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1. Introduction 

The aim of this paper is to develop a method for the automated assembly of broken objects that 
have surface texture, from their pieces. The task of reassembling has great importance in the fields 
of anthropology, failure analysis, forensics, art restoration and reconstructive surgery. It also 
appears heavily in archaeology. The fact that performing reconstruction of archaeological objects 
from fragments manually is very time consuming motivates automatic techniques for reassembly 
of fragments. In general, reconstruction of objects can be regarded as a puzzle-solving problem, 
which contains many problems endemic to pattern recognition, computer vision, feature 
extraction, boundary matching, and optimization fields.  

In classical jigsaw puzzles, the essentials of assembly depend on the alignments of object edges 
(e.g. picture of a house), the similarity of colors (e.g. cloud drawing) and continuity of textural 
properties (e.g. grass of a garden) for the adjacent pieces. The solution approach has to consider all 
these situations to match images of adjacent pieces.  

Previous works on the assembly problem have focused mainly on geometrical properties of the 
pieces. 

The puzzle pieces are represented by their boundary curves. Some approaches especially related 
to standard toy-store jigsaw puzzle solver use feature based matching methods. The problem of 
jigsaw puzzle solving is a reduced and restricted version of the general assembly problem. Its 
computerized solution was first introduced by Freeman, (1864) who successfully solved a 9-piece 
jigsaw puzzle. Other works (Chung 1998; Goldenberg 2002; Kosiba 2001) also use feature based 
matching approaches. These methods are respectively fast so that they manage to carry out the 
assembly even if the number of puzzle pieces becomes large. The main drawback of this approach 
is that they cannot provide detailed matching of boundaries and overlapping regions. Research 
involving classical jigsaw puzzle has so far ignored texture or color information to the assembly 
problem. There are a few approaches, which use only the color values of pixels on the boundary 
contour (Chung 1998). 

More general partial curve matching algorithms that solve the global 2D and 3D assembly 
problems based on geometrical properties were presented in (Kong 2001; Radack 1982; Willis 
2003). The problem of 3D curves is addressed by (Ucoluk 1999). The accuracy of the matching 
technique depends on perfect extraction of the trace of a curve and the computation of curvature 
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and torsion. It is potentially a non-robust process and has only been tested on artificial data. 
Another research (Stol 2002) matches 2D and 3D break curves by combining a coarse-scale 
representation of curves and refine iteratively via a fine-scale elastic matching. The works that 
achieved global assembly of pieces based on curve matching have not attempted to combine the 
geometrical methods with textural information.  

There is great scientific interest in the archaeological community in reconstructing objects from 
fragments. An automatic tool that assists archeologists in reconstructing monuments or smaller 
fragments would lead to avoiding unnecessary manual experimentation with fragile and often 
heavy fragments, and reduce the assembly time. Currently, the Digital Michelangelo team is 
tackling the problem of assembling the Forma Urbis Romae (Levoy 2000). It is a marble map of 
ancient Rome that has more than a thousand fragments. Their investigation is based on broken 
surface border curves, possibly texture patterns, and additional features of the fragments. The 
University of Athens has developed “The Virtual Archaeologist” (Papaioannou 2001) system, 
relying on the broken surface morphology to determine correct matches between fragments. This 
method detects candidate fractured faces, matches fragments one by one and assembles fragments 
into complete or partially complete entities. The Shape Lab at Brown University presents an 
approach to automatic estimation of mathematical models of axially symmetric pots made on a 
wheel (Willis 2002, 2003). This technique is based on matching break curves, estimated axis and 
profile curves, a number of features of groups of break-curves. Finally, the assembly problem is 
solved by maximum likelihood performance-based search. At the Technical University of Vienna, 
a fully automated approach to pottery reconstruction based on the fragments profile, is given [6]. 
Fornasier and Toniolo have developed a pattern matching algorithm for comparison of digital 
images by discrete Circular Harmonic expansions based on sampling theory. The assumption for 
this method is that the photographs of the original puzzle exist. (Fornasier 2005) 

Neglecting continuity of color and texture for adjacent fragments is a waste of valuable 
information for many cases. The pictorial information on a fragment consists of various 
components, and different specifications of surface image of pieces are dominant according to the 
implementation field. In the archeological field, the pictorial features may include highly 
directional marble veining, the pattern of surface incisions, paintings on the outer and inner 
surfaces, carvings and horizontal circles due to finger smoothing while the pot is spinning on the 
wheel.  

In archeology, erosion, impact damages or undesired events cause fragments to vanish or 
deteriorate, such as in the case of Forma Urbis Romae. This reality increases the necessity of 
pictorial information to solve the reconstruction of all types of puzzles, because the geometrical 
approaches relying on exact matching of break curves are not applicable to the assembly of the 
pieces, if the border of fragments have disappeared. The texture prediction method can manage to 
estimate possible adjacent fragments, even if there is a gap caused by erosion between two 
neighboring pieces.  

In this paper, we design a texture prediction algorithm, which predicts the pixel values in a 
band outside the border of the pieces. Features obtained from the predicted texture outside a piece 
are correlated with original pictorial specifications of possible neighboring pairs. Also, a 
confidence measure depending on texture patterns is defined. Then, we define an affinity measure 
of corresponding pieces that utilizes all kinds of image information, such as continuity of edges, 
textural patterns, and color similarities. The puzzle solving problem is then reformulated as an 
optimization problem where the problem of finding matching pieces is stated as finding pieces that 
maximize the overall affinity function.  

The rest of this paper is organized as follows: Section 2 outlines the method used in solving the 
assembly problem, Section 3 presents image inpainting and texture synthesis methods that are used 
in predicting the expanded part of the pieces. The affinity measure used in the assembly process is 
explained in Section 4. The fft technique to find the best transform are explained in Section 5. 
Experimental results are given in Section 6.  

2. Automated puzzle assembly method 

Our proposed approach is based on defining a fast and robust method that finds the best 
transformation of pieces that maximizes matching and continuity of textures of fragments while 
the geometrical constraints are satisfied. After the acquisition and preprocessing of the data, the 
first step is the prediction of the pixel values in a band around the border of the piece; this step is 
applied to all pieces separately. The prediction algorithm automatically fills in this extension 
region using information in the central part. The main idea in extending the picture/texture on the 
fragment outwards is that the correlation between the features of the predicted region and its true 
neighboring piece is significantly higher than alternative pairings. We use the mixture of 
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inpainting and texture synthesis methods for prediction. Image inpainting is the process of filling 
in missing data in a designated part of an image or a video from the surrounding area, and texture 
synthesis is to create a new image with the same seed texture but of different shape to a sample 
region. While expanding the fragment image, we introduce the confidence of expansion as a new 
parameter in the prediction phase of the assembly problem. This parameter represents the 
reliability of expanded values and is used by later processes. The confidence depends on the 
structure of the texture such as the continuity of edges, the roughness of texture and the distance to 
the border of original fragment.  

We then derive feature values in both the original fragment and the extended region. The 
proposed approach does not bound the number of features nor it restrict the type of image features. 
Any textural feature believed to improve the success of assembly can be easily inserted into the 
process. A combination of the feature and confidence values is used to generate an affinity 
measure of corresponding pieces. The matching of pieces and achievement of the assembly is 
established by optimizing this affinity measure.  

3. Inpainting and texture synthesis for expanding the pieces 

As mentioned in section 2, the first step in the assembly process is the expansion of each piece 
in a band around the border of the piece by predicting the pictorial information on the surface 
outwards. Inpainting and texture synthesis are two techniques that will be used to carry out this 
task (Criminisi 2003, Levin 2003; Oliveira 2001; Bertalmio 2001; Ballester 2001, 2001; Sapiro 
2002). Image inpainting refers to the process of filling-in the missing areas or changing an image 
in a non-noticeable way by an observer. The problem of texture synthesis is to fill large image 
regions with a sample texture. In this paper, we use the approach used by Criminisi (2003) to 
predict the pixel values in a band around the border of the piece.  

The source region, Im
0, is the acquired image of the mth piece. A target band, Im

+, outwards from 
the mth piece is defined (so Im= Im

0 + Im
+). This target band represents the extension region of the 

mth piece. The border between Im
0

 and Im
+ is indicated by δIm. This border evolves outward as the 

inpainting algorithm progresses. The inpainting algorithm consists of three main steps. These steps 
are iterated until the whole target region or band has been filled. The first step is to compute the 
priority, P, which determines the order in which they are filled. Priority values are computed for 
the patches Ψp centered at the point p for p∈δIm. Conceptually, the priority depends on 
continuation of strong edges, D, and confidence of neighbor pixels, C: 

)().()( pCpDpP =                                  (3.1) 
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where |Ψp| is the area of Ψp, np is unit vector orthogonal to the front δIm at the point p and ⊥ 
indicates the orthogonal operator. This confidence value reflects the reliability of a region or a 
pixel, and it affects the filling order during inpainting process. Initially, we set C=1 (%100 
reliability) to pixels in the original piece, and assign C=0 to the pixels in the target region to be 
filled. The data term D(p) is a function of the strength of isophotes hitting the front δIm. This term 
increases the priority if an isophote flows into that patch which is important for the assembly 
process since it causes the linear structures to be synthesized or filled first. Therefore, the linear 
structures orthogonal to border of pieces are completed earlier and these points or patches get 
higher confidence values. 

 

 
Figure 1. The notations: Original image, with the target region, its contour, and the source 

region 
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When all priorities have been computed, the highest priority, p′, is determined. The second step 
of the prediction process is propagating the texture and structure information into the target band. 
The color information is propagated via diffusion in classical inpainting techniques. In our work, 
as in [16], propagation of the image texture occurs by direct sampling of source region. The most 
similar patch for sampling is given as: 

  ),( argmax 
0

qp
I

q d
mq

ΨΨ=Ψ ′
∈Ψ

′                  (3.3) 

where d(Ψp′,Ψq) is the distance between the already filled pixels of patches at the points p′ and q. 
The patch at the point q′ is the most similar one and the values of each pixel to be filled in the p′ 
patch are copied directly from the patch in the q′ point. 
 

 
(a)   (b)   (c) 

Figure 2. (a) We want to synthesize the area delimited by the patch Ψp centered on the point Ω∈δp . 

(b) The most likely candidate mathes for Ψp lie along the boundary between the two textures in the source 

region, e.g. q′Ψ and q ′′Ψ . (c) The best matching patch in the candidates set has been copied into the 

position occupied by Ψp , thus achieving partial filling of Ω. 
 

The last step for iterations is to update the confidence values. After the patch Ψp′ has been filled 
with new values, the confidence values affected by the filling of the new patch are updated. This 
region is limited by the neighbors of the point p′. 

+
′ ∩∈∀′= mp IppCpC ψ)()(               (3.4) 

As the filling proceeds, the confidence values decrease as the pixels in the predicted region get 
farther from the original boundary. This indicates that the color values of pixels far from border 
are less reliable than closer ones. 

 

  
                  (a)               (b) 

Figure 3. (a) An archeological sherd to be expanded (b) The expanded piece 
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(a)   (b)           (c) 

 
Figure 4. (a) the original image of a piece, (b) the corresponding confidence image, (c) the expanded images 
of the original piece 
 
A pseudo-code description of the algorithm is shown in Table 3.1. The substring i indicates the 
current piece and superscript t indicates the current iteration.  
 
1.  Acquire the image  
2.  Extract the boundary of the ith piece  
3.  Morph the source region outwards to find the expanding band  
4.  Set the confidence of the source region as 1, and the confidence of the expanding band or target 
region as 0.  
5.  Repeat until there exist no pixel to be filled in the target region:  
 a.  Compute new t

ippD Ω∈∀ δ)(  

 b.  Compute priorities t

ippP Ω∈∀ δ)(  

 c.  Find the patch 
p′Ψ  with the maximum priority,  )(maxarg pPp

t
ip Ω∈

=′
δ

  

 d.  Find the exemplar Φ∈Ψ ′q
 that minimize ),( qpd ′ΨΨ  

 e.  Copy image data from 
q′Ψ  to t

ipp p Ω∩Ψ∈∀Ψ ,  

 f.  Update t

ipppC Ω∩Ψ∈∀),(  

 
Table 3.1 : The pseudo code of the expansion algorithm. 

4. An Affinity measure for compatibility of pieces 

While matching or calculating similarity of possible two neighboring pieces, pixel-by-pixel 
comparison of two pieces is not meaningful. Thus, image features, fki, the kth

 

feature values of the 
ith piece, are extracted from the source and target regions for each piece after predicting the target 
band.  Selection of the features depends on the structure of the image. Currently, only first and 
second moments (mean and variance) are used in the experiments. In the case of using suitable 
texture features, serious improvements can be obtained. The features are calculated in a window 
whose size depends on the resolution of the pictures on the pieces. The next step is the 
computation of confidence values for the features. When a feature value is extracted by using the 
pixels in a window, the confidence of this feature for a point depends on the confidences of all 
pixels in the window. Mean of all confidence of pixels in the window is assigned as confidence of 
the feature, Ck

'.  
Let Dk(fki, fkj) be the distance function between the k

th
 

feature values of i and j pieces. 
Ti=(∆xi,∆yi,∆θi) denotes the transform of the ith

 

piece and Ti (fki) denotes transform of the kth
 

feature 
extracted from the ith

 

piece. For the simplicity of expressions, the (∆xi,∆yi,∆θi) parameter for each 
variable will not be shown.  

In the current experiments, the Euclidean distance is used for all features. Let’s define a 
threshold value Thk for  the kth

 

feature distance and a similarity measure Sk:  

kkjkikk ThffDS −= ),(                (4.1)  

We set the threshold, Thk, so that the more similar the feature values are, the larger negative 

value the similarity measure, Sk will take or visa versa.  

[ ]∑∑ −=
kk n

k

kkjkik

n

k
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              (4.2)  
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where nk
 
is the number of features. (4.2) gives the total similarity between i and j pieces. We can 

normalize the above equation by dividing all Sk
 
into Thk
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where wk
 
are the weight values for the kth

 

feature and are inversely proportional to Thk. If we add 
all the similarity measures for all the features, we obtain 
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where np
 
is the number of pieces in the puzzle. Expression (4.4) denotes that the total similarity 

between the ith
 and jth

 pieces. The ∑ kS are weighted according to jth confidence values since the 

total similarity should be affected when confidence of a point is small (close to zero), even if two 
pieces are similar. It is also valid that the cost or affinity function should be more sensitive to the 
texture distance if the confidence is high. After weighting the similarities, summation for all j 

pieces where i is different than j shows how much the ith
 

piece fits the other pieces. If we sum the 
similarities for all possible pairs, we obtain: 
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This is the first part of Cost or Affinity function and is derived from the weighted mean of 
(4.4). This value goes towards negative if there exists a good harmony between images of pieces. 
If we insert the transforms to the above expression:  
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          (4.6) 

The second part of general Fcost
 
function is for embedding the geometrical constraints to 

Cost or Affinity. In reality, two pieces cannot overlap on any point. In order to prevent this 
situation, a sufficiently large, wc, weight or constant is added to the Cost function for the 
overlapping points.  

∑∑
+=

=
p pn

i

n

ij

jjii CTLCTLyxm
1

2 ))(())((),(            (4.7) 

where            







=

≠
=

0 xif      1

0 xif     0
)(xL

                      (4.8) 
The confidence values are used to formulize overlapping operation. The L function gives 1 

when only the original part of image is input; otherwise it gives 0 for the predicted regions. Thus, 
the Cost increases when the original parts of i and j images overlap.  

)( 21cos mmF t +=∑           (4.9) 

Total cost is the summation of similarity and geometrical constraint terms for all points in 
the predefined board or space. The only parameter of this performance measure that represents the 
goodness of the assembly of the pieces based on textural features and geometrical shape is the 
transformation of pieces, Ti  

This value goes towards negative if there exists a good matching between the pictures on the 
candidate pieces. The fitness between the pieces is increasing while the Cost function is being 
optimized. Figures 5-8 demonstrate the responses of m1 and m2 functions (equations 4.6 and 4.7) 
for different assemblies. 
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  nt  
(a) (b) 

 
Figure 5. (a) Four pieces that do not intersect in any point in the space. (b) the corresponding confidence 

values. m1=0, m2=0 and Fcost=0.  
 

 
(a)   (b) 

 
Figure 6. (a) The first and second pieces are assembled. (b) m1 values for  

all (x,y). m2=0 and Fcost=-988. 
 

   
(a) (b) 

 
Figure 7. (a) Two groups of the assembled pieces. (b) m1 values for all (x,y). m2=0 and Fcost=-3552. 

 

   
(a)  (b)  (c) 

 
 Figure 8. (a) The original region of the pieces are overlapped. (b) Image represents m1 values for all (x,y). (c) 
Image represents m2 values for all (x,y) and Fcost=+77564. 
 

Two types of optimization methods might be used in the experiments. The first one depends 
on the best replacement strategy. Initially, the transformations of pieces are randomly assigned. 
The algorithm progresses by finding best movement in each step. When the function is stuck into a 
local minimum, two randomly selected pieces are exchanged. All local minima are buffered to find 
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the best assembly. The algorithm is stopped if the function reaches the best value in the local 
minima buffer more than n times.  
The second method depends on pairing of pieces. Initially, the algorithm searches for the best pair 
that gives the minimum cost. Then, these paired pieces are merged to produce a unique piece. The 
algorithm is stopped when all the pieces in the puzzle are combined and become one piece. In this 
method, the algorithm backtracks when the pairing cannot improve the cost. To implement this 
method, the confidence and feature values of a new piece should be defined after the merging 
process.  

∏
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M is the set of pieces that will be merged. (4.10) gives the new confidence value for overlapping 
points of pieces. The new confidence value is equal to 1 if one of piece has a confidence of 1, 
otherwise it is the geometrical mean of possible confidence values of that point. (4.11) gives the 
new kth feature values by calculating the weighted mean of pieces in the set M.  

5. Texture Based Partial Matching Using FFT Techniques 

Although, the puzzle assembly problem can be stated as the optimization of the above cost 
function, the optimization problem is too computationally costly. Note that minimizing the above 
Distance function, D, is equivalent to maximizing the correlation between the pieces. We will 
therefore use the fft shift theory to find a solution that will maximize the correlation between the 
predicted parts of a piece and other pieces. Let us first consider the solution to a 2 piece puzzle. 
The solution set consists of the piece I0

0 and the transformed version of the features of the piece 

I1
0. The transformation consists of translation and rotation. ( Ti = (∆xi, ∆yi, ∆θi) ) The 

transformation that gives maximum correlation between I1 and I0 is the best match between the 
two pieces and hence is the solution defined as below:  

∑ →=
k

1

n

k

110
2
general ),( argmax IfTIfCS kk

T

             (5.1) 

C denotes the correlation operator. The maximum correlation solution does not guarantee the 
real solution to the puzzle since it does not incorporate the physical constraint that two pieces 
cannot overlap. This constraint can be expressed in terms of correlations: 
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Hence the real solution set is given by: 
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The solution set lies where the original pieces have correlation 0, and the I1
th piece has 

maximum correlation with the I0
th piece.  

These correlations can be carried out very fast using FFT operations as in image registration 
techniques (Wolberg 2000) 

  
)( . )(

)( . )(
imax  

1
*

0

1
*

02
general ∑
















≡

kn

k kk

kk

IfFIfF

IfFIfF
FS ..........(5.4) 

 ))( . )((  ),(     also and 0
1

*0
0

0
1

0
0 IFIFFIIC =            (5.5) 

where imax returns the indices of the max value. If we substitute (5.4) and (5.5) in (5.3); 
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F , *
F and F  denote the Fourier operator, its complex conjugate and the inverse Fourier 

operator, respectively. When the inverse Fourier value in the second part of the formula is zero, the 
maximum values of the first part of the formula gives the ideal transformation parameters.  

Figure 9 shows the steps of a 2 pieces puzzle assembly. In figure 9.a, there are two original 
pieces. In 9.b, the expanded pieces are shown. Then, the features are derived from the expanded 
pieces. In 9.c, only the mean feature is shown. The image in 9.d represents the correlation matrix 
between these two expanded pieces. This is the general solution for the problem. If the constraint 
expression is applied, however, the image in 9.e is found. This matrix is the output of the inner 
part of expression (5.6). The arrow in this image indicates the maximum point in this matrix. The 
indices of this maximum point give the translation coefficients. The last image in figure 2 shows 
the solution if this translation is applied to the second piece.  

The FFT solution helps to solve only translation. The rotation can be solved using polar 
coordinates in an iterative scheme by using the same formulation. See (Wolberg 2000) for details. 

The solution outlined above can be generalized to the solution of more realistic puzzles with 
larger number of pieces. Let np be the number of pieces involved. The solution is the set of 
appropriate transformations of each piece:  

{ } .,,.........,,,0  321 p

p

n

n
TTTTS =                  (5.7) 

Let’s assume all the pieces are randomly dispensed on a big enough board (B). We randomly 
select a piece (It). For this piece, the transformation giving maximum correlation is obtained using 
the above technique. (Sağıroğlu, 2006) 

 

  
(a)  I0

0
 + I1

0       (b)  I0 + I1 

 

  
(c) f1I0 + f1I1        (d) Inner part of S2

general 

 

  
(e) Inner part of S2      (f)  I0

0 + T1→I1
0 
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Figure 9. (a) Original pieces (b) Expanded pieces (c) First features of expanded pieces (d,e) Correlations    (f) 

Solution of 2 pieces 
 










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k
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t

where   { } ............,,  00
2

0
1

0
0 NIIIIB =  (5.8) 

The algorithm used in solving the puzzle is outlined below: 
1. Place the pieces on a board (B) 
2. Find the best transform for a randomly selected piece t using the presented method 
3. If there exists a piece that can be moved, go to step 2 
4. Select a piece and transform it 
5. Go to step 2, until the puzzle is uniquely assembled even if all pieces are tried in step 4 
 

The main drawback of this operation is that there may be multiple solutions to the problem. 
These multiple solutions depend on the initial placement of pieces on B and the random selections 
of the tth piece. In these situations, the affinity measure developed above is used. For a possible 
placement given by the proposed technique, the Fcost is calculated. If the algorithm reaches to a 
new solution that has a lower cost value than before, the new one becomes the best placement. 
These iterations continue until the last N possible placement cannot offer a better cost. This N 
value directly depends on the complexity of the puzzle. The main argument of the complexity for a 
puzzle is the number of the pieces. So the number N mainly depends on the np value. We used 
N≈np

2 for our experiments.  
Hence the final version of the algorithm has the following two additional steps: 

6. Find Fcost and if the transformed piece is better then before, save the transformation as a 
best solution and clear the counter N. 

7. Go to step 1, until N reaches to np
2 

6. Experimental results 

We will demonstrate the results of the proposed algorithm on three different datasets. The first 
data is from a simple jigsaw puzzle. Figure 10 shows the cost function at different stages of the 
solutions. 

 

           
Fcost=-1891  Fcost=-15150 

 

           
Fcost=-17575  Fcost=-18967 

 
Figure 10. Different stages of the puzzle solution 
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The second dataset (13 pieces) is from Stanford university website and is part of the Forma 
Urbis Romae dataset [10] which is a marble map of ancient Rome that has more than a thousand 
fragments. For this experiment, the image of a fragment from this dataset is broken artificially. 
Figure 11.a shows the pieces in the dataset and Figure 11.b shows the final assembly obtained. 

 

  
    a ) Fcost = 0 b ) Fcost = -19318 
 

Figure 11. (a) Initial layout of the pieces (b) Completed puzzle 
 

The third dataset consists of 21 pieces of a ceramic tile. Figure 12.a shows the pieces to be 
assembled. Figures 12.b, 12.c and 12.d give 3 possible solutions. The corresponding cost functions 
are also given. It is noted that all the solutions are visually feasible solutions in terms of the texture 
and geometry information and the correct solution has the minimum cost function. 

 

  
(a) Fcost = 0  (b) Fcost =-18 577 
 

  
(c) Fcost = -17841  (d) Fcost =-20250 
 

Figure 12. (a) Initial layout of the pieces (b,c,d) Fcost for 3 possible solutions. 
 

The last experiment has pieces from two different ceramic tiles. This experiment is important 
since in a real archaeological set-up, pieces may come from two or more objects. 10 pieces of the 
tile used in Experiment 2 are mixed with 9 pieces from another tile. Resulting assembly is given in 
Figure 13.  
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Figure 13. Solution obtained for mixture of pieces from two different tiles. 
 

7. Computational Complexity 

The complexity of affinity calculation depends on the size of the image, number of features, 
nk, and the number of pieces, np. The equation (4.6) contains the transformations, the distance 
calculations, the confidence multiplications and the summations. The operations for a 
transformation of any point are four real multiplications and two summations. The operations of 
the distance calculation are one summation and one multiplication. The weighting and the 
subtraction of the threshold are performed by one multiplication and one summation, respectively. 
Thus, the total operations for the calculation of the distance function of two transformed features 
are ten multiplications and six summations (Total of 16 operation). For all features in an (x0,y0) 
point, calculating the total distance has a complexity O(10nk). So, the complexity of the m1 for a 
point becomes O(np

2x(10nk+1)+10np) ≈ O(C1np
2
nk). Similarly, the equation (4.7) has a complexity 

O(C2np
2). The summation of these two complexities gives the complexity of the Fcost(x0,y0) 

function at the point (x0,y0) as O(C1np
2
nk+C2np

2). Suppose that the images have a size of NxN. 
Then, the complexity of the total Fcost is O(N2(C1np

2
nk+C2np

2)).  
The complexity of the optimization of the Fcost function by searching exhaustively all possible 
translations and the rotations is important to decide the following operations. All possible 
translation set includes NxN translation and suppose that there exists N possible discrete rotation 
angle. The complexity of the search operation becomes O(N5(C1np

2
nk+C2np

2)). If the number of 
pieces is not very big, the dominant variable in this complexity is the size of the board. The fifth 
degree of the size of a board, which can contain all pieces freely, is very high value to compute. 
Thus, this is not feasible for practical implementation. 
We have introduced the Fourier method in order to reduce the time consumption while searching 
for the best place for a piece in the optimization stage. Image registration methods using 2D 
Fourier transform can find the image correlations very fast. If it is considered that the original and 
expanded regions of pieces are correlated, assembly algorithm became faster by implementing the 
mentioned method.  
Here, the success of the algorithm is  proportional to the size of the search buffer, nbuf. The time 
for the solution increases as the size of the buffer increases. In the first iteration (for the step 3), we 
compute the expression (5.8) (np-1) times for each nbuf. Then, (as a coarse assumption) we 
compute (np-2) times for each buffer element.  
Thus, we use this expression nbuf.np.(np-1)/2 ≈ nbuf.np

2/2 times. As we define the complexity of the 
mentioned expression, total complexity becomes O(20C1niternknbufnp

2
N

2log(N)) for this algorithm. 
Also, suppose that the size of the buffer should, at least, be linearly proportional to the number of 
pieces. Thus, the complexity may be O(20C1niternknp

3
N

2log(N)).  
To improve the optimization, some other methods might also be implemented. The self-organizing 
map and genetic algorithm are reasonable methods for optimizing the above cost function.  

 

8. Summary and conclusions 

We presented a method for the automated puzzle assembly problem using surface texture and 
picture. In this research, the main idea used to solve the assembly problem can be explained in that 
the correlation between the features of the predicted region and the right neighbor is significantly 
higher than the alternative pairings. The approach is based on expanding the boundary of each 
piece using inpainting and texture synthesis methods and maximizing an affinity measure that 
represents the appropriateness of the assembly based on textural features and geometrical shape.  
We try to find the best transformations of pieces that maximize harmony of textures of fragments 
while the geometrical constraints are being satisfied. Experiments show that this approach is very 
promising for the automated puzzle assembly problem. Future work will concentrate on 
generalizing the presented algorithm to solving 3D puzzles. 
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