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Abstract: We address the Clarke and Wright (CW) savings algorithm proposed for the 

Capacitated Vehicle Routing Problem (CVRP). We first consider a recent enhancement which 

uses the put first larger items idea originally proposed for the bin packing problem and show 

that the conflicting idea of putting smaller items first has a comparable performance. Next, we 

propose a robust enhancement to the CW savings formulation. The proposed formulation is 

normalized to efficiently solve different problems, independent from the measurement units 

and parameter intervals. To test the performance of the proposed savings function, we conduct 

an extensive computational study on a large set of well-known instances from the literature. 

Our results show that the proposed savings function provides shorter distances in the majority 

of the instances and the average performance is significantly better than previously presented 

enhancements. 
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1. Introduction  

The capacitated vehicle routing problem (CVRP) is a well-known NP-hard problem 

introduced first by Dantzig and Ramser (1959). It has attracted a lot of attention since then 

because of its applicability to many practical settings and various variants have been proposed 

for different environments, such as VRP with time-windows, VRP with pick-up and delivery, 

stochastic VRP, etc. (Toth and Vigo, 2002). Since the exact algorithms proposed for solving 

CVRP are not practical for large instances significant research efforts have been spent on 

heuristic methods to find good quality solutions fast. An extensive study about the classical 

heuristics proposed in the literature can be found in Laporte and Semet (2001). 

Among these heuristics, the well-known Clarke and Wright (1964) (CW) algorithm is 

one of the earliest and most widely used heuristics due to its speed, simplicity, and ease of 

adjustment to handle various constraints in real-life applications. It is based on the feasible 
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merging of sub-tours using a savings criterion, which refers to the cost saving achieved by 

combining two routes and using one vehicle rather than two. Several enhancements of the CW 

algorithm have been proposed in the literature by parameterizing the savings formula and 

adding new terms to it. The first was introduced by Gaskell (1967) and Yellow (1979) who 

parameterized the CW savings formula with the aim of expanding the exploration ability of 

the algorithm. Paessens (1988) added a second term to Gaskell’s and Yellow’s formula in an 

attempt to collect more information about the distribution of the customers. In a recent paper, 

Altınel and Öncan (2005) introduced a third term and combined the distance and customer 

demand information in the savings function.  

This paper is motivated by the works of Paessens (1988) and Altınel and Öncan 

(2005). We first address the “put first larger items” idea of Altınel and Öncan and present two 

modified savings functions to show that the conflicting idea of putting first smaller items has 

a comparable performance. Next, we propose a new and robust enhancement to improve the 

performance of Paessens’ and Altınel and Öncan’s savings heuristics. The remainder of this 

paper is organized as follows: Section 2 provides a brief overview of the recent enhancements 

of the CW algorithm. In Section 3, we present two modified savings functions utilizing the 

conflicting “put first smaller items” idea and test their performance. In Section 4 we propose 

an enhanced three-parameter savings function as a robust alternative to Altınel and Öncan’s 

formulation. Section 5 provides the experimental analysis comparing our saving function to 

that of Paessens’ and Altınel and Öncan’s using the well-known benchmark instances from 

the literature. Finally, we provide our concluding remarks in the last section.  

2. Overview of the recent enhancement of Clarke-Wright savings heuristics 

Two versions of the CW algorithm are proposed in the literature: parallel and sequential. The 

best feasible merges of sub-tours are performed in the parallel approach whereas the route 

extension is considered in the sequential approach. As pointed out in Laporte and Semet 

(2001) the parallel version dominates the sequential savings method. Since the CW algorithm 

is a well-known algorithm in the literature we refer the reader to Laporte and Semet (2001) 

and Altınel and Öncan (2005) for further details. The CW savings function is the following: 

��� � ���� 	 ��� 	 ��� 	 ��0�� ���� 	 ��
 	 ��0� � ��� 	 ��� � ��� (1) 

where ci0 is the distance of customer i to the depot, c0j is the distance of the depot to customer 

j, and cij is the distance between customers i and j. 

The CW algorithm is eager to construct good quality routes at the early stages. In the 

case when the distances of customers i and j to the depot are long whereas the distance 
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between them is short the corresponding savings value will be large, placing it at the top of 

the savings list. In other words, the outermost customers (i.e. customers with shorter distance 

between relative to their distances to the depot) are forced to be placed in the same route at 

the early stages. Eventually, the algorithm constructs circular shaped routes beginning from 

the outermost customers and proceeds towards the inner customers. Having noticed this 

weakness of CW method, which prevents the merging of possible less expensive routes, 

Gaskell (1967) and Yellow (1979) parameterized the savings formulation as follows: 

��� � ���� 	 ��� � ����� (2) 

Their motivation in using the positive parameter λ is to avoid circumferenced formation of 

routes that are usually produced by the original CW algorithm.  In other words, this parameter 

helps to reshape the routes by taking only non-negative values in order to find better quality 

solutions.  

Paessens (1988) introduced a second term to the Gaskell’s and Yellow’s formula in an 

attempt to collect more information about the distribution. The proposed savings function is 

the following: 

��� � ���� 	 ��� � ����� 	 ������ � ����� (3) 

where µ in the second term is a positive constant. The inclusion of the new term in (3) may 

exploit the asymmetry information between customers i and j regarding their distances to the 

depot. Nevertheless, this information adds an unfair savings to the certain customer pairs in 

many cases, a customer very close to the depot and another one very distant from the depot as 

such. 

Recently, Altınel and Öncan (2005) proposed an enhancement to Paessens’ formula 

by introducing a third term which considers the demands of customer pairs and the overall 

average demand. Inspired from the first fit decrease idea of Martello and Toth (1990) 

originally used for the bin packing problem (BPP) they adopt a put first larger items approach 

which gives priority to the customers with large demands. The new formula is as follows: 

��� � ���� 	 ��� � ����� 	 ������ � ����� 	 �� �� 	 ��
�� � (4) 

In the last (third) term, di (dj) denotes the demand of customer i (j), d  is the average demand, 

and v is the new non-negative parameter. The third term in this function gives a placement 

priority to customers with larger demands, which are normalized with the average demand. 
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In the next section, we present two modified savings functions based on the 

conflicting idea of putting first smaller items and test their performance.  

3. Proposed modifications to Altınel and Öncan’s savings function 

In our first modification, we penalize the customers with larger demands by subtracting the 

last term. This penalty-based formulation aims at promoting the customers with smaller 

demands by penalizing the customer pairs with larger demands more than the customer pairs 

with smaller demands. The formulation is as follows: 

��� � ���� 	 ��� � ����� 	 ������ � ����� � �� �� 	 ��
�� � (5) 

In our second modification, we give placement priority to customers with smaller 

demands by using the ratio of the average demand to the sum of the demands of customer i 

and customer j instead of using the ratio of the sum of demands of customer i and customer j 

to the average demand in (4). In other words, in the last term we use the inverse of the 

demand information of Altınel and Öncan’s function parameterized with the same v value. 

The formulation is as follows: 

��� � ���� 	 ��� � ����� 	 ������ � ����� 	 �� ��
�� 	 ��� (6) 

To test the performance of the proposed two modified savings functions we repeat the 

computational study of Altınel and Öncan (2005) using the same parameter setting: λ, µ, and 

v, respectively, are adjusted  in the intervals [0.1, 2],  [0, 2],  and  [0, 2], respectively,  with an  

increment of 0.1. The parallel version of the savings algorithm is implemented. The code is 

written in C++. The test instances include Augerat’s (1995) data sets A, B, and P, Christofides 

and Eilon’s (1969) data set, and Christofides et al.’s (1979)  test set C.  All of the data sets are 

available at http://neo.lcc.uma.es/radi-aeb/WebVRP. In all instances, distances and customer 

demands are integer numbers. The number of customers varies between 15 and 199. 

*** INSERT TABLE 1 ABOUT HERE *** 

The results are summarized in Table 1. The instances are identified in the first column: 

Aug, ChrEil, and Chr denote the test sets of Augerat et al., Christofides and Eilon, and 

Christofides et al., respectively. NEG and INV refer to the results obtained using the savings 

functions (5) and (6), respectively, and AÖ denotes the results found by using Altınel and 

Öncan’s savings function (4). “# of Prob” column shows the number of problem instances and 
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“Avg %Dev” column gives the average deviation of distances in NEG and INV from AÖ and 

is calculated as (NEG/AÖ – 1) and (INV/AÖ – 1), respectively. Note that a negative deviation 

indicates that NEG (INV) finds a shorter distance than AÖ. “# better” column reports the 

number of instances in which NEG (INV) finds shorter distance than AÖ and “# better or 

equal” column reports the number of instances in which NEG (INV) finds shorter distance 

than or same distance as AÖ. 

The results show that INV gives a better average distance than AÖ in one problem set 

(Aug B) whereas NEG outperforms AÖ in three problem sets (Aug B, Aug P, and ChrEil). 

The average deviation values do not reveal any significant difference in employing either 

approach. If we make a comparison on the number of instances NEG and INV perform better 

than AÖ, we see that NEG gives the best distance in 44% of the problems while AÖ performs 

better in 42% and INV provides the best distance in 36% of the problems while AÖ finds the 

best distance in 34%. The performance of NEG is significantly better than AÖ in Aug B (48% 

vs. 39%), Aug P (46% vs. 17%), and ChrEil (50% vs. 25%). We also observe that NEG and 

INV perform better than or as good as AÖ in 66% and 58% of the test instances, respectively. 

These results indicate that both NEG and INV have a comparable performance to that of AÖ 

and NEG performs slightly better than INV.  

4. New enhancement on the three-parameter savings function 

These results in Section 3 confirm that the idea of putting smaller items first works as well as 

putting first larger items idea and even better in some instances, particularly in the case of 

savings function (6). Therefore, an approach that gives a higher placement priority to 

customers with large demands or small demands together may, in fact, provide improved 

solution quality.  

Furthermore, the above mentioned effect of the unfair contribution of the second term 

in Paessens’ function may be weakened by utilizing the cosine value of the polar coordinate 

angles of the customers with the depot as a coefficient (Doyuran and Çatay, 2008). The idea is 

similar to that of the well-known sweep algorithm (Wren and Holiday, 1972). This coefficient 

provides positive savings value to the customer pairs when this angle is acute. This positive 

contribution increases as the angle gets more acute, implying that the customers are closer in 

the polar coordinate. On the other hand, if the angle between the customers is greater than 90 

degrees, the new term has a negative contribution to the savings of this particular customer 

pair, since the cosine value of the angle is negative. Thus, as the angle gets more obtuse, the 

effect of this negative contribution increases due to decreasing negative cosine value. This 
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new approach basically ensures the customers to be placed in the same route if they are 

radially close to each other.  

*** INSERT FIGURE 1 ABOUT HERE *** 

Fig. 1 illustrates the effect of multiplying the second term of Paessens’ savings 

function (3) by the cosine value of the angle formed by the two rays originating from the 

depot and crossing the customers i and j. Fig. 1(a) shows the two routes obtained by applying 

the classical CW algorithm to an instance of 22 customers. The depot is denoted as 0. The 

classical CW algorithm provides a total distance of 324.87. Fig. 1(b) depicts the solution 

given by the sweep algorithm. It corresponds to a total distance of 358.45. The result of the 

angle-based approach is illustrated in Fig. 1(c). Total distance of 298.87 is obtained by setting 

λ=µ=1. Note that we selected these parameter values for simplicity and a better solution may 

be obtained by tuning the parameters. We observe that the classical CW algorithm forms 

routes that are more circumferenced since the savings are high at the top of savings list due to 

smaller distances between customers relative to their distance to the depot. This deficiency of 

the classical CW limits the shape of the routes to be constructed and restricts the exploration 

ability of the algorithm leading relatively high cost. On the other hand, the sweep algorithm 

takes into account only the polar angles of the customers with the depot. This algorithm 

ignores the distances between the customers and the distance of the customers to the depot. 

Consequently, the total routing cost becomes highest due to lack of information used. The 

proposed approach, however, takes advantage of the information used in both the sweep and 

CW heuristics and provides the shortest distance. Fig. 1(c) shows how the routes are reshaped 

and their circumferenced characteristics disappear by integrating the cosine value. 

The second term of the proposed savings function includes the absolute value of the 

difference between the maximum distance among all customer pairs and the average of the 

distances between customers i and j and the depot as well as the cosine of the angle associated 

with customers  i and j. The adjusting parameter µ is preserved. Our motivation is to give an 

early placement priority to the customers located near the depot. Keeping the customer pairs 

in the vicinity of the depot together may enable a vehicle to visit more customers before the 

route ends at the depot. The last term is demand-based as it is the case in Altınel and Öncan; 

however, the underlying idea is quite different: parameter v is allowed to take both positive 

and negative values (after having observed the performance of NEG in Section 3). As far as 

the positive values are concerned, the saving value increases as the average demand of a 

customer pair diverges from the overall average. In other words, two customers both having 
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low or high demands are rewarded the most and ranked closer in the saving list. The proposed 

formulation is as follows: 

��� � ���� 	 ��� � �������� � 	 �� ����������� � ���� � ���� 2⁄ �
���� � 	 �� ��� � ��� 	 ��� 2⁄ �

���� � (7) 

where θij in the second term is the angle formed by the two rays originating from the depot 

and crossing the customers i and j.  cmax represents the longest distance among all customer 

pairs, and dmax denotes the maximum demand among all customers. Note that cmax is usually 

greater than 0 0( ) / 2i jc c+ , unless the customers are accumulated at one side of the depot, 

which is rarely the case in real world problems. In order to handle such exceptional cases, the 

absolute value of the term is utilized.  

In CVRP, one of the most challenging aspects in using the savings algorithms is the 

losses in capacity utilization. Especially, if a vehicle visits customers with larger demands at 

the beginning of the tour, its remaining capacity cannot be usually utilized by nearby 

customers having lower demands. Following the results in Section 3, the last term in (7) aims 

at increasing the possibility of customers having small demands and large demands to be 

fitted into the same route together and thus, minimizing the capacity losses. On the other 

hand, if v takes negative values, customer pairs having an average demand close to the overall 

average will be penalized the least and the ones with small demands or large demands will be 

penalized most. In this case, the former customer pairs move towards the top of the saving list 

while the latter ones go downwards. However, the idea of keeping customer pairs having 

small demands and large demands close in the saving list is preserved. Keeping the customer 

pairs having smaller and larger demands close near the bottom of the savings list improves the 

capacity utilization particularly towards the end of the route. 

A drawback of the savings function (4) is that the first two terms consist of a distance 

measure whereas the third term is the ratio of demands and is unitless. Thus, if the distance 

measure changes the relative weight of the third term will also change. That is, for instance, if 

the distances are switched from kilometers to meters the same value of v will not work as 

well. Hence, it will need to be readjusted in a new search interval, requiring additional 

computational effort. Therefore, we propose a normalized savings function where the 

distances are divided by the maximum distance and the demands are divided by the maximum 

demand. (7) is a robust formulation independent from the measurement units since all 

distances and demands are represented within a unit measure.  
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In what follows is a detailed experimental analysis to investigate the performance of 

the proposed enhancement on the well-known benchmark instances utilized by Altınel and 

Öncan (2005). 

5. Experimental analysis 

To make a fair comparison, we have conducted our experiments the same way Altınel and 

Öncan did. We adopted the parallel version and used the same number of parameter values. 

Since the search effort is the same we do not report the computation times. The algorithm is 

coded in C++. Note that although the majority of our results match those of Altınel and 

Öncan (2005) in the implementation of their savings function there are certain instances for 

which we find shorter, longer, or the same distances with different parameter values. The 

reason is that some instances are not very sensitive to changing parameter values and two or 

more parameter triplets may provide the same best distance and/or the implementation of the 

algorithm on the computer code in the code may cause this difference. Variability in the 

numerical results reported for different savings heuristics is also pointed out in Laporte et al. 

(2000). For consistency, we compare our distances and the corresponding parameter values 

with those we obtained by our code using Altınel and Öncan’s formula. 

*** INSERT TABLE 2 ABOUT HERE *** 

The data set and the notation are the same as in Section 3. To make an overall 

assessment of the performance of the three methods we report in Table 2 the average 

deviations with respect to different data sets as well as the number of instances in which 

ROBUST performs “better than” and “better than or same as” P and AÖ. Here, ROBUST 

refers to the proposed enhancement whereas P and AÖ are Paessens’ and Altınel and Öncan’s 

algorithms, respectively. The detailed results are given in the Appendix (Tables A1-A6).  

The results in Table 2 show that the average performance of ROBUST is better than 

that of P and AÖ in all of the benchmarked problem sets. The difference is particularly 

significant for Aug P, Chr C and CD test sets: ROBUST outperforms P (AÖ) by 1.32% 

(0.99%), 1.26% (0.56%), and 0.75% (0.59%), respectively. Overall, the average performance 

of ROBUST is 0.75% and 0.42% better than that of P and AÖ, respectively. The results also 

show that ROBUST outperforms P in 73% of the instances and AÖ in 57%. Moreover, 

ROBUST provides “better or equal quality” solutions in 83% and 71% of the problems, 

respectively.  

AÖ gives placement priority to the customers with high demands. At the early phase 

of the route construction, this approach disregards the customers with low demands that can 
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otherwise be fitted into the routes, increasing the capacity utilization of the vehicles. We 

observe that our formulation which attempts to keep customers with similar demands together 

in the savings list extends the exploration ability of the algorithm and is able to find better 

combinations of routes. Furthermore, the second term in P and AÖ emphasizes the 

construction of routes starting from the outermost customers radially distant from the depot. 

However, the idea of early placement priority of the customers near the depot in our approach 

enables these customers to be inserted into the routes as soon as possible. By doing so, the 

algorithm eliminates the additional routes that would be constructed by innermost customers 

close to the depot, and hence may obtain tours with shorter distance. 

To further evaluate the contribution of the ideas implemented through the second and 

third terms in the proposed savings function we investigated the values that the parameters µ 

and v reported in the Appendix take. If the parameter value is zero, then the associated idea 

does not contribute to the solution obtained. The tables in the Appendix indicate that v in 

ROBUST is zero in only 4 out of 96 problems (compared to 27 problems in the case of AÖ). 

Similarly, µ is zero in only 5 problems (compared to 25 problems in the case of AÖ). These 

results reveal that both terms in ROBUST play an integral role in the solution quality. Note 

here that AÖ becomes P when v=0 whereas ROBUST reduces to a new two-term savings 

formulation. In fact, in two instances where v=0 (namely, A-n38-k5and B-n63-k10) this 

two-term reduction of ROBUST still provides the best distance. Finally, we see that in almost 

half of the problems (49 out of 96) the best distance was obtained with a negative v. This 

actually confirms the contribution of our third term and supports the underlying idea behind 

it, as explained in Section 4. 

We also investigated the effect of increasing the computational effort twice by 

extending the interval of parameter v to [-0.2, 0.2]. However, this extended interval has only a 

contribution of 0.14% to the average distance of all benchmark instances. Furthermore, to test 

the sensitivity of Altınel and Öncan’s algorithm to varying measurement units we multiplied 

all distances by 1000 (e.g. converting kilometers to meters) and conducted a computational 

study on a subset of instances. The best solutions were obtained with v=0, as expected. Thus, 

the third term does not have any impact on the algorithm and the savings function, in fact, 

reduces to that of Paessens’ unless a new parameter interval is investigated. Since our savings 

functions consist of normalized terms, the same parameter intervals can still be used and the 

results are not affected by the change in the measurement units. In sum, these results show 

that the proposed savings function with a normalization procedure and newly integrated 

demand idea is robust and capable of providing shorter distances.  
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6. Conclusion 

In this study, we discussed several enhancements proposed for the CW algorithm. One of 

those enhancements is the three-term savings function proposed by Altınel and Öncan’s 

(2005). This paper uses put first larger items idea originally proposed for the BPP. We show 

that an alternative approach which puts smaller items first works as well as the idea of Altınel 

and Öncan. Then, we proposed a robust enhancement to CW savings function. Instead of the 

idea of putting first larger items, our enhancement aims at increasing the possibility of 

customers having small and large demands to be fitted into the same route together and 

reducing capacity losses. In addition, it tries to place the customers near the depot into routes 

first. Furthermore, our algorithm utilizes normalized distance and demand values and is 

independent from the measurement units. Thus, the parameter intervals are robust and do not 

need to be readjusted for different data in different units. The computational study reveals that 

the proposed savings function outperforms that of both Paessens (1988) and Altınel and 

Öncan (2005) in many instances and provide shorter average distance an all of the benchmark 

data sets. The better solution quality is achieved with “negligible” additional computational 

effort in calculating the saving values as compared to Altınel and Öncan’s algorithm.  

Appendix 

Tables A1-A5 consist of only capacity restricted instances whereas the instances in Table A6 

include a unique data set CD of Christofides et al.’s with maximum route length constraint 

(referred to as Chr CD). This data set was not reported in Altınel and Öncan (2005) but we 

prefer to test it to observe the performance of our algorithm when a maximum route length is 

imposed. In all the tables, the instances are represented in the first column and best-known 

results and the results given by classical CW method are included in the second and third 

column, respectively. The results obtained using Paessens’ and Altınel and Öncan’s savings 

function are denoted as P and AÖ, respectively, and reported with the corresponding 

parameter values (λ, µ,) and (λ, µ, v), respectively. ROBUST column shows the results 

obtained using the proposed savings function (7) along with the corresponding parameter 

values as well. Our experiments revealed that the parameter v changing within the interval [-

0.1, 0.1] with an increment of 0.01 works well. The “%Imp” column gives the improvements 

in the distances obtained by P, AÖ, and ROBUST, respectively, in comparison with CW and 

is calculated as (CW-P)/CW, (CW-AÖ)/CW, and (CW-ROBUST)/CW, respectively. 

*** INSERT TABLES A1-A6 ABOUT HERE *** 
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(a) Classical CW algorithm  (b) Sweep algorithm 

 
(c) Angle-based approach 

Figure 1. Comparison of the routes formed by three approaches. (a) Classical CW 
algorithm, (b) Sweep algorithm, (c) Proposed approach 
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Table 1.  Comparison of NEG and INV vs. AÖ 

    NEG vs. AÖ INV vs. AÖ 

Test set 
# of 
Prob 

Avg 
%Dev 

#  
better % 

#  better 
or equal % 

Avg 
%Dev 

#  
better % 

#  better 
or equal % 

Aug (A) 27 0.142 11 40.7 16 59.3 0.214 9 33.3 13 48.1 

Aug (B) 23 -0.015 11 47.8 14 60.9 -0.038 11 47.8 14 60.9 

Aug (P) 24 -0.042 11 45.8 20 83.3 0.192 8 33.3 17 70.8 

ChrEil 8 -0.069 4 50.0 6 75.0 0.030 2 25.0 6 75.0 

Chr (C) 7 0.088 2 28.6 3 42.9 0.410 2 28.6 2 28.6 

All 89 0.021 39 43.8 59 66.3 0.162 32 36.0 52 58.4 
 

 

 

Table 2. Comparison of the proposed approach to that of Paessens (1988) and Altınel and 
Öncan (2005) 

    ROBUST vs. P ROBUST vs. AÖ 

Test set 
# of 
Prob 

Avg 
%Dev 

#  
better % 

#  better 
or equal % 

Avg 
%Dev 

#  
better % 

#  better 
or equal % 

Aug (A) 27 -0.364 19 70.4 20 74.1 -0.075 12 44.4 17 63.0 
Aug (B) 23 -0.439 18 78.3 20 87.0 -0.168 16 69.6 17 73.9 
Aug (P) 24 -1.321 16 66.7 21 87.5 -0.987 16 66.7 21 87.5 
ChrEil 8 -0.383 5 62.5 7 87.5 -0.152 3 37.5 5 62.5 
Chr (C) 7 -1.261 7 100.0 7 100.0 -0.561 3 42.9 3 42.9 
Chr (CD) 7 -0.745 5 71.4 5 71.4 -0.592 5 71.4 5 71.4 

All 96 -0.752 70 72.9 80 83.3 -0.423 55 57.3 68 70.8 
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Table A1. Relative deviations on Augerat et al.’s test set P 

Instance Best CW P λ,µ % Imp AÖ λ,µ,v % Imp ROBUST λ,µ,v % Imp 
P-n16-k8 450 478.77 451.94 2.0,0.5 5.604 451.94 1.8,0.7,1.5 5.604 451.94 0.1,1.6, 0.04 5.604 
P-n19-k2 212 237.89 220.64 0.9,0.5 7.251 220.64 0.9,0.5,0.0 7.251 220.64 0.1,1.3,-0.10 7.251 
P-n20-k2 216 234.00 233.99 0.2,0.7 0.004 232.86 1.2,1.0,1.7 0.487 224.13 0.1,1.4, 0.09 4.218 
P-n21-k2 211 236.19 236.18 0.2,0.7 0.004 231.54 1.4,1.0,2.0 1.969 212.71 0.8,1.4, 0.01 9.941 
P-n22-k2 216 239.50 219.89 1.9,0.7 8.188 219.89 1.8,0.2,0.8 8.188 217.87 0.2,1.5,-0.04 9.031 
P-n22-k8 603 590.62 589.39 0.9,0.0 0.208 589.39 0.9,0.0,0.0 0.208 588.79 0.1,0.9, 0.03 0.310 
P-n23-k8 529 539.48 536.71 1.2,0.0 0.513 536.71 1.4,0.2,1.3 0.513 536.35 0.1,0.8, 0.05 0.580 
P-n40-k5 458 518.37 468.20 1.2,1.0 9.678 468.20 1.1,1.0,0.3 9.678 470.20 0.7,1.4, 0.07 9.293 
P-n45-k5 510 572.95 523.91 1.9,0.7 8.559 522.41 1.5,0.1,0.7 8.821 521.31 1.2,1.3,-0.10 9.013 
P-n50-k10 696 739.84 712.77 1.2,0.1 3.659 712.77 1.2,0.1,0.0 3.659 712.77 0.8,0.4,-0.04 3.659 
P-n50-k7 554 597.03 578.94 1.7,0.4 3.030 577.73 1.7,0.4,1.9 3.233 577.73 0.7,0.8,-0.01 3.233 
P-n50-k8 631 674.34 646.54 1.4,0.2 4.123 646.55 1.2,0.2,0.8 4.121 646.55 0.6,0.7,-0.04 4.121 
P-n51-k10 741 790.97 754.97 1.1,0.3 4.551 754.98 0.9,0.4,0.1 4.550 747.25 0.7,0.6, 0.09 5.527 
P-n55-k10 694 736.45 716.06 1.4,0.3 2.769 715.21 1.2,0.1,1.7 2.884 709.33 1.8,0.8, 0.05 3.683 
P-n55-k15 989 978.07 963.32 1.4,0.5 1.508 963.32 1.6,0.9,0.0 1.508 959.93 0.2,1.2, 0.08 1.855 
P-n55-k7 568 618.68 589.54 1.4,0.1 4.710 587.44 1.4,0.4,1.3 5.049 584.23 1.4,0.1, 0.10 5.568 
P-n55-k8 576 631.67 594.84 1.4,0.5 5.831 588.04 1.3,0.3,1.7 6.907 594.30 1.3,0.1,-0.10 5.916 
P-n60-k10 744 800.20 769.27 1.5,0.5 3.865 768.12 1.7,0.5,0.1 4.009 765.08 0.6,0.8, 0.09 4.389 
P-n60-k15 968 1016.96 1006.94 0.8,0.0 0.985 1002.77 0.9,0.0,0.5 1.395 996.87 0.5,1.2,-0.10 1.975 
P-n70-k10 834 896.86 853.94 0.6,0.4 4.786 853.94 0.6,0.4,0.0 4.786 855.10 0.3,0.4, 0.01 4.656 
P-n76-k4 593 688.34 643.14 1.7,0.8 6.567 641.78 1.9,0.8,0.4 6.764 616.30 1.0,0.8,-0.05 10.466 
P-n76-k5 627 709.38 655.03 2.0,0.7 7.662 652.93 1.6,0.3,0.9 7.958 647.31 0.6,0.9,-0.09 8.750 
P-n65-k10* 792 844.61 829.17 0.3,1.0 1.828 825.92 1.9,0.7,0.7 2.213 815.96 0.3,1.3,-0.04 3.392 
P-n101-k4* 681 765.38 722.83 1.2,0.2 5.559 711.03 0.6,1.0,0.0 7.101 702.04 1.7,0.3,-0.10 8.276 
Average         4.227     4.536     5.446 

* These two instances are not included in Altınel and Öncan (2005). 
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Table A2. Relative deviations on Augerat et al.’s test set A 

Instance Best CW P λ,µ % Imp AÖ λ,µ,v % Imp ROBUST λ,µ,v % Imp 
A-n32-k5 784 843.69 828.70 0.8,0.6 1.777 828.70 0.8,0.6,0.0 1.777 828.70 0.3,0.5, 0.03 1.777 
A-n33-k5 661 712.05 679.72 1.4,0.8 4.540 676.10 2.0,1.0,1.6 5.049 676.10 0.3,0.9,-0.01 5.049 
A-n33-k6 742 776.26 747.32 1.6,0.5 3.728 743.21 1.2,0.0,1.0 4.258 746.99 0.1,1.8,-0.08 3.771 
A-n34-k5 778 810.41 793.05 0.7,0.1 2.142 793.05 0.6,0.3,1.1 2.142 793.05 0.6,0.2,-0.06 2.142 
A-n36-k5 799 828.47 806.78 0.9,0.0 2.618 806.78 0.8,0.0,0.1 2.618 806.78 0.6,0.4,-0.02 2.618 
A-n37-k5 669 707.81 695.08 0.7,0.9 1.799 694.43 1.5,0.3,0.9 1.890 694.44 1.0,0.3,-0.09 1.889 
A-n37-k6 949 976.61 976.01 1.0,0.1 0.061 974.56 1.0,0.0,0.4 0.210 976.61 0.8,0.3,-0.04 0.000 
A-n38-k5 730 768.13 755.94 1.4,0.3 1.587 756.11 1.4,0.3,0.0 1.565 755.94 0.6,0.8, 0.00 1.587 
A-n39-k5 822 901.99 851.25 1.6,0.1 5.625 848.24 1.2,0.2,0.3 5.959 843.23 0.3,1.5, 0.09 6.514 
A-n39-k6 831 863.08 849.55 0.8,0.2 1.568 849.56 0.8,0.2,0.0 1.566 849.90 0.5,0.4,-0.09 1.527 
A-n44-k7 937 976.04 968.84 2.0,0.9 0.738 959.43 1.6,0.4,2.0 1.702 957.03 0.7,0.8,-0.04 1.948 
A-n45-k6 944 1006.45 957.05 1.1,0.1 4.908 957.06 1.0,0.0,1.4 4.907 957.06 1.0,0.1, 0.01 4.907 
A-n45-k7 1146 1199.98 1169.00 1.9,0.9 2.582 1166.39 1.5,0.2,2.0 2.799 1168.97 1.1,0.6, 0.05 2.584 
A-n46-k7 914 939.74 933.66 1.1,0.1 0.647 933.66 1.1,0.1,0.0 0.647 929.42 0.8,0.1, 0.08 1.098 
A-n48-k7 1073 1112.82 1104.23 1.7,0.7 0.772 1104.24 1.7,0.7,0.0 0.771 1103.99 0.7,0.5,-0.04 0.793 
A-n53-k7 1010 1099.45 1045.98 1.5,0.6 4.863 1045.47 0.7,0.0,1.5 4.910 1048.79 0.8,0.2,-0.02 4.608 
A-n54-k7 1167 1197.92 1188.64 1.7,0.9 0.775 1173.77 1.1,0.1,0.9 2.016 1172.27 0.8,0.4,-0.02 2.141 
A-n55-k9 1073 1099.84 1099.55 1.3,0.2 0.026 1098.51 0.9,0.1,1.1 0.121 1099.56 1.1,0.0, 0.06 0.025 
A-n60-k9 1354 1421.88 1389.59 1.6,1.0 2.271 1376.20 1.4,0.0,0.9 3.213 1379.86 0.9,0.8,-0.10 2.955 
A-n61-k9 1034 1102.23 1051.37 1.1,0.0 4.614 1051.10 1.1,0.0,0.1 4.639 1051.06 0.9,0.3, 0.07 4.642 
A-n62-k8 1288 1352.81 1351.11 1.2,0.2 0.126 1347.87 1.0,0.0,0.2 0.365 1326.54 0.7,0.4,-0.01 1.942 
A-n63-k10 1314 1352.48 1349.58 2.0,1.2 0.214 1348.17 1.5,0.4,0.2 0.319 1347.30 1.0,0.1,-0.04 0.383 
A-n64-k9 1401 1486.92 1442.44 1.1,0.5 2.991 1439.75 1.9,0.9,0.1 3.172 1442.66 1.0,0.1, 0.07 2.977 
A-n63-k9 1616 1687.96 1648.92 1.6,0.6 2.313 1649.14 1.6,0.6,0.1 2.300 1652.42 0.3,1.5, 0.04 2.106 
A-n65-k9 1174 1239.42 1224.71 1.0,0.2 1.187 1202.08 0.9,0.1,0.3 3.013 1197.49 0.7,0.4, 0.02 3.383 
A-n69-k9 1159 1210.78 1185.08 1.3,0.0 2.123 1185.08 1.3,0.0,0.0 2.123 1181.91 1.1,0.2,-0.05 2.384 
A-n80-k10 1763 1860.94 1818.64 1.8,0.7 2.273 1816.78 1.8,1.4,1.5 2.373 1811.56 0.6,0.9,-0.03 2.653 

Average         2.180     2.460     2.534 



 16 

 
Table A3. Relative deviations on Augerat et al.’s test set B 

Instance Best CW P λ,µ % Imp AÖ λ,µ,v % Imp ROBUST λ,µ,v % Imp 

B-n31-k5 672 681.16 679.43 0.9,0.0 0.254 677.34 0.9,0.0,0.1 0.561 676.50 0.3,1.0,-0.03 0.684 

B-n34-k5 788 794.33 789.84 1.2,0.0 0.564 789.85 1.2,0.0,0.0 0.564 789.85 1.0,0.3, 0.00 0.564 

B-n35-k5 955 978.33 978.32 0.8,0.2 0.001 975.48 1.1,0.1,1.7 0.291 973.27 0.7,0.9,-0.05 0.517 

B-n38-k6 805 832.09 824.00 1.4,0.4 0.972 824.00 1.4,0.4,0.0 0.972 820.31 0.5,1.0, 0.03 1.416 
B-n39-k5 549 566.71 554.99 1.4,0.3 2.068 555.00 1.4,0.3,0.0 2.066 554.35 1.1,0.0,-0.04 2.181 

B-n41-k6 829 898.09 867.42 0.6,0.5 3.415 867.42 0.6,0.4,0.1 3.415 852.95 0.3,0.3,-0.06 5.026 

B-n43-k6 742 781.96 754.04 1.4,0.6 3.571 754.92 0.9,0.1,0.4 3.458 756.07 0.7,0.3, 0.03 3.311 
B-n44-k7 909 937.74 932.32 1.8,0.8 0.578 934.68 1.9,0.9,1.8 0.326 930.99 0.6,0.8,-0.03 0.720 

B-n45-k5 751 757.16 757.16 1.0,0.0 0.000 754.71 1.1,0.0,0.8 0.324 756.60 0.5,0.7,-0.01 0.074 
B-n45-k6 678 727.84 713.24 0.9,0.6 2.006 713.24 0.9,0.6,0.0 2.006 717.24 0.2,0.5, 0.10 1.456 

B-n50-k7 741 748.80 747.92 1.1,0.0 0.118 745.37 1.0,0.0,0.2 0.458 744.77 0.9,0.3,-0.03 0.538 

B-n50-k8 1312 1354.03 1339.44 1.6,0.7 1.078 1338.34 1.9,0.9,0.8 1.159 1337.13 0.9,0.2,-0.05 1.248 

B-n51-k7 1032 1059.86 1050.00 1.5,0.0 0.930 1050.00 1.5,0.0,0.0 0.930 1043.58 1.2,0.0, 0.04 1.536 
B-n52-k7 747 764.90 763.96 1.1,0.2 0.123 756.90 1.3,0.0,1.5 1.046 762.16 1.0,0.5,-0.06 0.358 

B-n56-k7 707 733.74 723.76 0.7,0.1 1.360 722.61 0.8,0.0,0.2 1.517 722.62 0.2,0.2, 0.01 1.516 

B-n57-k7 1153 1239.78 1148.97 1.8,0.8 7.325 1148.98 1.1,0.0,0.5 7.324 1150.77 1.1,0.0, 0.05 7.179 

B-n57-k9 1598 1653.42 1619.71 0.9,0.0 2.039 1619.72 0.9,0.0,0.0 2.038 1613.27 0.8,0.2, 0.01 2.428 

B-n63-k10 1496 1598.18 1562.59 0.9,0.0 2.227 1562.59 0.9,0.0,0.0 2.227 1552.36 0.9,0.1, 0.00 2.867 

B-n64-k9 861 921.56 919.37 1.7,0.8 0.238 910.07 1.1,0.8,2.0 1.247 907.30 0.5,0.7, 0.05 1.547 

B-n66-k9 1316 1416.42 1372.09 1.4,0.4 3.130 1358.32 1.9,1.1,1.0 4.102 1357.17 0.3,0.8, 0.06 4.183 

B-n67-k10 1032 1099.95 1090.18 0.8,0.2 0.888 1070.30 0.8,0.0,1.8 2.696 1066.79 0.7,0.2,-0.09 3.015 

B-n68-k9 1272 1317.77 1317.77 1.0,0.0 0.000 1316.07 1.1,0.1,0.4 0.129 1315.76 0.9,0.2,-0.03 0.153 

B-n78-k10 1221 1264.56 1263.05 1.0,0.1 0.119 1261.35 1.0,0.1,0.9 0.254 1260.50 1.0,0.1,-0.05 0.321 

Average         1.435     1.700     1.863 
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Table A4. Relative deviations on Christofides and Eilon’s test set 

Instance Best CW P λ,µ % Imp AÖ λ,µ,v % Imp ROBUST λ,µ,v % Imp 

E-n22-k4 375 388.77 375.28 1.5,0.6 3.470 375.28 1.1,0.9,1.1 3.470 375.28 0.1,1.1, 0.02 3.470 

E-n23-k3 569 621.09 573.01 1.7,0.5 7.741 573.01 1.7,0.5,0.0 7.741 573.01 0.2,1.4, 0.01 7.741 

E-n30-k4 503 534.45 506.67 1.3,0.3 5.198 506.67 1.3,0.3,0.0 5.198 507.51 0.6,1.0,-0.02 5.041 
E-n33-k4 835 843.10 843.09 0.9,0.1 0.001 843.10 0.9,0.1,0.0 0.000 842.83 0.7,0.4, 0.08 0.032 

E-n76-k14 1021 1054.60 1052.30 1.1,0.1 0.218 1045.04 1.3,0.0,1.0 0.907 1049.31 0.7,0.3, 0.08 0.502 

E-n76-k8 735 794.74 783.12 1.2,0.3 1.462 779.42 1.0,0.5,0.1 1.928 768.05 1.2,0.1, 0.05 3.358 

E-n76-k7 682 738.13 718.88 1.7,0.8 2.608 718.88 1.6,0.8,0.2 2.608 716.48 0.3,1.0,-0.04 2.933 

E-n101-k14 1071 1139.07 1133.99 0.7,0.5 0.446 1126.39 0.8,0.6,0.3 1.113 1127.01 1.3,0.3,-0.07 1.059 

Average         2.643     2.871     3.017 
 
 
 
 
 

Table A5. Relative deviations on Christofides et al.’s test set 

Instance Best CW P λ,µ % Imp AÖ λ,µ,v % Imp ROBUST λ,µ,v % Imp 

C50 524.61 584.64 566.10 0.8,0.9 3.171 555.55 1.7,0.2,0.6 4.976 537.29 1.0,1.4,-0.02 8.099 

C75 835.26 907.39 866.29 1.0,0.1 4.529 860.21 1.2,0.2,0.7 5.200 864.29 0.5,0.4,-0.06 4.750 

C100a 826.14 889.00 865.60 1.5,0.4 2.632 867.35 1.2,0.6,0.1 2.435 854.49 1.6,0.5,-0.05 3.882 

C150 1028.42 1140.42 1101.81 2.0,0.7 3.386 1094.06 1.3,0.1,0.3 4.065 1089.78 0.4,0.6,-0.03 4.440 

C199 1291.45 1395.74 1370.04 1.4,0.2 1.841 1359.78 1.3,0.0,1.1 2.576 1367.53 1.3,0.2, 0.00 2.021 

C120 1042.11 1068.14 1066.40 1.3,0.3 0.163 1057.80 1.1,0.1,0.3 0.968 1059.87 0.9,0.2, 0.02 0.774 

C100b 819.56 833.51 826.00 1.2,0.4 0.901 824.66 1.4,0.4,0.6 1.062 825.76 1.1,0.0, 0.03 0.930 

Average         2.375     3.040     3.557 
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Table A6. Relative deviations on Christofides et al.’s distance restricted test set 

Instance Best CW P λ,µ % Imp AÖ λ,µ,v % Imp ROBUST λ,µ,v % Imp 

CD50 555.43 618.39 595.31 1.3,0.3 3.732 589.43 1.6,0.4,2.0 4.683 582.52 1.0,1.4,-0.08 5.801 
CD75 909.63 975.46 942.98 2.0,0.7 3.330 942.98 2.0,0.7,0.0 3.330 944.14 0.9,0.3, 0.07 3.211 

CD100a 865.94 973.94 942.69 1.7,0.3 3.209 942.69 0.7,0.3,0.0 3.209 922.77 0.7,1.0,-0.01 5.254 

CD150 1162.55 1287.64 1222.10 1.3,0.0 5.090 1222.10 1.3,0.0,0.0 5.090 1216.15 1.3,0.2, 0.06 5.552 
CD199 1395.85 1538.66 1485.50 1.9,0.6 3.455 1485.53 1.9,0.6,0.0 3.453 1482.89 1.7,0.3, 0.01 3.625 

CD120 1541.14 1592.26 1583.24 0.7,0.1 0.566 1582.20 0.8,0.0,0.2 0.632 1572.81 0.8,0.4,-0.06 1.222 

CD100b 866.37 875.75 869.61 1.2,0.2 0.701 869.61 1.2,0.2,0.0 0.701 872.60 0.8,0.4, 0.03 0.360 

Average         2.869     3.014     3.575 
 
 

 

 


