
An Efficient Heuristic for the Multi-Vehicle

One-to-One Pickup and Delivery Problem

with Split Loads

Mustafa Şahin a, Dilek Tüzün Aksu b, Gizem Çavuşlar a,
Temel Öncan c and Güvenç Şahin a,1

aManufacturing Systems and Industrial Engineering, Sabanci University
Tuzla, İstanbul, 34956, Türkiye

{mustafasahin}{gizemc}{guvencs}@sabanciuniv.edu
bDepartment of Systems Engineering, Yeditepe University

Kadıköy, İstanbul, 34755, Türkiye
dtuzun@yeditepe.edu.tr

cEndüstri Mühendisliği Bölümü, Galatasaray Üniversitesi
Ortaköy, İstanbul, 34357, Türkiye

ytoncan@gsu.edu.tr

Abstract

In this study, we consider the Multi-vehicle One-to-one Pickup and Delivery Problem
with Split Loads (MPDPSL). This problem is a generalization of the one-to-one
Pickup and Delivery Problem (PDP) where each load can be served by multiple
vehicles as well as multiple stops by the same vehicle. In practice, split deliveries is a
viable option in many settings where the load can be physically split, such as courier
services of third party logistics operators. We propose an efficient heuristic that
combines the strengths of Tabu Search and Simulated Annealing for the solution of
MPDPSL. Results from experiments on two problems sets in the literature indicate
that the heuristic is capable of producing good quality solutions in reasonable time.
The experiments also demonstrate that up to 33% savings can be obtained by
allowing split loads; however, the magnitude of savings is dependent largely on the
spatial distribution of the pickup and delivery points.

Keywords: Pickup Delivery, Vehicle Routing, Split Loads, Tabu Search, Simulated
Annealing.

1 Corresponding author.

UT-ICEPP 08-04 29 December 2010

1 Introduction

The Pickup and Delivery Problem has attracted the interest of various re-
searchers in the last three decades (see e.g. recent surveys by Cordeau et
al.[4], Gribkovskaia and Laporte [7]). PDP consists of finding the least cost
route of a single vehicle which picks up a load from an origin and delivers it
to its destination. If each origin is associated with a single destination, mak-
ing up a pickup-delivery (p-d) pair the problem is called the one-to-one PDP.
As stated in [4], this version of PDP differs from the other two variants in
the literature; the many-to-many PDP where a commodity may be picked up
at one of many origins and then delivered to one of many destinations, and
the one-to-many-to-one PDP where all loads to be picked-up and delivered
originate at a common depot. In a conventional PDP setting, each p-d pair
is visited by a single vehicle. In this article, we study a variant where the
load of a p-d pair can be split between multiple vehicles and/or multiple stops
of the same vehicle. The single vehicle version of this problem, namely the
Pickup and Delivery Problem with Split Loads (PDPSL) was first introduced
by Nowak et al. [9].

The Multi-vehicle One-to-one Pickup and Delivery Problem with Split Loads
(MPDPSL), which is a generalization of the PDPSL is defined on a directed
graph G = (V,A) where V is the vertex set and A is the arc set. The vertex set
is partitioned as V = {P,D, {0, 2n+ 1}}. For a given set of n pickup delivery
pairs, P = {1, 2, . . . , n} is the set of pickup vertices and D = {n+ 1, . . . , 2n}
is the set of delivery vertices where i and n+ i represent a pickup and delivery
vertices for load i. Furthermore, {0, 2n + 1} includes two copies of the depot
location and the set of arcs are defined as follows A = {(i, j) : i = 0, j ∈ P}
∪ {i, j ∈ P ∪ D, i 6= j, i 6= n + j} ∪ {(i, j) : i ∈ D, j = 2n + 1}. Let
K = {1, 2, . . . ,m} denote the set of available vehicles. For each vertex i ∈ V ,
qi denotes the pickup or delivery quantity where qi > 0 for i ∈ P, qi = −qi−n
for i∈ D and q0 = q2n+1 = 0. Each vehicle k ∈ K has a capacity of Q. We
assume that the load of any p-d pair can be provided by a single vehicle, i.e.
qi ≤ Q. dij is the travel distance associated with arc (i, j) ∈ A and D is the
maximum travel distance of any vehicle route.

Although MPDPSL has not been widely studied in the literature, possibil-
ity of load splitting exists in many PDP settings. Novak et al. [9] describe
the less-than-truckload service of a third-party logistics company where load
splitting results in significant benefits. Similar savings might be achieved in
other areas where loads can be split among multiple vehicles, such as bulk
product transportation by ship, where each load is already packaged into mul-
tiple containers, or courier services that deliver multiple packages between the
same origin-destination pair. As long as loads can be physically split between

2

vehicles, MPDPSL can lead to savings over the classical PDP by reducing the
unused vehicle capacity.

Nowak et al. [9] have shown that the optimal load size for splitting is just
above one half of a truckload and demonstrated the relation between the ben-
efit of split loads and the problem characteristics on the third-party logistics
case study. The benefit of split loads and the problem characteristics that are
affected most by load splitting have been experimentally analyzed in their
subsequent work [10]. The authors have empirically observed that when the
demands are distributed between 0.51 % and 0.60 % of the truckload (vehi-
cle capacity) up to 30 % savings in route cost can be achieved. Other factors
increasing the benefit of split loads are the number of loads available at a com-
mon location for pickup or delivery and the average distance from an origin to
a destination relative to the distance from origin to origin and destination to
destination. The authors have observed that an increase in these two factors
both result in an increase in the benefit of split loads.

The split load case is also considered within the VRP context. The well-
known Split Delivery Vehicle Routing Problem (SDVRP) tries to find a set of
minimum cost routes of a fleet of capacitated homogeneous vehicles available
to serve a set of customers. Each customer can be visited more than once and
the demand of each customer may be greater than the vehicle capacity. The
earliest papers on the SDVRP trace back to the work by Dror and Trudeau
([6,6]). For a recent survey on the SDVRP, we refer to Archetti and Speranza
[2]).

To the best of our knowledge, there is no other work in the literature that deals
with the multi-vehicle extension of the PDPSL. The motivation of this work
is first to present the MPDPSL, and then to introduce our Tabu Embedded
Simulated Annealing (TESA) algorithm specially tailored for this problem.
Computational experiments are performed on both PDPSL test problems and
split load versions of PDP instances from the literature. Our main contribu-
tions in this work are as follows:

• we introduce a generalized version of the PDPSL with multiple vehicles;
• a metaheuristic algorithm is designed to solve the MPDPSL;
• we perform computational experiments to
· show the efficiency and effectiveness of our algorithm,
· analyze the benefit of split loads for the multi-vehicle problem with dif-

ferent network structures; and
• we report the first results on a set of MPDPSL test problems.

The remainder of this work is organized as follows. In Section 2, we discuss the
details of TESA heuristic algorithm. We present the results of computational

3

experiments in Section 3. Finally, we close with concluding remarks in Section
4.

2 MPDPSL Heuristic

We propose a Tabu Embedded Simulated Annealing (TESA) heuristic for
MPDPSL. The heuristic starts by creating an initial solution using a vari-
ant of the savings heuristic by Clarke and Wright [3]. This solution is then
improved by searching neighboring solutions through a variety of moves, in-
cluding insertion of a p-d pair into a different route, split of a p-d pair between
routes as well as insertion and swap of route segment(s) that consist of multi-
ple p-d pairs. The heuristic utilizes features of both tabu search and simulated
annealing to search the solution space efficiently.

In the literature, tabu search and simulated annealing methods have been used
together in metaheuristic algorithms. Li et. al. [8] and Thangiah et. al. [13]
use simulated annealing to obtain non-tabu neighbor solutions for the Vehicle
Routing Problem with Time Windows (VRPTW). Osman [11] employs this
approach to solve the Generalized Assignment Problem. Our approach follows
the footsteps of Li et. al. [8] and Thangiah et. al. [13]; we use a simulated
annealing-like procedure to select among a set of possible eliticized moves
while searching the neighborhood of a current given solution. In particular, in
order to jump to a neighboring solution, we do not necessarily choose to apply
the best possible move; we consider a list of good moves, and use a randomized
procedure to select a move from this list. The simulated annealing procedure
is employed to direct the randomization scheme.

Before we explain the details of TESA heuristic, we describe the local neighbor-
hood structures used in this heuristic. The search neighborhoods to be used
in a metaheuristic is very critical to the efficiency of the search performed.
This is especially true for an MPDPSL heuristic where the neighborhoods are
potentially very large due to many possible ways of splitting a load between
available routes. To overcome the excessive computational cost of exploring
these large neighborhoods, we use the following three neighborhoods in our
heuristic.

Insert/Split Neighborhood. A neighboring solution in this neighborhood
is constructed by removing a p-d pair from its current route and either insert-
ing the entire load into a different route or splitting it between two routes. Only
feasible moves that do not violate the precedence, vehicle capacity and route
length constraints are included in the insert/split neighborhood. We limit the

4

number of splits for a given p-d pair to a maximum of k. At any iteration
of TESA algorithm, there are at most 2nk stops in the solution. Thus, for a
given p-d pair, there are O(n2) ways of inserting the pair into two positions in
another route, and O(n4) ways of splitting the pair between two other routes.
As a result, the computational complexity of evaluating the entire insert/split
neighborhood for a particular p-d pair and identifying the best insert/split
move among all p-d pairs are O(n4) and O(n5), respectively.

Block Insert Neighborhood. A block of consecutive pickup and delivery
stops is removed from its current route and inserted into a new route as a
whole. A block is a route segment that starts and ends with an empty vehicle.
While there might be several blocks within a vehicle route, a route may also
consist of a single block. The capacity and precedence constraints remain intact
when a block is removed from a route and inserted into another. Therefore,
only route length constraints need to be checked to ensure the feasibility of
solutions in this neighborhood. In the worst case, a solution may contain
nk blocks, each containing a single p-d pair. In this case, there would be
nk different positions where the block can be inserted, resulting in a O(n)
moves in the neighborhood of a particular block. Thus, for a given solution,
selecting the block insert move that results in the most route length reduction
is O(n2). Compared to the insert/swap neighborhood, evaluating the block
insert neighborhood is very fast.

Block Swap Neighborhood. This neighborhood consists of solutions that
are obtained by swapping the routes of two blocks and inserting those blocks
at the best possible positions on their new routes. Similar to the block insert
move, block swap moves also do not violate the precedence and capacity con-
straints. It suffices to check only the route length constraints to create feasible
moves. In a feasible solution, there are O(n2) possible block swaps, and the
computational complexity of determining the best position for a block is O(n).
Therefore, computational complexity of selecting the pair of blocks that yield
the most route length reduction is O(n3).

TESA heuristic that employs the above neighborhood structures is outlined in
Algorithm 1. The algorithm starts by finding an initial feasible solution. This
initial solution is, then, improved by searching new solutions in the neigh-
borhood of an incumbent solution. The algorithm subsequently goes through
series of improving phases. Among these phases, three of them are based on
searching the above neighborhoods of the incumbent solution.

5

Algorithm 1 MPDPSLAlgorithm

1: Input: Niter1, Niter2, Nmove, Npair, P r
2: Output: Sb

3: Sb ← InitialSolutionHeuristic()
4: while Pr > 0.1 do
5: Sb ← Insert/SplitPhase(Sb, Niter1, P r)
6: Sb ← IntraRouteHeuristic(Sb)
7: Sb ← BlockInsertPhase(Sb, Niter2)
8: Sb ← BlockSwapPhase(Sb, Niter2)
9: Pr ← Pr/3

10: end while
11: return Sb

2.1 Initial Solution Heuristic

The heuristic algorithm starts by creating an initial solution. This initial so-
lution, which is based on the savings algorithm, does not contain any split
loads. In parallel with the original savings algorithm, we first create a solution
where each p-d pair is initially served by a separate vehicle route of the form
(0, i, i+ n, 0). We then compute a savings value for every pair of pickup point
i and delivery point j such that j 6= i+ n. The savings value is the difference
in total route length when the routes that serve the two points i and j are
combined into a single route. Next, we sort the pairs in non-increasing order
of their savings. Starting from the first pair on the list, we merge the routes
that visit the pairs with positive savings while ensuring the feasibility of the
resulting routes. Finally, we carry out an improvement step where the pickup
point i and delivery point j are moved forward and backward respectively in
the merged route provided that such a move results in further savings.

2.2 Insert/Split Phase

In this phase, we improve the current solution through subsequent insert/split
moves. In each iteration of this phase, a p-d pair is removed from its current
route and either the entire load is inserted into a different route or it is split
between two routes. Since computational complexity of an insert/split move
for a particular p-d pair is very high, it is quite time consuming to evaluate all
p-d pairs at every iteration. Therefore, we use a binary heap implementation
to improve the average computational performance.

In order to select the p-d pair to be inserted/split in each iteration, we first
evaluate the insert/splitneighborhood for all p-d pairs to determine the best

6

Nmove non-tabu moves that results in the lowest ∆C value for each pair where
∆C denotes the change in total route length as a result of the move. A positive
∆C value corresponding to an increase in the route length. In evaluating the
neighborhood, we limit our search to only feasible insert and split moves that
satisfy the precedence, route length and vehicle capacity restrictions.

The tabu structure in this algorithm consists of four dimensions: the route
length, number of stops and number of vehicles in the visited solution, as well
as the p-d pair inserted/split to create that solution. The reason for using such
a complex tabu structure is due to the special property of the test problems
by Nowak et al.[9] In these test problems, all p-d pairs are generated from a
limited set of pickup and delivery points. Since there are many nodes that share
the same pickup and delivery coordinates, conventional tabu structures that
keep track of involved node(s) are rendered ineffective for these test problems.
Using the multi-dimensional tabu structure that keeps track of the features of
the visited solution (in addition to the move applied to reach that solution)
allows the algorithm to identify the previously visited solutions correctly and
avoids visiting them repeatedly later on.

As discussed earlier, evaluating the insert/split neighborhood for all p-d pairs
results in a complexity of O(n5) for every iteration. In order to avoid this exces-
sive computational burden, we evaluate the insert/split neighborhood using a
binary heap implementation. While the worst-case behavior of the binary heap
implementation is the same (O(n5)), our computational experience indicates
that the average running time is only O(n3 log n), which is significantly better
than the original implementation. (A detailed description of the binary heap
implementation and its computational complexity can be found in Appendix
A.)

Once we create a list of the top Nmove non-tabu moves with the lowest ∆C
values among all feasible insert and split moves for every p-d pair, we employ
a simulated annealing based selection criterion to select one candidate move
for each p-d pair. In a conventional simulated annealing algorithm, a move is
selected with a probability e−∆C/temp, where temp denotes the current tem-
perature of the simulated-annealing-like randomized selection procedure. The
average value of ∆C may fluctuate significantly between p-d pairs. Therefore,
the acceptance probability of a move with an average ∆C value also changes
widely. To prevent this, we use the following approach: Instead of varying the
temperature temp from one p-d pair to the next, we vary the probability of
accepting an average move, Pr. For each p-d pair, we first calculate the aver-
age ∆C value for the best Nmove non-tabu moves in the neighborhood. Then,
a temperature temp is calculated such that the probability of accepting an
average move is Pr. Finally, a move is selected randomly among the Nmove

moves; this move is accepted with a probability of e−∆C/temp. If the current

7

move is rejected, then another move is selected randomly from the list until
one of the feasible moves is accepted. After the candidate moves for each p-d
pair are determined in this fashion, the move to be implemented is selected
randomly out of the best Npair p-d pairs with moves resulting in the highest
∆C values.

Following each insert/split move, we check if the solution can be improved by
merging any pickup or delivery stops for the p-d pair involved in this move.
This corrective move exploits an optimality condition for MPDPSL.

Optimality Condition. In an optimal solution of MPDPSL where the
distance matrix satisfies the triangular inequality, multiple pickup (deliveries)
stops of a p-d pair cannot exist on the same vehicle route without a delivery
(pickup) stop of the same p-d pair in between.

We can show that a reduction in route length can be achieved for solutions
that do not satisfy this condition by eliminating all but the last (first) pickup
(delivery) without violating the capacity constraints. After each insert/split
move, we check whether the above condition is violated for the p-d pair under
consideration and merge multiple stops into one wherever possible. In the case
of multiple pickup stops of the same p-d pair, the entire load is picked up at
the last stop, eliminating all other pickup stops and resulting in a reduction of
route length. Conversely, all deliveries but the first one are eliminated for the
case of multiple delivery stops without a pickup of the same load in between.

The insert/split phase is terminated after no improvement can be achieved
over the best solution for a consecutive Niter1 iterations. The pseudo code of
the insert/split phase is provided in Algorithm 2.

2.3 Intra-Route Phase

On a feasible vehicle route, if a pickup node is shifted towards its correspond-
ing delivery node, or a delivery node is shifted towards its pickup node, the
precedence and capacity constraints will not be violated. Therefore, a pickup
(delivery) node can be shifted towards its delivery (pickup) node, as long as
the shift does not violate the route length constraint. The intra-route phase
exploits this property within the blocks. For each block, the heuristic considers
shifting all pickup nodes forward and delivery nodes backward in the route,
starting from the first node in the block. If a decrease in route length can be
achieved, the move is implemented and the heuristic proceeds with the next
block.

8

Algorithm 2 Insert/SplitPhase

1: Input: Sc, Niter1

2: Output: Sb //Sb denotes the best solution
3: Sb ← Sc //Sc denotes the current solution
4: T ← ∅ //T denotes the list of best Npair insert/split moves
5: i← 0
6: while i < Niter1 do
7: for all (p, d) ∈ Sc do
8: if c(Insert/Split(Sc, (p, d), P r)) < c(maxCost(T)) then
9: if |T | = Npair then

10: T ← T −maxCost(T) and T ← T ∪ Insert/Split(Sc, (p, d), P r)
//maxCost(T) returns the insert/split position
< `p1,`d1>− < `p2,`d2> with the largest cost from the list
T

11: else
12: T ← T ∪ Insert/Split(Sc, (p, d), P r)
13: end if
14: end if
15: end for
16: Select a pair (p∗, d∗) randomly from T
17: UpdateSolution(Sc, (p

∗, d∗), <̀ p1∗ ,`d1∗>− <̀ p2∗ ,`d2∗>)
18: if c(Sc) < c(Sb) then
19: Sb ← Sc

20: i← 0
21: else
22: i← i+ 1
23: end if
24: end while
25: return Sb

2.4 Block Insert Phase

In one iteration of the block insert phase, the heuristic selects the block insert
move that results in the lowest ∆C value and performs the corresponding
insert move. This phase is terminated after no improvement can be achieved
over the current best solution for a consecutive Niter2 iterations.

2.5 Block Swap Phase

In each iteration of the block swap phase, the block swap move that yields the
lowest ∆C value is identified and implemented. The block swap move is also

9

terminated after no improvement can be achieved over the best solution for a
consecutive Niter2 iterations.

The termination of the subsequent improvement phases depends on the value
of Pr, selection probability employed in the insert/split phase. For a given
value of Pr, the algorithm executes the four phases described above subse-
quently before it decreases Pr by a factor of β < 1. This step is parallel to the
reduction of the temperature by a cooling factor in a conventional simulated
annealing algorithm. At the beginning of the algorithm, the probability of se-
lecting inferior solutions is quite high, which allows the search to diversify and
avoid the local minima. As the algorithm progresses, the probability of select-
ing inferior solutions decreases gradually, so that the algorithm converges to
a good solution. Preliminary computational experiments indicated that the
algorithm did not have the capability of avoiding the local minima without
this simulated annealing based strategy. The solution quality improved con-
siderably after the introduction of the probabilistic selection criterion. It is
important to emphasize that the selection criterion is implemented on the
best Nmove non-tabu results, which ensures that the algorithm does not spend
time in parts of the solution space that are not promising. Moreover, utilizing
a tabu structure ensures that the algorithm does not revisit the same solution.
This overcomes one of the major weaknesses of simulated annealing, that it
lacks any memory features to track previously visited solutions. The resulting
algorithm combines powerful features of both tabu search and simulated an-
nealing. The computational results reported in the next section demonstrate
that this algorithm is capable of producing good solutions for MPDPSL in
reasonable time.

3 Computational Results

3.1 Parameter Tuning for TESA Algorithm

Our preliminary experiments indicate that four of the parameters used in
TESA algorithm have a significant impact on both solution quality and CPU
time: Niter1, Niter2, Npair and Nmove. For the purpose of parameter tuning, we
only consider these parameters. To simplify the experimental design, we use,
in a given setting, the same values for the number of nonimproving iterations
in any phase, i.e. Niter1 for the Insert/Split phase and Niter2 for Block Insert
and Block Swap phases; we denote this parameter as Niter. Nmove determines
the size of the list that keeps the least costly moves for a selected p-d pair; the
likelihood of selecting a poor quality move increases as Nmove gets larger. Npair

determines the size of the list that keeps the best pairs for the current solution

10

in implementing a move. Similarly, when Npair gets larger, the likelihood of
selecting an inferior pair is increased.

The computational study for these parameters is conducted with the multi-
vehicle version of the randomly generated problems in Nowak et al. [9]. Param-
eter tuning is done for the set of problems of 100 p-d requests with a load range
of 0.51-0.6 truckload. For Niter ∈ {25, 50, 75, 100, 125}, Nmove ∈ {5, 7, 10, 15},
and Npair ∈ {1, 3, 5, 7, 10}, we conduct the tuning study for 100 possible pa-
rameter settings. For a given parameter setting, the algorithm is restarted 20
times. To evaluate the quality of a parameter setting, we use the average im-
provement attained over the route length of the initial solution with no splits
(see Section 2.1) as the effectiveness measure and the average CPU time as
the efficiency measure. Computational experiments are conducted on a single
core of a computer with Intel Core2Quad Q8200 @2.33 gHz CPU and 3.46gB
of RAM.

According to the results of our study:

• The most influential parameter is the number of nonimprovements, Niter, as
the improvement in the route length decreases by 2% when Niter is increased
from 25 to 125. The solution quality changes by only 0.2% between the best
and the worst settings of Npair and Nmove. The CPU time also increases
when the value of each of these three parameters is increased.
• When the effect of each parameters is inspected individually (see Figures 1,

2, 3), Niter = 125, Nmove = 10 and Npair = 5 appears to be the best setting
of parameters.
• Inspecting the combined effect of Niter and Npair (see Figure 5), and the

combined effect of Niter and Nmove (see Figure 4), it is clear that the effect
of Niter overweighs and best results are attained when Niter is as large as
possible (i.e. Niter = 125). According to the combined effect of Nmove and
Npair in Figure 6, Nmove = 15 and Npair = 3 yields the best solution quality.
Thus, when the combined effect is considered, the best setting for all three
parameters appears to be Niter = 125, Nmove = 15 and Npair = 3.

Taking into account the trade-off between the improvement in the route length
and CPU time, it would be more reasonable to set the value of Niter based
on the availability of computing power. In essence, one might prefer a smaller
value of Niter if the computing resources are restricted and CPU time is an im-
portant concern. The values of Npair and Nmove are dependent on the problem
size, i.e. the number of p-d requests. Therefore, we adjust the values of these
parameters in proportion to the number of p-d requests in a given instance.

Another important parameter that affects the CPU time is the number of
restarts. We do not include this parameter directly in the parameter tuning

11

Fig. 1. Improvement in route length versus CPU time for different values of Niter.

Fig. 2. Improvement in route length versus CPU time for different values of Npair.

Fig. 3. Improvement in route length versus CPU time for different values of Nmove.

study. Instead, we use each restart as a sampling procedure since each restart
of the algorithm randomizes the selection of moves. A high number of restarts
increases the likelihood of diversification among the obtained solutions. In
order to validate this anticipation, we closely investigate the improvement
pattern through the restarts of the algorithm over a maximum of 100 restarts.
In Figure 7, we show the route length obtained at every restart of the algorithm
along with the best route length obtained until after that restart. In these three
examples, we observe that the best route length is obtained at restart 23 (in
part (a)), restart 47 (in part (b)) and restart 96 (in part (c)). This observation

12

Fig. 4. Combined effect of Niter and Npair on the improvement in route length.

Fig. 5. Combined effect of Niter and Nmove on the improvement in route length.

Fig. 6. Combined effect of Nmove and Npair on the improvement in route length.

validates the significance of restarts and the effect of randomization on the
solution quality through the diversification mechanism induced by restarts. It
is clear that the solution quality might improve when more effort is spent by
increasing the number of restarts. As in the case of Niter1, one should consider
the trade-off between the CPU time and number of restarts with respect to
the availability of computing resources.

13

(a)

(b)

(c)

Fig. 7. The pattern of route length improvement through the restarts of the algo-
rithm.

3.2 Computational Results on Test Problems

Nowak et al. [9] has investigated the improvement in route length when splits
are allowed over the route length of the solution with no splits. The aim
of their analysis is to show that one may benefit from splitting some p-d
requests (i.e. stopping at the origin and destination of the requests more than
once) instead of visiting the p-d pair only once as in the traditional setting
of PDP. An extensive analysis on the benefit of splitting deliveries is studied

14

in Archetti et al. [1]. In this study, we extend Nowak et al.’s analysis to the
multiple vehicle version of the problem. Moreover, we analyze the benefit of
splitting loads on other PDP instances from the literature. As detailed below,
Nowak et al.’s instances have special characteristics that do not exist in other
PDP settings. In order to explore the impact of problem characteristics on
the benefit of splitting loads, we use another set of problem instances adopted
from Ropke and Pisinger [12] whose characteristics are significantly different.
We also verify the quality of our algorithm through a comparative analysis
against the PDP results given in Nowak et al. [9]. Since these results are for
the single vehicle case, we convert our solutions to a single route using a very
simple algorithm.

Below, we describe the two problem sets used in our analysis and how they
are adapted to create instances for MPDPSL:

(1) The first set consists of the randomly generated problems in Nowak et
al. [9]. In generating this set of problems, they have used the following
idea: they randomly generate a set of pickup points and another set of
delivery points; then, they create a set of p-d requests from every pickup
point to every delivery point. As a result, a p-d request is still one-to-
one but there are multiple deliveries from a pickup location as well to
a delivery location. In addition, Nowak et al. considers a single-vehicle
problem which constructs a single route as a solution. Since we study
the multi-vehicle case, our solution consists of multiple routes, one for
each vehicle. This setting requires introducing a maximum route length
restriction for each vehicle route. For each problem instance from Nowak
et al., we introduce a maximum route length as a function of the distances
between points.

(2) In a traditional PDP setting, each physical pickup point is usually associ-
ated with a single delivery point. In this respect, the problems in Nowak
et al. may not be considered as representative of a traditional PDP setting
in terms of the spatial distribution of the pickup and delivery points. For
problems that are more representative of a traditional PDP setting, we
resort to Ropke and Pisinger [12]. In this set of problems, all p-d requests
are generated one-to-one between a randomly generated pickup point and
a randomly generated delivery point. Ropke and Pisinger suppose that
each vehicle starts the route from a designated point considered as the
vehicle’s depot. However, in MPDPSL we suppose that there exists only
one depot from where all vehicles start their routes. Therefore, based on
the network data in Ropke and Pisinger’s instances, we have created a
single vehicle depot at the center of the two-dimensional space on which
the points are generated randomly. The maximum route length is used
as specified in this study.

15

Number of Location Average

Requests Set Imp. (%) Average

75 1 33,11 32,04

2 30,81

3 32,21

100 1 33,09 32,45

2 32,01

3 32,26

125 1 32,28 32,07

2 31,54

3 32,38

Table 1
Improvement in the route length obtained by split loads for problems in Nowak et
al. [9] for a load size range of [0.51-0.6] truckload.

For both sets of problems, the results presented in this section are the first
results for MPDPSL in the literature.

3.2.1 Analysis of the benefit obtained by split loads

In Nowak et al. [9], the benefit obtained by splitting loads is studied for differ-
ent load size intervals. Their results clearly show that the improvement in the
route length is closely related with the size of the loads. When the loads are
within 0.51-0.60 of vehicle capacity, the improvement in the route length is
more significant when compared to other ranges of the load size. We want to
understand if this finding is still true when the problem is solved for multiple
vehicles instead of a single vehicle. For this analysis, we solve each problem
instance using two versions of our algorithm: the original version that allows
split loads and a modified version which does not do any split moves.

In Table 1, we present the percentage improvement in the route length for the
algorithm with splits over that of the no-split version for the three problem sets
in Nowak et al. [9]. The percentage improvement in the route length is more
than 30% on average when the load size range is 0.51-0.60. The observed level
of improvement is in line with Nowak et al.’s findings where the improvements
is around 25% for the same load size range.

In order to study the benefit of splitting loads in a more traditional PDP set-
ting where the pickup and delivery points are distributed over the service area,
we solve the problems in Ropke and Pisinger [12] to obtain both the split and
no-split route lengths. To observe the difference in route length improvement
between different load size ranges, we have studied the load range 0.25-1.00
(using the loads in the original problem data) and the load range 0.51-0.60 (for
which we have randomly generated new load data). Complete results are given

16

in Tables B.1-B.4 of Appendix B. For the problems with 50, 100 and 250 re-
quests, we attain the best results over 20 restarts while the problems with 500
requests is solved only with five restarts due to excessive CPU time for a sin-
gle restart of the algorithm. the resulting CPU times are provided in the Online
Supplement (available at http://people.sabanciuniv.edu/guvencs/MPDPSL/).
a summary of results grouped by the number of requests and load size of prob-
lem instances is presented in Figure 8. In this figure, we observe that

• the improvement in route length for the load range 0.51-0.60 is more signif-
icant when compared to the load range 0.25-1.00, and
• the improvement in route length increases as the problem size increases.

Fig. 8. Effect of the load range on the improvement in route length.

A comparison among the two load ranges help us conclude that the improve-
ment in route length due to split loads is more significant when the load range
is just above one half of a truck load (0.51-0.60) compared to a much wider
load range. This observation is in parallel with the empirical analysis in Nowak
et al.[9]. Yet, it is also clear that this difference becomes more significant as
the problem size increases and the magnitude of improvement is not as much
as it is observed in Nowak et al. Therefore, in addition to the load range size,
we observe that

• spatial distribution of the pickup and delivery requests and
• number of p-d requests in the problem

also play an important role on the level of improvement in route length. In
Nowak et al., although the problem is a one-to-one PDP, each pickup (deliv-
ery) point is associated with several requests. In the problems by Ropke and
Pisinger [12], each pickup (delivery) point is associated with only one delivery
(pickup) point. We also note that the observed improvement is not due to the
algorithm used to solve the problems as the level of improvement in Nowak et
al.’s experimental results is around 25-30% while it is in the range of 30-33%
in ours. In addition, we suspect that the multi-vehicle version of the problem
may be even more prone to improvements obtained by split loads.

17

The importance of spatial distribution becomes even more apparent when we
look into the results from the Ropke and Pisinger [12] instances in more de-
tail. These instances are designed in three categories according to the spatial
distribution of the pickup and delivery locations: uniform, semi-clustered and
clustered. In Figure 9, we display the improvement in route length both by load
size and problem category. While the importance of load size is clear in this
figure, one can also observe that the benefit of split loads is also affected sig-
nificantly by the problem category. The largest improvement in route length
is realized for clustered data, especially for larger problem sizes. Although
the difference between semi-clustered and uniform data is not very significant
for small problems, as the number of p-d pairs in the problem increase, semi-
clustered problems also benefit greatly from splitting loads. Overall, the results
indicate that the benefit to be gained from load splitting is more pronounced
for problems with clustered data, even when the clustering is partial. In clus-
tered problems, vehicle routes also tend to appear in clusters, which increases
the likelihood of having multiple vehicle routes in close vicinity among which
the load can be split. Similarly, the number of splitting options are higher for
larger problem sizes. This observation may help explain the results obtained
for problem instances from different categories and problem sizes.

Fig. 9. Effect of the load range and spatial distribution of points on the improvement
in route length.

We also note that this is the first study to report results on the problems in
Ropke and Pisinger [12] for the case of split loads .

3.2.2 Comparative Analysis of Algorithm Performance

We evaluate the performance of our algorithm on the single vehicle version
of the problem using a comparative analysis against the results presented in
Nowak et al. [9]. The aim of our analysis is two-fold; we want to

• validate the quality/strength of our algorithm in order to justify the use of

18

our algorithm in obtaining the results in the previous sections, and
• show that our algorithm has the potential to be used for the single vehicle

case by demonstrating an improvement upon the results obtained in Nowak
et al. [9].

We particularly note that our algorithm is designed for the multiple vehicle
version, and we do not make a special effort to tailor it to solve the single
vehicle case. In order to obtain a single vehicle route from the multi-vehicle
solution of the algorithm, we use a very simplistic greedy approach. Among
all vehicle routes in the solution, we identify the two that yield the minimum
route length increase when merged into a single route. Then, at every iteration
we add a new route to the combined route such that the incremental route
length increase is minimized. The procedure stops when all routes are merged
into a single vehicle route.

For the three sets of problem instances (i.e. 75,100,125-request sets), we solve
the single vehicle problems with the load factor 0.51-0.60; the results are pre-
sented in Tables 2-4. To make a fair comparison, we account for the difference
in the computing power of our computer with the one used in Nowak et al.
[9]. For this purpose, we present our results with two different levels of com-
putational effort. In the scaled time approach, for each problem set, we scale
the average CPU time reported in Nowak et al. by the difference in the com-
puting power of the computers using the method presented in Dongarra [5].
As our computer is two times more efficient than the one in Nowak et al., we
use half of the average CPU time reported in Nowak et al. as the scaled time.
In the equal time approach, we use as much CPU time as reported in Nowak
et al. without any scaling. In Tables 2-4, the first three columns describe the
problem characteristics (Location Set and Load Size Set) based on Nowak et
al. and the length of the route obtained with their algorithm. The fourth and
fifth columns respectively show the length of the route and percentage im-
provement over Nowak et al.’s solution using the scaled time approach. The
sixth and seventh columns show the same results when the CPU time is not
scaled.

According to computational experiments reported in Tables 2-4, we obtain the
following results:

• For the problem set with 75 requests,
· in scaled time (12.75 minutes), we have improved the route length of 9

problems (out of 15) and the average improvement is 2.10% while we are
only 0.90% away from the best known solution in the worst case;
· in equal time (25.50 minutes), we have improved the route length of 13

problems and the average improvement is 2.48 %.
• For the problem set with 100 requests,

19

Problem (Nowak et al.) Scaled Time Equal Time

Location Load Size Route Length Route Length Imp. (%) Route Length Imp. (%)

1 1 3830.123 3840.602 -0.27 3840.602 -0.27

1 2 3857.117 3859.936 -0.07 3828.613 0.74

1 3 3810.502 3831.256 -0.54 3809.375 0.03

1 4 3799.324 3833.559 -0.90 3833.559 -0.90

1 5 3868.957 3887.298 -0.47 3855.453 0.35

2 1 3313.483 3171.766 4.28 3171.766 4.28

2 2 3296.364 3162.015 4.08 3144.403 4.61

2 3 3203.245 3210.825 -0.24 3199.044 0.13

2 4 3266.417 3180.605 2.63 3180.605 2.63

2 5 3332.589 3188.812 4.31 3146.602 5.58

3 1 4058.369 3990.376 1.68 3954.308 2.56

3 2 4172.418 3926.42 5.90 3926.42 5.90

3 3 4090.647 3934.566 3.82 3934.566 3.82

3 4 4110.389 3936.68 4.23 3936.68 4.23

3 5 4052.233 3925.661 3.12 3908.682 3.54

9 2.10 13 2.48

Table 2
Results for the single vehicle problems with 75 requests from Nowak et al. [9].

Problem (Nowak et al.) Scaled Time Equal Time

Location Load Size Route Length Route Length Imp. (%) Route Length Imp. (%)

1 1 5073.395 5016.763 1.12 5014.602 1.16

1 2 5036.547 5077.608 -0.82 5077.608 -0.82

1 3 5029.381 5033.059 -0.07 5024.470 0.10

1 4 5012.974 4965.867 0.94 4965.867 0.94

1 5 5130.154 5022.422 2.10 5022.422 2.10

2 1 4450.058 4249.250 4.51 4216.749 5.24

2 2 4484.466 4302.366 4.06 4302.366 4.06

2 3 4473.387 4292.695 4.04 4268.062 4.59

2 4 4424.569 4283.759 3.18 4259.868 3.72

2 5 4559.259 4272.694 6.29 4247.892 6.83

3 1 5294.367 5029.347 5.01 5029.347 5.01

3 2 5371.740 5158.324 3.97 5127.881 4.54

3 3 5216.797 5149.056 1.30 5115.153 1.95

3 4 5467.788 5132.782 6.13 5132.782 6.13

3 5 5572.472 5141.317 7.74 5097.744 8.52

13 3.30 14 3.60

Table 3
Results for the single vehicle problems with 100 requests from Nowak et al. [9].

· in scaled time (25.60 minutes), we have improved the route length of 13
problems (out of 15) and the average improvement is 3.30% while we are
only 0.82% away from the best known solution in the worst case;

20

Problem (Nowak et al.) Scaled Time Equal Time

Location Load Size Route Length Route Length Imp. (%) Route Length Imp. (%)

1 1 6020.046 5924.608 1.59 5924.608 1.59

1 2 5938.943 6020.369 -1.37 6008.256 -1.17

1 3 5977.69 5929.926 0.80 5929.926 0.80

1 4 6138.936 6022.086 1.90 6017.348 1.98

1 5 6024.26 6028.898 -0.08 5996.25 0.46

2 1 5717.536 5452.732 4.63 5410.327 5.37

2 2 5745.378 5494.878 4.36 5470.25 4.79

2 3 5667.263 5456.303 3.72 5456.303 3.72

2 4 5778.58 5428.613 6.06 5409.127 6.39

2 5 5780.014 5471.003 5.35 5430.16 6.05

3 1 6934.046 6322.772 8.82 6272.689 9.54

3 2 6918.162 6318.539 8.67 6318.539 8.67

3 3 6607.296 6330.95 4.18 6330.95 4.18

3 4 7239.787 6412.622 11.43 6404.65 11.54

3 5 6776.373 6320.865 6.72 6320.865 6.72

13 4.45 14 4.71

Table 4
Results for the single vehicle problems with 125 requests from Nowak et al. [9].

· in equal time (56.20 minutes), we have improved the route length of 14
problems and the average improvement is 3.60 %.

• For the problem set with 125 requests,
· in scaled time (47.95 minutes), we have improved the route length of 13

problems (out of 15) and the average improvement is 4.45% while we are
1.37% away from the best known solution in the worst case;
· in equal time (95.90 minutes), we have improved the route length of 14

problems and the average improvement is 4.71%.

These results indicate that we have improved most of the route lengths re-
ported in Nowak et al. [9] even with an algorithm which is not tailored for
the single vehicle version. Therefore, our algorithm can be considered as an
efficient and effective algorithm for solving not only the multiple vehicle but
also the single vehicle problems as well.

4 Concluding Remarks

In this study, we present an efficient heuristic for MPDPSL. To the best of
our knowledge, this is the first algorithm in the literature for the multi-vehicle
version of the problem. Due to the many possible ways of splitting a load
among vehicle routes, search neighborhoods for MPDSL are of high computa-

21

tional complexity. In our heuristic, we employ a binary heap implementation
to search the neighborhood efficiently and avoid excessive computation times.
Moreover, we combine powerful features of Tabu Search and Simulated An-
nealing to obtain an algorithm that exhibits both intensification and diversi-
fication capabilities.

This work also presents two sets of test problems that are obtained by mod-
ifications to test instances for similar problems in the literature. Results on
these problems can serve as benchmark for future research on MPDPSL. Since
no computational results are available on MPDPSL, we compare the solution
quality of our heuristic with Nowak et al’s [9] results on the single vehicle
version. Even though the heuristic is not designed for this version, we demon-
strate that it is capable of producing comparable and mostly higher quality
solutions in comparable time. In the absence of any benchmark results on the
second problem set derived from the Ropke and Pisinger [12] instances, we
present the first results and explore the benefit of split loads on this new set
which have different characteristics than the first one. We observe that load
splitting provides significant benefits on these instances as well, however the
benefits are relatively small compared to the first problem set. We attribute
the difference to the spatial distribution of the pickup and delivery points in
the two problem sets. Based on our observations on the two problem sets, we
conclude that both load size range and spatial distribution of the pickup and
delivery points are important factors in the magnitude of benefit that can be
obtained from split loads.

Our study expands the findings of Nowak et al. on the benefit of split loads
to the multiple vehicle version of the problem. We hope that these results
draw attention to the potential savings that can be achieved by allowing load
splits in many application areas of PDP. While the proposed heuristic offers
promising results, it is still worthwhile to explore exact solution approaches for
the solution of MPDPSL. Experience from earlier work on similar problems
suggest that exact approaches will be limited to produce optimal solutions for
only very small size problems. Still, these solutions can serve as benchmark
results to evaluate the performance of heuristics. Moreover, ideas from ex-
act solution approaches can be utilized to build effective heuristics and lower
bounds for the same problem. This is an avenue of research that we hope to
pursue in the future.

Acknowledgements

This research has been supported by The Scientific and Technological Research
Council of Turkey (TUBITAK) under Grant 109M139.

22

References

[1] C. Archetti, M. W. P Savelsbergh, and M. F. Speranza. To split or not to split:
That is the question. Transportation Research Part E, 44:114–123, 2008.

[2] C. Archetti and M. G. Speranza. The split delivery vehicle routing problem:
A survey. In Ramesh Sharda, Stefan Voß, Bruce Golden, S. Raghavan, and
Edward Wasil, editors, The Vehicle Routing Problem: Latest Advances and New
Challenges, volume 43 of Operations Research/Computer Science Interfaces
Series, pages 103–122. Springer US, 2008.

[3] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4):568–581, 1964.

[4] J-F. Cordeau, G. Laporte, and S. Ropke. Recent models and algorithms
for one-to-one pickup and delivery problems. In Ramesh Sharda, Stefan
Voß, Bruce Golden, S. Raghavan, and Edward Wasil, editors, The Vehicle
Routing Problem: Latest Advances and New Challenges, volume 43 of Operations
Research/Computer Science Interfaces Series, pages 327–357. Springer US,
2008.

[5] J. J. Dongarra. Performance of various computers using standard linear
equations software, (linpack benchmark report). University of Tennessee
Computer Science Technical Report, 2010.

[6] M. Dror and P. Trudeau. Savings by split delivery routing. Transportation
Science, 23(2):141–145, 1989.

[7] I. Gribkovskaia and G. Laporte. One-to-many-to-one single vehicle pickup and
delivery problems. In Ramesh Sharda, Stefan VoSS, Bruce Golden, S. Raghavan,
and Edward Wasil, editors, The Vehicle Routing Problem: Latest Advances
and New Challenges, volume 43 of Operations Research/Computer Science
Interfaces Series, pages 359–377. Springer US, 2008.

[8] H. Li and A. Lim. Local search with annealing-like restarts to solve the
VRPTW. European Journal of Operational Research, 150(1):115–127, 2003.

[9] M. Nowak, O. Ergun, and C. C. White III. Pickup and delivery with split loads.
Transportation Science, 42(1):32–43, 2008.

[10] M. Nowak, O. Ergun, and C. C. White III. An empirical study on the benefit
of split loads with the pickup and delivery problem. European Journal of
Operational Research, 198(3):734–740, 2009.

[11] I. H. Osman. Heuristics for the generalised assignment problem: simulated
annealing and tabu search approaches. OR Spectrum, 17:211–225, 1995.
10.1007/BF01720977.

[12] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science,
40:455–472, November 2006.

23

[13] S. R. Thangiah, I. H. Osman, and T. Sun. Hybrid genetic algorithm simulated
annealing and tabu search methods for vehicle routing problem with time
windows. Technical Report 27, Computer Science Department, Slippery Rock
University, 1994.

24

Appendices

A Algorithm Description and Computational Complexity Analysis

A.1 Notation

A pair (p, d) consists of a pickup stop and the corresponding delivery stop
with indices p and d. The (possibly partial) load quantity of pair (p, d) is qp.
s(p, d) denotes the saving obtained by removing the pair (p, d) from its current
route. A solution S = {R1, R2, . . . , R|S|} is a collection of routes R that consist
of pickup and delivery stops. Also, R(p,d) denotes the route of (p, d). c(R)
denotes the cost of route R and c(S) denote the cost of the solution S. The
tuple <`p1,`d1>− <`p2,`d2> denotes the positions for splitting the pair (p, d)
such that the pickup stops of the first and second splits are inserted after
`p1 and `p2 and similarly, the delivery stops of the first and second splits are
inserted after `d1 and `d2. If the pair (p, d) is inserted rather than split, then
the pickup stop is inserted after `p1, the delivery stop is inserted after `d1 and
<̀ p2,`d2> = ∅. c(<̀ p,`d>) is the cost of inserting p and q after the position `p

and `d, respectively. Note that by triangular inequality, s(p, d) and c(<̀ p,`d>)
are always nonnegative. Finally, r(<̀ p,`d>) is the residual vehicle capacity for
inserting p and d after position `p and `d, respectively.

A.2 Insert/Split Phase

The detailed pseudo code for selecting a candidate move for a given pair (p, d)is
provided in Algorithm 3. Note that minInsert(T) is a function that returns
the best insert position <̀ p,`d> where the entire load qp can be inserted and
function minSplit(T) returns the best two split positions <̀ p1,`d1>− <̀ p2,`d2>
where load qp can be served in two partial shipments on the list T . The time
complexity proofs for worst and best cases of this phase are as follows.

Proposition 1 The worst case running time of the Insert & Split Phase is
in O(n5) and the best case running time is in Ω(n3).

Proof.
Worst Case Analysis. Since there are n pairs, the upper bound on the
number of stops is 2nk, where k denotes the maximum number of splits allowed
for one pair. Between lines 9-15 of Algorithm 3, we check for all possible
positions <̀ p,`d> such that `p comes before `d, which takes exactly,

25

Algorithm 3 Insert/Split

1: Input: S, (p, d), P r //S: Solution, (p,d): Selected pair
2: Output: <̀ p1,`d1>− <̀ p2,`d2> //Best position for insert or split
3: H ← makeHeap() //H: Binary heap of <̀ p,`d> with key c(<̀ p,`d>)
4: T ← ∅ //T: An array of <̀ p,`d>
5: SimList← ∅ //SimList: An array of <̀ p1,`d1>− <̀ p2,`d2>
6: ChosenInsert← ∅ //Initialize best insert position
7: ChosenSplit← ∅ //Initialize best split positions
8: isMoveChosen← false
9: for all Ri ∈ S do

10: for all r(<̀ p,`d>) > 0 ∈ Ri do
11: if c(<̀ p,`d>) + c(Ri) ≤ D then
12: insert(H, <̀ p,`d>)
13: end if
14: end for
15: end for
16: while H 6= ∅ or |SimList| ≤ Nmove do
17: if r(minimum(H)) ≥ qp and <̀ p,`d> is not TABU then
18: SimList← SimList ∪ extractMin(H)
19: else
20: for all <̀ p,`d> ∈ T do
21: if r(minimum(H))+ r(<̀ p,`d>) ≥ qp and minimum(H)− <̀ p,`d>

is not TABU and c(minSplit(SimList)) > c(minimum(H)) +
c(<̀ p,`d>) then

22: SimList← SimList ∪ (minimum(H)− <̀ p,`d>)
23: end if
24: end for
25: insert(T, extractMin(H))
26: end if
27: end while
28: temp← CalculateTemperature(Pr)
29: ChosenInsert← minInsert(SimList)
30: ChosenSplit← minSplit(SimList)
31: while isMoveChosen = false do
32: Extract a <̀ p1,`d1>− <̀ p2,`d2> randomly from SimList
33: prob← generateProbability() //Generate a number ∈ (0, 1)
34: if prob ≤ e−∆C/temp then
35: if <̀ p1,`d1>− <̀ p2,`d2>is split then
36: ChosenSplit←<̀ p1,`d1>− <̀ p2,`d2>
37: else
38: ChosenInsert←<̀ p1,`d1>− <̀ p2,`d2>
39: end if
40: isMoveChosen = true
41: end if
42: end while
43: return arg min (c(ChosenInsert), c(ChosenSplit))26

|Ri|+ (|Ri| − 1) + . . .+ 1 =
|Ri|(|Ri|+ 1)

2
∀Ri ∈ S

operations for one route. Since one operation is in O(1), for one route it is in
Θ(|Ri|2). For a particular solution S, i.e. ∀Ri ∈ S, it takes

∑
Ri∈S

Θ(|Ri|2)

which is in O(n2), since

∑
Ri∈S
|Ri| ≤ 2nk and

∑
Ri∈S
|Ri|2 ≤

 ∑
Ri∈S
|Ri|

2

≤ (2nk)2

In the worst case, for each loop between 10-14, we insert an element to the
Binary Heap created at the beginning of the every iteration. Since inserting an
element to a heap is in O(log |H|), the entire loop takes up to O(n2 log n2) =
O(n22 log n) = O(n2 log n).

The loop between 16-27 continues until the heap is empty. Since the size of the
heap is in O(n2) and there is an inner loop between 20-24 that compares each
element in the array T with the current minimum(H), during the entire loop,
O(n2+(n2−1)+. . .+1) = O(n4) comparisons are made. Each comparison takes
O(1) and minimum(H) also takes O(1). Also, there is an extractMin(H)
operation at each iteration, which takes O(log |H|). Therefore, the entire loop
takes up to O(n2 log n2 + n4) = O(n4). However, this is only for one selected
pair (p,d), since there are O(n) pairs to be considered, the worst case running
time of the Insert/Split Phase is in O(n)(O(n2 log n) +O(n4)) = O(n5).

Best Case Analysis. For the loop between 9-15, we still have to examine
O(n2) positions <̀ p,`d>, however, due to the distance and capacity constraints,
there might not be O(n2) elements in the heap. In fact, it is possible that there
is only one element in the heap, which makes the loop between 16-27 run in
Ω(1). Again, there are O(n) pairs to consider, so, in the best case, the running
time of the Insert/Split Phase is in O(n)Ω(n2) = Ω(n3).

Even though we have a worst case running time ofO(n5), computational exper-
iments showed that on average, there are O(n) elements in the heap, which
makes the average running time of the phase O(n)(O(n2 log n) + O(n2)) =
O(n3 log n).

27

B Results of Ropke Problem Instances

Load Range 0.25-1 0.51-0.60

Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 17621.58 15677.49 15695.30 0.11 17379.03 16729.01 16676.01 -0.32

B 18404.11 16069.38 16082.02 0.08 17402.16 16331.27 16864.73 3.16

C 15707.79 14219.00 14264.23 0.32 15510.45 15187.87 14905.13 -1.90

D 16779.31 15014.44 15121.69 0.71 16662.84 15879.59 16139.55 1.61

E 12047.49 10673.44 11025.65 3.19 12004.37 10018.12 12101.74 17.22

F 12463.43 9300.00 9886.72 5.93 10238.10 8574.31 10586.80 19.01

G 10814.60 9733.02 9767.69 0.35 13060.61 9635.78 10683.87 9.81

H 9215.83 8269.58 8250.69 -0.23 9314.01 9197.99 9186.60 -0.12

I 15875.92 13068.48 13154.92 0.66 14968.59 14612.21 14551.36 -0.42

J 14671.55 12830.79 12626.18 -1.62 14349.02 13416.36 13165.43 -1.91

K 14411.39 12501.61 12429.17 -0.58 14301.42 13164.66 12942.81 -1.71

L 15560.98 13595.82 13542.14 -0.40 16399.50 14679.65 14680.40 0.01

Average 0.71 3.70

Table B.1
Results of the problems in Ropke and Pisinger [12] with 50 nodes comparing the
tour length of split solutions versus no-split solutions.

Load Range 0.25-1 0.51-0.60

Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 31003.41 25831.58 25383.32 -1.77 29543.02 27242.04 27857.50 2.21

B 31383.95 24758.19 25371.87 2.42 28386.51 25947.79 28233.49 8.10

C 31959.82 25448.51 25603.29 0.60 29235.65 26984.26 27521.78 1.95

D 31939.37 27748.51 27893.86 0.52 31403.10 29055.41 29605.19 1.86

E 18055.41 15767.00 16083.98 1.97 18563.96 15814.11 17502.66 9.65

F 19714.36 15276.41 15359.55 0.54 18129.46 15804.52 18005.28 12.22

G 19964.11 14453.83 14795.43 2.31 22121.55 18443.08 17692.47 -4.24

H 21055.13 16226.10 16970.18 4.38 18559.40 15644.92 18985.21 17.59

I 28674.25 24547.88 24747.82 0.81 29114.47 24957.27 27098.02 7.90

J 25719.10 22324.67 22376.54 0.23 25452.34 23496.20 23148.95 -1.50

K 31055.48 22755.02 22797.16 0.18 32118.90 26515.08 26074.91 -1.69

L 26584.23 21157.30 21440.29 1.32 24778.18 23917.45 24060.70 0.60

Average 1.13 4.55

Table B.2
Results of the problems in Ropke and Pisinger [12] with 100 nodes comparing the
tour length of split solutions versus no-split solutions.

28

Load Range 0.25-1 0.51-0.60

Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 68806.59 57198.89 57772.20 0.99 64657.44 58093.91 63970.44 9.19

B 65680.36 54902.64 55382.50 0.87 63230.91 56972.61 62538.64 8.90

C 66912.80 56401.98 56881.15 0.84 63353.50 56478.37 62569.26 9.73

D 66896.49 57699.49 58485.03 1.34 64698.62 58549.06 64391.78 9.07

E 41316.27 29873.35 30198.33 1.08 37890.81 30984.94 37486.16 17.34

F 36325.18 28862.15 29818.50 3.21 33552.50 27048.29 33143.07 18.39

G 38698.26 29535.93 30311.05 2.56 34876.53 28954.03 34393.67 15.82

H 38990.89 30016.04 30897.73 2.85 36151.47 31500.77 35678.94 11.71

I 62167.25 50238.13 50891.55 1.28 57721.25 49509.76 56599.69 12.53

J 67448.83 53845.75 54581.37 1.35 61133.19 52787.53 60428.53 12.64

K 62832.43 50405.45 51304.41 1.75 57895.87 49065.95 56931.24 13.82

L 67103.88 53191.29 53935.14 1.38 63662.70 52949.00 62274.19 14.97

Average 1.63 12.84

Table B.3
Results of the problems in Ropke and Pisinger [12] with 250 nodes comparing the
tour length of split solutions versus no-split solutions.

Load Range 0.25-1 0.51-0.60

Instance Initial Split No-split Imp. (%) Initial Split No-split Imp. (%)

A 122227.20 107061.00 108668.60 1.48 117079.50 111145.10 116659.90 4.73

B 130599.30 113899.70 115462.70 1.35 124167.50 114929.60 123334.90 6.82

C 130002.80 109031.70 110876.10 1.66 120185.00 111553.50 119672.30 6.78

D 131867.20 111276.30 113370.10 1.85 121301.50 112057.30 120479.70 6.99

E 90946.61 66438.42 69280.32 4.10 82358.28 65019.84 81870.98 20.58

F 97917.73 72015.02 75270.35 4.32 90732.82 70727.76 89827.22 21.26

G 99146.69 72373.64 75801.21 4.52 91885.86 71640.62 91383.87 21.60

H 82228.20 62231.76 65090.16 4.39 76734.43 63446.30 76285.07 16.83

I 115321.50 93708.45 96401.48 2.79 108328.90 94601.00 107356.60 11.88

J 123209.50 101224.90 102132.50 0.89 113252.10 99481.13 112167.70 11.31

K 121653.40 102869.20 104487.50 1.55 114033.40 100438.30 113421.30 11.45

L 120380.00 100849.10 103687.70 2.74 115473.00 101723.70 114501.20 11.16

Average 2.64 12.62

Table B.4
Results of the problems in Ropke and Pisinger [12] with 500 nodes comparing the
tour length of split solutions versus no-split solutions.

29

	Introduction
	MPDPSL Heuristic
	Initial Solution Heuristic
	Insert/Split Phase
	Intra-Route Phase
	Block Insert Phase
	Block Swap Phase

	Computational Results
	Parameter Tuning for TESA Algorithm
	Computational Results on Test Problems

	Concluding Remarks
	References
	Appendices
	Algorithm Description and Computational Complexity Analysis
	Notation
	Insert/Split Phase

	Results of Ropke Problem Instances

