

Table III
COMPARISON OFAES IMPLEMENTATIONS

Implementation Hardware Performance
support (cycles)

[3] on ARM7TDMI - 1675
[16] on AMD Opteron - 2699

[9] on CRISP Bit-sliced + 2203
lookup tables

[9] on CRISP Bit-sliced + 1222
lookup table +

bit-level permutation
[18] on Xtensa - 1400

this work on protected zone 1334

We implemented our protected zone and incorporated
it into a basic embedded processor core, namely Xtensa
by Tensilica. The Tensilica tool chain estimates that the
protected zone takes a chip area of92, 924 equivalent gate
count in ASIC realization. The tool chain did not report any
penalty in maximum applicable clock frequency. Another
important figure that we need to consider is the size of
the protected local memory required for software imple-
mentations of cryptographic algorithms. It turns out that
the required memory sizes are surprisingly low. RSA, ECC,
and AES algorithms need 5700 B, 1936 B, and 464 B of
scratch pad memory, respectively. RSA memory requirement
in fast implementations can be as low as 1860 B at the
expense of17 − 18% deterioration in speed. The secure
RSA implementation requires only 2112 B memory space.
Considering it is possible to realize as large as 256 KB
local memory per each processor in Cell architecture [5],
the memory requirements of our implementations are very
low.

We also synthesized the design into an FPGA target
device, and generated configuration files to program Avnet
LX200 board that features Xilinx Virtex-4 type FPGA. This
basically means that the reported implementation figures are
obtained after placement-and-routing. The number of slices
used in the design is reported to be29707; and15151 slices
of the total number are used to implement the protected zone.
No degradation in maximum clock frequency is reported by
the synthesis tools; 50 MHz maximum clock frequency is
achieved for the design.



VI. CONCLUSION AND FUTURE WORK

We designed, implemented and realized a protected zone
in an embedded processor that allows efficient, secure,
and isolated execution of cryptographic algorithms. We
estimated the area overhead of the protected zone for the
ASIC implementation. We also provided area usage on an
FPGA device after placement-and-routing for the full design
including an embedded base processor and protected zone.
Since the number and organization of the subsystems in the
protected zone are carefully designed, we observed only a
moderate area overhead while no deterioration in maximum
applicable clock frequency is reported. We outlined the
principles of the software implementation of cryptographic
algorithms so that resulting executable runs in a secure
and isolated manner. Since the protected zone is specifi-
cally tailored for the cryptographic application domain, we
achieved superior time performance of major cryptographic
algorithms compared to both those reported in literature and
those in the base processor. The protected zone can be instru-
mental in implementing a TPM within the microprocessor.
For this, we need to investigate secure implementation of
cryptographic hash functions whose security constraints are
not about the confidentiality of temporary values but about
maintaining their authenticity; a task that can easily be
performed in our architecture.
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