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Abstract—This paper presents a new active contour-based, sta-
tistical method for simultaneous volumetric segmentation of mul-
tiple subcortical structures in the brain. In biological tissues, such
as the human brain, neighboring structures exhibit co-dependen-
cies which can aid in segmentation, if properly analyzed and mod-
eled. Motivated by this observation, we formulate the segmenta-
tion problem as a maximum a posteriori estimation problem, in
which we incorporate statistical prior models on the shapes and
intershape (relative) poses of the structures of interest. This pro-
vides a principled mechanism to bring high level information about
the shapes and the relationships of anatomical structures into the
segmentation problem. For learning the prior densities we use a
nonparametric multivariate kernel density estimation framework.
We combine these priors with data in a variational framework and
develop an active contour-based iterative segmentation algorithm.
We test our method on the problem of volumetric segmentation of
basal ganglia structures in magnetic resonance images. We present
a set of 2-D and 3-D experiments as well as a quantitative perfor-
mance analysis. In addition, we perform a comparison to several
existent segmentation methods and demonstrate the improvements
provided by our approach in terms of segmentation accuracy.

Index Terms—Active contours, basal ganglia, kernel density esti-
mation, moments, magnetic resonance (MR) imagery, shape prior,
volumetric segmentation.
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Fig. 1. Artifacts in brain MR images. (a) Low-contrast, partial volume effects,
courtesy of [10]. (b) Intensity inhomogeneities due to RF overflow (bias field),
courtesy of [11].

I. INTRODUCTION

M AGNETIC resonance (MR) image segmentation is fun-
damental in obtaining anatomical and functional infor-

mation from biological structures and tissues, and it is used
towards visualization, surgical guidance, quantitative analysis,
and diagnosis [1]–[8]. MR image segmentation provides the
location of structures of interest in a noninvasive inspection
and, therefore, it is a required step when analyzing the rela-
tionships among structural and functional abnormalities, to be
used for diagnosis of diseases. For example, segmentation of
subcortical structures in brain MR images is motivated by a
number of medical objectives including the early diagnosis of
neurodegenerative illnesses such as schizophrenia, Parkinson’s,
and Alzheimer’s diseases. In this context, the analysis of chem-
icals in Basal Ganglia structures is thought to provide important
cues to diagnosis [9].

Segmentation of brain structures and tissues, especially in the
subcortical regions, is very difficult due to limitations such as
low-contrast, partial volume effects, and field inhomogeneities
(see [11] and [12], and Fig. 1). In this context, most segmen-
tation procedures still require at least some amount of manual
intervention and some are performed completely manually.
However, manual segmentation is tedious, time consuming,
and often not reproducible. In order to compensate for these
drawbacks, the scientific community has begun to develop au-
tomated clinical segmentation tools. Although many methods
have been proposed for subcortical structure segmentation,
such tasks still remain challenging [1], [2], [4], [5].

A significant amount of research was performed during the
past three decades towards completely automated solutions for
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general-purpose image segmentation. Earlier curve-propaga-
tion techniques such as snakes [13] and variational techniques
[14]–[17], statistical methods [18], [19], topological atlas based
methods [20], combinatorial approaches [21], and methods that
perform nonparametric clustering [22] or hybrid classifiers [23]
are some examples. Variational techniques provide a principled
framework for formulating segmentation problems and have
been widely used with biomedical data. One approach used in
the solution of such problems involves active contour or curve
evolution techniques.

In active contour approaches, which our framework is also
based on, an initial estimate of the structure boundary is pro-
vided and various optimization methods are used to refine the
initial estimate based on the input image data. Optimization
of the energy functional involves the use of partial differen-
tial equations. In the definition of the energy functional, ear-
lier methods use the boundary information for the structures of
interest [13], [24], [25]. More recent methods use regional in-
formation on intensity statistics such as the mean or variance of
the intensities within an area [14], [15], [26]–[29]. Due to data
quality limitations, purely data-driven approaches do not usu-
ally achieve satisfactory segmentation performance. This mo-
tivates the use of prior information at various levels. In most
recent active contour models, there has been increasing interest
in using prior models for the shapes to be segmented. The pro-
posed prior models can be based on distance functions, loga-
rithm of odds-based shape representations [30], implicit shape
representations, and relationships among different shapes, in-
cluding pose and other geometrical relationships [31]–[39].

In this context, there are numerous automatic segmentation
methods that enforce constraints on the underlying shapes.
In [31], the authors introduce a mathematical formulation to
constrain an implicit surface to follow global shape consistency
while preserving its ability to capture local deformations.
Closely related with [31], in [33] and [39], the authors em-
ploy average shapes and modes of variation through principal
component analysis (PCA) in order to capture the variability
of shapes. However, this technique can handle only unimodal,
Gaussian-like shape densities. In [33], the image and the prior
term are well separated, while a maximum a posteriori (MAP)
criterion is used for segmentation. In [39], a region-driven
statistical measure is employed towards defining the image
component of the function, while the prior term involves the
projection of the contour to the model space using a global
transformation and a linear combination of the basic modes
of variation. In [35]–[37], the authors use shape models that
refer only to an average shape in an implicit form, and the prior
terms refer to projections of the evolving contours via similarity
transformations.

As an alternative solution to PCA limitations, [40] proposes
a principal geodesic analysis (PGA) model. Another idea that
has been proposed is to use kernel space shape priors [34].
As another solution to the limitation of PCA and unimodal
Gaussian-like distribution models, techniques based on non-
parametric shape densities learned from training shapes have
been proposed in [17] and [41]. In these works, the authors
assume that the training shapes are drawn from an unknown
shape distribution, which is estimated by extending a Parzen

density estimator to the space of shapes. The authors formulate
the segmentation problem as a MAP estimation problem, in
which they use a nonparametric shape prior. In particular, the
authors construct the prior information in terms of a shape
prior distribution such that for a given arbitrary shape one can
evaluate the likelihood of observing this shape among shapes
of a certain category.

The anatomical structures in the brain are related to the
neighboring structures through their location, size, orienta-
tion, and shape. An integration of these relationships into
the segmentation process can provide improved accuracy and
robustness [42]–[45]. Recently, significant amount of work
has been performed towards automatic simultaneous detection
and segmentation of multiple organs. In [42], the prior prob-
abilities of local and global spatial arrangements of multiple
structures are introduced into automatic segmentation. In
[46], an Expectation Maximization framework is presented in
which covariant shape deformations of neighboring structures
is used as prior knowledge. In [43], a joint prior based on a
parametric shape model is proposed to capture covariations
shared among different shape classes, which improves the
performance of single object-based segmentation. With a
similar approach and using a Bayesian framework, in [44]
and [45] joint prior information about multiple objects is used
to capture the dependencies among different shapes, where
objects with clearer boundaries are used as reference objects
to provide constraints in the segmentation of poorly contrasted
objects. Another coupled shape prior model, which is based
on the cumulative distribution function of shape features, is
proposed in [47]. In that work relative interobject distances are
defined as a shape feature to capture some information about
the interaction between multiple objects.

Clinical applications support joint statistical shape modeling
of a multiobject group rather than one of single structures out-
side of their multiobject context [48]. Among spatial dependen-
cies between multiple structures, one basic aspect is intershape
pose analysis [49]. Neighboring anatomical structures usually
exhibit strong mutual spatial dependencies. In this context, [50]
proposes a solution for the segmentation problem in the pres-
ence of a hierarchy of ordered spatial structures. In [51], the
authors model the shape and pose variability of sets of multiple
objects using principal geodesic analysis (PGA), which is an ex-
tension of the standard technique of principal component anal-
ysis (PCA) into the nonlinear Riemannian space.

In this paper, we take a different approach, and introduce sta-
tistical joint prior models of multistructure objects into an active
contour segmentation method in a nonparametric multivariate
kernel density estimation framework. We introduce prior prob-
ability densities on the coupled (joint) shapes of the structures
of interest (see also [52]) Moreover, we propose a framework
which includes intershape (relative) pose priors for the multi-
structure objects to be segmented (see also [53].)1

We use multivariate Parzen density estimation to estimate the
unknown joint density of multistructure object shapes, as well
as relative poses, based on expert-segmented training data. For
intershape pose representation, we use standard moments.

1Pose is defined by the location, size, and orientation of an object.



UZUNBAŞ et al.: COUPLED NONPARAMETRIC SHAPE AND MOMENT-BASED INTERSHAPE POSE PRIORS 1961

Given these learned prior densities, we pose the segmentation
problem as a maximum a posteriori estimation problem com-
bining the prior densities with data. We derive gradient flow ex-
pressions for the resulting optimization problem, and solve the
problem using active contours.

To the best of our knowledge, our approach is the first scheme
of multistructure (object) segmentation employing coupled non-
parametric shape and relative pose priors. As compared to ex-
isting methods [43], [45], which are based on multiobject priors,
our approach takes advantage of nonparametric density esti-
mates in order to capture nonlinear shape variability. We demon-
strate the effectiveness of our approach on volumetric segmenta-
tions in real MR images accompanied by a quantitative analysis
of the segmentation accuracy. We also compare our approach to
existing single shape prior based approaches and demonstrate
the improvements it provides in terms of segmentation accuracy.

The rest of the paper is organized as follows. In Section II, we
present our coupled shape and relative pose prior-based multi-
structure object segmentation method. In that section, we intro-
duce a general probabilistic framework for our active contour
model, we define evolution equations, and continue with a mod-
ular description of the resulting algorithm. In Section III, we
present experimental results for subcortical structures on syn-
thetic and real MR images together with a quantitative perfor-
mance analysis. We compare our method with state of the art
medical image segmentation tools [42], [54]–[56], which are
used in subcortical structure segmentation. In Section IV, we
conclude and suggest some possible extensions and future re-
search directions.

II. SEGMENTATION BASED ON SHAPE AND POSE PRIORS

We propose a new shape and relative pose prior model em-
bedded in an active contour framework. This model defines a
new multistructure object segmentation scheme that encodes
coupling among the components. In Section II-A, we introduce
our probabilistic segmentation framework. In Sections II-B and
II-C we provide details about the use of coupled shape priors and
relative pose priors, respectively, in our segmentation frame-
work. In Section II-D, we summarize the overall segmentation
algorithm and present various implementation details.

A. Probabilistic Segmentation Framework Based on Energy
Minimization

In a typical active contour model, the segmentation process
involves an iterative algorithm for minimization of an energy
functional. We define our energy (cost) functional in a max-
imum a posteriori (MAP) estimation framework as

(1)

where is a set of evolving contours that rep-
resent the boundaries of different anatomical structures.

In the following, we will refer to [14] as . We choose
the likelihood term as in . is a coupled
prior density of multi-structure objects. In this work, we focus
on building .

The coupled prior is estimated using a training set of sam-
ples of the object boundaries . The essential idea
of using such a prior is that the set of candidate segmenting con-
tours will be more likely if they are similar to the example
shapes in the training set. The geometric information in con-
sists of the shape and pose

(2)

where is a vector of pose parameters for each structure, and
denotes the aligned (or registered) version of them

(i.e., is an alignment operator that brings the curves to
a predefined reference pose, to be described in Section II-B1)
below.

In this context, the coupled shape density represents
only joint shape variability and does not include pose variability,
while captures the joint pose variability of the struc-
tures. We decompose the pose information into global and in-
ternal (or “relative”) variables

(3)

where denotes the overall (common) pose of the structures
of interest and represents relative pose
information of each structure among these structures. When
the structures are globally aligned, the remaining variability in
the pose of individual structures is captured by . Substituting
(3) into (2), we have

(4)

Conditioned on , we model and
as independent variables

(5)

In addition, is assumed to be uniform since all poses
are equally likely.2 Then, we can express as

(6)

where is a normalizing scalar.
provides a density on the relative pose of shapes.

The relative pose prior is estimated over globally aligned mul-
tistructure object contours while the shape prior is esti-
mated over both globally and locally aligned ones. Considering
this key point, let denote the globally aligned
multistructure object contours (see Fig. 2). We can then repre-
sent the relative pose prior in terms of the curves which encom-
pass internal pose variation, conditioned on the shapes whose
global and local pose variation is removed. Then the overall
prior can be written as

2In some applications where certain global poses are more likely a priori, a
nonuniform density could be used.
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Fig. 2. Alignment terms used for a multi-object ensemble that consists of a red
triangle and a blue square. In each figure, the multiobject pair on the left side is
a reference for the right pair. In (a), the multiobject group� (on the right) is not
aligned to the left group. In (b), �� is aligned globally, i.e., red and blue objects
are thought as one single object and the right group is aligned to the left group.
In (c), on top of �� , �� is aligned locally, i.e., each (sub) object on the right is
aligned separately to the one on the left. In Figures (b) and (c), the multiobject
ensembles are not superimposed due to illustration reasons.

Using these definitions, (1) can be expressed as

(7)
Segmentation is achieved by finding the set of curves that
minimize (7) through active contour-based gradient flow. Given
(7) above, the focus of our work is to learn and specify the
priors and . We provide the mathematical de-

tails of and in Sections II-B and II-C below,
respectively.

B. Coupled Shape Prior for Multistructure Objects

In this section we discuss the learning and use of . We
choose level sets as the representation of shapes [57] and we
use multivariate Parzen density estimation (see [58]) to estimate
the unknown joint shape distribution. We define the joint kernel
density estimate of shapes as

(8)

where is the number of training samples and is a
Gaussian kernel with standard deviation . We use index
to iterate through the training set. Similarly, we use to it-
erate through the structures that constitute the analyzed ensem-
bles (for example iterates over Caudate Nucleus, Putamen,
and other structures of interest). In the (8), is the candi-
date signed distance function (SDF) of the object, which
is aligned to the training set, and is the SDF of the
training shape of the object. Note here that, all samples in
the training set are both globally and locally aligned among each
other [see Fig. 2(c)]. The alignment of training samples is ex-
plained in Section II-B1 below.

Given a distance measure , the kernel for joint den-
sity estimation is constructed by multiplying separate kernels

for each object. Our nonparametric coupled shape prior,
which is defined in (8), can be used with a variety of distance
metrics. Following [41], we employ the (Euclidean) distance

between SDFs.

We use Gaussian kernels that operate on distances between
SDFs of segmenting contours and their counterparts in the
training set

(9)

where x denotes the spatial domain coordinate vector. For esti-
mation of we refer the reader to Section III.

1) Alignment of Training and Test Samples for Shape Prior
Computations: For learning the shape prior in (8), the pose vari-
ation of objects in the training set is removed by an alignment
operation in a preprocessing step. In this operation, a set of sim-
ilarity transformation parameters (translation, scaling, and ro-
tation) is computed in order to align the training samples with
each other. For alignment in 2-D problems, we use the energy-
minimization based approach used in [39], and described in
Appendix D-II. For alignment in 3-D, we use a faster, moment-
based approach described in Appendix D-I. The training con-
tours are aligned with one another during the training phase,
i.e., are aligned into through a

transformation . In this procedure we fix the pose of one of
the training samples and align all others to it. Fig. 2 (from a to
c) represents a simple simulation of this operation for a training
set of size two.

During the segmentation phase, same alignment operations
are also carried out among the th candidate boundary and the
aligned training shapes in order to obtain from
for all , to be used in (8) above.

2) Gradient Flow of the Coupled Shape Prior: In this sec-
tion, we define a gradient flow for the joint shape prior in (8).
For the kernel-based density in (8) with the distance metric,
we have

(10)

We compute the gradient flow in the normal direction that
increases most rapidly for each object contour. The gradient di-
rection for contour is

(11)

where , ,

and x denotes the position vector. The
derivation of this gradient flow can be found in Appendix B.

3) Coupling Effect in Shape Forces: Equation (11), defines
the evolution of the contours towards shapes at the local max-
imum of the coupled shape prior, where acts as the
weight for the th training sample. We note that training shapes
that are closer to contribute with higher weights. Further-
more, we also note that the weight function exhibits
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Fig. 3. Explicit representation of the relative pose parameters in a multiobject
ensemble. What are illustrated as examples are the � component of the relative
mass center, � , as well as the angle � of one of the objects as related to the
ensemble in 2-D.

coupling between the individual structures to be segmented.
In particular, this function involves a product over the kernel
functions for all of the structures. This implies, for example,
that a training sample (composed of curves for structures) for
which the th structure (where ) is close to
will have relatively higher weights for the evolution of the other
structures as well. This shows that each training sample affects
the evolution as an ensemble of coupled structures rather than
as independent structures.

C. Relative Pose Prior for Multistructure Objects

In this section, we discuss the learning and use of .
We estimate through kernel density estimation as
follows:

(12)

where is the relative pose of the th training sample of the
th structure, whereas is the relative pose of the th struc-

ture in the candidate (segmenting) ensemble of curves. Here
is a weighted Euclidean distance.3 For estimation of

we refer the reader to Section III. We use moments to com-
pute the relative pose parameters involved in (12). Moments
provide a link between the SDF-based contour representations
and the pose parameters. The relative pose is computed
over the globally aligned set of training shapes [i.e., in the
space—see Fig. 2(b)]. We describe the construction of this set
in Section II-C1 below. To compute the relative pose of
the th segmenting object, the candidate (segmenting) ensemble
of curves is globally aligned to the training set, and then the
relative pose is computed using moments as described in
Section II-C2.

1) Alignment of Training and Test Samples for Relative Pose
Prior Computations: In order to learn the relative poses of the
structures of interest, we align the training samples globally. For
each training sample (composed of multiple structure bound-
aries) we compute one set of similarity transformation param-
eters (rather than a separate set of parameters for each struc-
ture). In this way, the training contours are
aligned through the transformation to .
Fig. 2(a) and (b) represents a simple simulation of this oper-
ation for a training set of size two. We realize this particular
alignment operation using a moment-based representation of

3We consider weights that sum up to one.

pose [59]. For the details of the algorithm we refer the reader
to Appendix D-I.

During the segmentation phase, such alignment operations
are also carried out among the candidate boundary and the
aligned training shapes in order to obtain from , and then
compute that is used in (12) above.

2) Background on Moments and Computation of the Pose:
We now discuss the computation of the relative pose variables
in (12) through moments. The relative pose of the th structure
is given by . Here, is the volume,

, , and are the coordinates of the structure in the , ,
and directions, respectively, and is the orientation of the
structure, all computed after global alignment, as described in
Section II-C1. We use moments to compute the relative poses

(13)

In (13) above, corresponds to volume, ,
, and correspond to , , and po-

sitions relative to the ensemble mass center, and corresponds
to the canonic orientation of the structure relative to the
orientation of the ensemble. In this context, we present a so-
lution where is a vector that consists of three components,

, which are angles that represent the rotation of
an object related to inertia axes. These angles are defined by the
inertia tensor, to be defined in the following [see (16)]. Fig. 3
contains a simple sketch illustrating (some of) the relative pose
parameters in a two-object ensemble in 2-D.

Following [60], the 3-D moment of order , of an
image function, , is defined as

The 3-D moment for a discretized image,
, is

Focusing on moments of objects, we use

if
otherwise.

We compute moments of objects that are geometric shapes and
are, therefore, inherently defined by their boundaries. Using this
fact, we evaluate moments of segmenting curve or surface using
the heaviside function of its SDF, where heaviside is defined as

otherwise
(14)

The boundary of the object defines the domains of integration
(or summation in the discrete case), which we denote by .
With these notations, we compute the 3-D moment of order

, using the formula .

In particular, given the embedding function of the
object shape, where is a signed distance function, we de-
fine and, therefore,

.
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Note that whenever , the argument is
located inside the object. Thus, takes value 1 for the inside
region of the object according to (14) above. In practical imple-
mentations we employ and , which are approximations to

and , respectively, see [14].
Define be the set of all moments. Let

and
for any . In

addition, define the complete set of moments of order up to
order two by

In order to characterize the orientation of an object, we em-
ploy the inertia tensor. Following [61], define the inertia mo-
ments as

(15)

In other words, inertia moments are defined using moments of
objects centered in their mass centers. Moreover, consider the
following matrix:

(16)

also known as the inertia tensor [61]. We analyze the prod-
ucts of inertia, i.e., , , , , , and and the
principal moments of inertia, i.e., , , and . We rep-
resent the orientation of an object as a three component vector

, where , , and are rotation angles around
, , and axes, respectively. This decomposition em-

ploys Euler angles, see [62] and [63].
Next, we introduce characterizations of , , and in

terms of moments. Consider without loss of generality , which
also represents the angle between the projections of the eigen-
vectors of on plane and the coordinate axes and

, (see [60], [62]). In order to evaluate , we follow the Jacobi
procedure in [64], where annihilation rotation matrices are used
towards diagonalization of symmetric matrices. In this context,
note that the inertia tensor in (16) is a symmetric matrix. Bearing
in the mind that the angle

(17)

depends on , and substituting (15) into (17), we obtain

(18)

Of course, similar expressions hold for and .

Now let us discuss the use of these moment-based representa-
tions for the density estimate in (12). The Gaussian kernel func-
tions appearing in (12) can be expressed as

(19)

where , and are weights. We con-
sider weights that sum up to one4. Here, and denote
the moments of and , respectively, and the angles follow
the same convention.

3) Gradient Flow of the Relative Pose Prior: Next, we
present the gradient flow for the relative pose prior in (12). The
gradient flow of (12) is

(20)

(21)

for each . The derivation of this gradient flow
can be found in Appendix C. In (21), the short notation term

depends on (of the evolving shapes). For example,
when , and refer to and , respectively. The complete
definition and details of can be found in Appendix C.
Note that in (21), only , , and represent exponential argu-
ments, all other superscripts are indices.

During the evolution of the level sets, the relative pose pa-
rameters are implicitly updated. We show the influence of

4In (9) and (19) we use the same kernel notation for shape and relative pose
prior modeling. The distinction should be clear from context.
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Fig. 4. Moment-based relative pose reconstruction. The small white circles are the mass centers of the corresponding objects. The green small circles are the mass
centers of the blue and red objects together. (a) Training set. (b) Initialization. (c) Iteration 140. (d) Steady state after iteration 200.

TABLE I
AREA AND MASS CENTER DISTANCE (MCD) RECONSTRUCTION

MEASUREMENTS IN PIXELS FOR THE EVOLUTION EXPERIMENT

ILLUSTRATED IN FIG. 4. MCD IS THE DISTANCE BETWEEN THE WHITE

(CORRESPONDING) MASS CENTER AND THE GREEN ONE IN PIXELS

the relative pose prior on contour evolution in a 2-D example.
This experiment demonstrates the evolution component based
solely on relative pose prior information. We illustrate the mo-
ment-based evolution towards the reconstruction of the relative
pose of two ellipses in Fig. 4. In this experiment, we observe an
evolution driven solely by priors on relative areas, relative po-
sitions, and relative orientations of two objects. Neither priors
on shape, nor any data term are used in the evolution. Further-
more, there is no global positioning information, either. Hence,
we just observe a coherent deformation on the objects such that
they try to resemble the training samples in terms of relative
pose. For clarity, relative areas means their size ratio; relative
position means the distance between the mass center of a struc-
ture and the one of the ensemble; relative orientation means the
angle between the principal axes of the two objects. We present
these parameters in Table I. In the training set, for simplicity,
we use only one training sample in which we have two arbi-
trarily positioned parallel ellipses with size ratio of three and
the same orientation [see Fig. 4(a)]. Therefore, the ratio of rel-
ative positions is also three. These ratios are shown in Table I.
In Fig. 4, each white small circle shows the mass center of the
object encircling it. The small green circle is the mass center of
the ensemble. An arbitrary initialization with size ratio of one
(1.02), is used as shown in Fig. 4(b), i.e., the blue and red ob-
jects initially have similar sizes. After 140 iterations that follow
the flow in (20), the size ratio of the two active contours and
the distance between mass centers are reconstructed according
to the training sample, as shown in Fig. 4(c). Note that the rela-
tive orientation of the ellipses is also recovered at steady state,
as shown in Fig. 4(d) and Table I.

4) Coupling Effect in Relative Pose Forces: Bearing in mind
that we have used similar architectures of the gradient flow for
coupled shape priors as well as for relative pose priors, in both of
these schemes we achieve similar effects of coupling. Following
Section II-B, (12) and (20) play similar roles to (8) and (11),

respectively, in coupling. In addition, the relative pose variable
we estimate here for each structure itself inherently provides a
measure of coupling between multiple structures.

D. Segmentation Algorithm

The overall flow for segmentation involves a weighted sum
of flows for the (C&V) data term, the coupled shape prior, and
the relative pose prior forces. We represent these forces by mod-
ules and illustrate the segmentation algorithm via the diagram
in Fig. 5.

In the algorithm, given a test image, initially a set of candi-
date segmenting contours are initialized on it. The initial-
ization method can be either manual or automatic. Then in an
iterative process, the curves (surfaces) are deformed by a force
which is linear combination of intensity, coupled shape, and rel-
ative pose forces that are computed in three different spatial do-
mains, in parallel. As seen in the diagram, we have three curves

, , and in different domains. The intensity-based force is
computed in the image domain while the prior forces are com-
puted in different domains. The reason is that, we relate candi-
date segmenting contours to the training set samples of the target
objects.

During prior force computations, we relate (align) seg-
menting contours to the training set samples via and

operations, where and .
The coupled shape pose forces are computed on while the
relative pose prior forces are computed on . All the computed
forces are retranslated into their original image domain for
evolution using the transforms and (for de-
tails, see Fig. 5). For these alignment (registration) operations,
we use the method in [39] described in Appendix D-II in 2-D
problems, and a faster method described in Appendix D1 in
3-D problems. Note that the alignment operations take place
twice per iteration for each prior computation. In our 3-D
experiments, these operations take around 80% of the overall
computation time. We provide more details about quantitative
analysis of the algorithm when we show experimental results
in the following section.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the effects of coupled shape
and relative pose priors on phantom and real 2-D image slices
and real 3-D MR image volumes . We show segmentation re-
sults comparing our approach with C&V and the single nonpara-
metric shape prior [41] based methods. We refer to the synergy
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Fig. 5. Segmentation Algorithm—In each step, three forces are evaluated: C&V, coupled shape (see Section II-B), and relative pose (see Section II-C above).

of our coupled shape and relative pose prior based method as one
method while it allows for use of the two prior forces separately
as well. In addition, we compare our method with state of the art
medical image segmentation tools such as FreeSurfer [42], [54]
and FSL FIRST [55], [56] used in subcortical segmentation.

We perform a quantitative analysis of the accuracy of the seg-
mentations in terms of false positive rate (FPR) and false neg-
ative rate (FNR), (see [65]), Dice error rate (see [66]),
and the average surface distance as in [67]. We present 2-D and
3-D experimental results on segmenting the head of Caudate
Nucleus, Thalamus, Accumbens Nucleus, Putamen, and Globus
Pallidus which are Basal Ganglia structures. For the quantitative
analysis and training set building, we use ground truth shapes
which are manually segmented by medical experts.5

We have utilized various manual and automatic initializations
in our experiments. In the 2-D experiments presented here, we
have manually initialized the algorithm with a small circle inside
each disconnected part of each subcortical structure. In order not
to use computational resources for shape and pose prior opera-
tions in the initial iterations when the segmenting boundaries is
away from the true boundaries, we have run the flow on
these initial boundaries until convergence, and then turned on
the forces involved in our technique. In the 3-D case, we have
used a number of automatic initialization methods that exploit
the training data. In earlier experiments, we have initialized our
algorithm with the mean training shape as in [44]. In the 3-D
results presented here however, we have used a different ap-
proach that picks and uses the boundary of one training sample
based on the similarity of the training image to the test image.
In particular, we compute the mass centers of the test and the
training images, and use the boundaries of the training sample
with the closest mass center to the test image as the initializing
curves. One could use other simple intensity statistics as a selec-
tion criterion as well. Given the fact that our algorithm, just like
many active contour-based segmentation algorithms, is based on
solving an optimization problem by gradient descent, its final
result is expected to have some dependence on the initializa-
tion. While detailed experimental analysis of the nature of that
dependence is beyond the scope of this paper, our experiments
based on the initialization procedures described above have pro-
duced reasonable segmentations without significant differences
among the results of different initializations and among the com-

5We provide a manual segmentation tool which is freely available at [68].
Basic information about this tool as well as a visual snapshot is provided in
Appendix A.

Fig. 6. Ground truth shapes used in creating synthetic images.

putation times. We feel that our coupled priors provide useful
constraints on the evolving curves/surfaces to drive them to the
true target region faster.

Our scheme requires tuning of parameters. In this context,
in order to specify the kernel size of the object, we use
the maximum likelihood kernel size with leave-one-out method
(see [69]). This choice is used for both coupled shape and rela-
tive pose priors, which are described in Sections II-B and II-C,
respectively.

Theoretically, the running time of the overall algorithm is
bounded by , where m is the number of analyzed
structures and represents the amount of training shapes. The
time requirements for the test of segmentation of 2, 3, and 5
structures in 3-D are reported as 15, 30, and 80 s per iteration
on a computer with Quad core 2.5 GHz CPU and 4 Gb of RAM,
respectively.

A. Experiments on 2-D Data

1) Experiments on 2-D Synthetic Data: In this section, we
show 2-D segmentation results on twelve synthetic brain struc-
ture images. The synthetic data are created on top of ground
truth shapes. The synthetic data consists of ternary images.
We use one intensity level for Caudate Nucleus, a second one
for Putamen, and the third represents background. The ternary
mode allows for simulating variable contrast. We add Gaussian
noise on these ternary images. Note that for each brain structure
image, we have a ground truth and a noisy ternary image.
Ground truths (see Fig. 6) are used for training while noisy
ternary data are used for testing.
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Fig. 7. Segmentations on synthetic data. (a) C&V method, (b) single shape [41], (c) relative pose (only), (d) proposed coupled shape and relative pose priors.

TABLE II
AVERAGE QUANTITATIVE ACCURACY RESULTS

FOR THE EXPERIMENT SHOWN IN FIG. 7

In this context, we have performed a leave one out experi-
ment. In each round, we choose one noisy ternary image for
segmentation. The rest of the images, i.e., ground truth shapes,
are used in training. We work with high contrasted Caudate Nu-
cleus and low contrasted occluded Putamen, in order to show the
effect of using the coupled shape and relative pose priors. The
results for one test image are shown in Fig. 7. The C&V method
[see Fig. 7(a)] cannot recover the occluded part of Putamen.
When using single shape prior of separate objects (see [41]) we
obtain a better segmentation result for the occluded part [see
Fig. 7(b)]. However, the estimated boundaries for Caudate Nu-
cleus and Putamen overlap. In this experiment, the overlapping
is resolved by the relative pose prior scheme [see Fig. 7(c)], al-
though, of course, we do not expect this scheme to recover the
shapes very accurately as no priors on shape are used. Neverthe-
less, this example helps us observe the positive impact of using
the relative pose prior. Using coupled shape and relative pose
priors together we achieve better segmentation results than all
other results, as shown in Fig. 7(d). The coupled shape and rela-
tive pose forces expand the contour to cover the bottom parts of
the Putamen. These forces also result in better recovery of the
occluded regions. In this context, we illustrate the average val-
idation results of Putamen in twelve leave one out experiments
(see Table II). All three performance criteria indicate superior
accuracy when using coupled shape and relative pose priors
together.

2) Experiments on 2-D Real Data: In this section, we present
segmentation results on real 2-D MR data. In these experiments
we use proton density (PD) MR images, although T1 contrast
MRI is more commonly used in subcortical structure analysis.
The PD modality is interesting to explore because it presents
challenging scenarios due to its low contrast. Experiments on
T1 contrast images are presented in the next section.

We demonstrate the results of this experiment in Fig. 8. Each
method starts with the same initial conditions and we show
the results obtained in steady state. We use a training set of
twenty binary shapes that comprise the structures of interest,

Caudate Nucleus and Putamen. The C&V method results in in-
evitable leakages (false positives) for both Caudate Nucleus and
Putamen [see Fig. 8(a)]. We show the results obtained using
single shape priors for separate structures in Fig. 8(b) and (c).
For the head of Caudate Nucleus, the single shape prior method
presents significant missing (false negatives) and small leakages
(false positives) towards the Ventricles. For Putamen, all the
segmentation results present lateral leakages. However, the pro-
posed coupled shape prior based approach segments both struc-
tures more effectively due to the coupling effect between shapes
[see Fig. 8(d)]. We observe that the coupled shape force recovers
the missed regions of Caudate Nucleus and provides better ac-
curacy in segmenting the Putamen, as compared to the single
shape prior method. The benefit of using a coupled prior is ex-
pected to be greater when the boundary of some objects is not
well supported by the observed image intensity. This is what we
observe through the Putamen results on the given test images.
The synergy between the coupled shape and the relative pose
forces reduces the overall error further in Caudate Nucleus and
Putamen for all images [see Fig. 8(e)]. In these series of exper-
iments, we observe that coupled shape and relative pose priors
provide much more structured shape and strong geometry con-
straints on objects. In particular, the size and the distance con-
straints between shape pairs, improve the accuracy of the results
significantly. We show the achieved average accuracy of the seg-
mentation results from Fig. 8 in Table III.

B. Experiments on 3-D Real Data

In this section we show results obtained from T1 and T2 con-
trast 3-D MR images. For the T1 contrast experiments, we use
the data set, provided by the IBSR repository6 [70], in which
there are 18 cases, composed of 14 male and 4 female sub-
jects. The range of the age of the group is from 7 to 71 and
the slice thickness is 1.5 mm along the coronal section. For the
T2 contrast experiments, we used seven cases for which the pro-
tocol consisted of spin echo pulse sequence scan in a 3T Philips
Achieva machine, with head first-supine (HFS) patient position.
The range of the age of the group is from 8 to 55 and the slice
thickness is 6 mm along the axial section.

1) Experiments on 3-D T2-Weighted Real Data: We used
the leave-one out method when preparing the training set for a
particular test image. We show the results of the segmentations

6“The MR brain data sets and their manual segmentations were provided by
the Center for Morphometric Analysis at Massachusetts General Hospital and
are available at http://www.cma.mgh.harvard.edu/ibsr/”.



1968 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 12, DECEMBER 2010

Fig. 8. Segmentation results of the Caudate Nucleus and the Putamen on PD-weighted MR slices. Each row shows segmentation results on a particular test image
achieved by different techniques. Each column represents one technique applied on different test images. (a) C&V method. (b) and (c) Single shape prior for
separate structures Caudate Nucleus and Putamen. (d) Proposed coupled shape prior (only). (e) Proposed coupled shape and relative pose prior.

TABLE III
AVERAGE QUANTITATIVE ACCURACY RESULTS

FOR THE EXPERIMENTS IN FIG. 8

of C&V, the coupled shape prior, and the synergy of coupled
shape prior and relative pose prior based methods in Figs. 9–12.
We compare the segmentation results of the three methods to
ground truths and show superimposed semi-transparent surfaces
of segmented structures and ground truths in Fig. 9. We also
show all these surfaces separately, in an opaque visualization
mode, in Fig. 10. We present the combined result of the mul-
tistructure segmentation in Fig. 11. In addition, we show se-
quences of 2-D slices that intersect the segmentation volumes in
Fig. 12. In all the images, we observe that when applying C&V
there are serious leakages, for example, in Fig. 11(c) and (d),
the left and right Caudate Nucleus overlap. In contrast, when
applying coupled shape and relative pose priors, the left and
right Caudate Nucleus structures are separate, see, for example,
Fig. 11(e)–(h). We present a quantitative evaluation of the accu-
racies of all methods, in Table IV. Our approach achieves better
overall accuracy, i.e., smaller Dice error rates, as compared to
existing techniques.

2) Experiments on 3-D T1-Weighted Real Data: We have
performed experiments on the IBSR data set [70] for joint seg-
mentation of Caudate Nucleus, Putamen, Accumbens Nucleus,

Globus Pallidus, and Thalamus. We show one sample result
achieved by our approach, together with the ground truth, in
Fig. 13. We have tested our algorithm for different number of
subcortical structures in the IBSR dataset and analyzed its per-
formance. In particular, we have tested our method on joint seg-
mentation of two structures (Caudate Nucleus and Putamen),
three structures (Caudate Nucleus, Putamen, and Thalamus),
and all five structures. We have not observed any significant
change in the behavior or convergence of our iterative algo-
rithm. We have performed a quantitative comparison of our ap-
proach to FreeSurfer and FSL FIRST on the IBSR data set. In
Fig. 14, we present the average performance over 10 test cases
in terms of the Dice and the average boundary distance mea-
sures [67]. Based on these results, FSL FIRST and FreeSurfer
perform slightly better than our technique. We should note that
both FSL FIRST and FreeSurfer exploit the intensity statistics
heavily, whereas our approach uses the simplistic C&V data
term, which is not based on learning the intensity statistics from
the training data. This is because our objective in this paper has
just been to propose and demonstrate a new way of incorpo-
rating coupled shape and pose information into the segmenta-
tion process. We should also note that the test data used in this
experiment was also used in the training of the FSL-FIRST.
Despite these facts, our approach achieves comparable perfor-
mance, which suggests that the benefits provided by our shape
and pose priors are significant. We should also note that the ver-
sions of FSL FIRST and FreeSurfer we used were tuned to T1
data only, whereas our approach can be applied to any type of
data in its current form. One more point is that our approach has
a significantly lower computational cost than FreeSurfer (min-
utes versus hours).



UZUNBAŞ et al.: COUPLED NONPARAMETRIC SHAPE AND MOMENT-BASED INTERSHAPE POSE PRIORS 1969

Fig. 9. Comparison of segmentation results to ground truths. The left and right
columns represent Caudate Nucleus and Putamen respectively. The segmenta-
tion results are shown in yellow and the ground truths are shown in blue. (a) and
(b) show the result of C&V. (c) and (d) illustrate the results using the coupled
shape prior method. (e) and (f) represent the result employing the shape and rel-
ative pose prior scheme.

Our next experiment involves intensity inhomogeneities. In
particular, we have tested our technique on perturbed IBSR data
with simulated RF overflow artifacts [11]; see Fig. 15 for such
sample data. To simulate data with RF overflow artifacts, we
consider the coronal plane. For each coronal slice, we multiply
the original image with a bias field that is 1 at the center and
increases linearly in the horizontal direction. We consider two
artifact levels, shown in Fig. 15(b) and (c), where the maximum
factor multiplying an intensity is 5 and 10, respectively. In
Fig. 16, we show quantitative results based on the Dice score,
on data with RF overflow artifacts. In Fig. 16(a), we observe
that the proposed method achieves the highest Dice score
among the three techniques in the scenario with high RF arti-
facts. Fig. 16(b) shows how much the three techniques degrade
in terms of the Dice score in the presence of RF artifacts. We
observe that the proposed technique exhibits robustness to
intensity inhomogeneities. This emphasizes the important role
played by the coupled shape and relative pose priors in our
framework.

In another series of experiments, we have analyzed the sensi-
tivity of the proposed segmentation technique to the number of

Fig. 10. Comparison of segmentation results to ground truths. The left and right
columns represent Caudate Nucleus and Putamen respectively. Figures (a) and
(b) show ground truths. Figures (c) and (d) illustrate the segmentation result of
C&V. Figures (e) and (f) represent the result achieved using the coupled shape
prior method. Figures (g) and (h) show the result obtained employing the shape
and relative pose prior scheme.

training shapes. We have considered the problem of segmenting
Putamen and Caudate Nucleus in a single test image, and varied
the number of training samples from 1 to 17. The results in
terms of the Dice coefficient are shown in Fig. 17. We observe
a mild trend of increasing accuracy in the results as the number
of training shapes are increased.

IV. CONCLUSION

We have presented a statistical approach for segmentation of
multiple Basal Ganglia structures. We view the segmentation
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Fig. 11. Comparison of volumetric segmentations from two view-points,
downward (left column) and upward (right column). The red and yellow
structures represent Caudate Nucleus and Putamen, respectively. Figures
(a) and (b) show ground truths. Figures (c) and (d) show the result of C&V.
Figures (e) and (f) illustrate the result achieved using the coupled shape prior
method. Figures (g) and (h) represent the result achieved using the shape and
relative pose prior scheme.

problem in a maximum a posteriori (MAP) estimation frame-
work for the unknown boundaries of the anatomical structures.
This perspective results in an optimization problem containing
multiple terms. We use a standard term for the conditional den-
sity of the MR intensity data given the unknown boundaries. Our
main contribution however is focused on the prior density terms
for the boundaries. Our priors involve joint, coupled densities of
multiple structure boundaries. We decompose the boundary in-
formation into two parts: shape and pose. We further decompose
the pose information into the global pose of the set of structures

Fig. 12. A comparison of volumetric segmentation results on 2-D axial slides.
The red and yellow structures represent Caudate Nucleus and Putamen, respec-
tively. The columns represent ground truths, C&V, coupled shape prior, and
coupled shape and pose prior based method segmentation results, from left to
right.

TABLE IV
QUANTITATIVE ACCURACY RESULTS FOR THE 3-D EXPERIMENTS IN FIG. 11

Fig. 13. Five-structure segmentation results on subject IBSR_01 from the
IBSR data set. For better visualization the structures are displayed in two
groups. Top: Caudate Nucleus (red), Putamen (yellow), Accumbens Nucleus
(blue). Bottom: Globus Pallidus (brown), Thalamus (white), Accumbens
Nucleus (blue). Left: ground truths. Right: results of proposed approach.

of interest, and the relative (intershape) pose among the struc-
tures. We assume we do not have any prior information about
the global pose, but rather we exploit the relative pose among
the structures. We learn both the joint shapes and the relative
poses of the structures from manually-segmented training data
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Fig. 14. Quantitative evaluation of the segmentation results on the IBSR data
based on (a) the Dice score, and (b) the average surface distance. The colored
bars indicate the average score over all test samples while the error bars indicate
the maximum and the minimum scores achieved on a test image.

Fig. 15. RF overflow artifacts over the IBSR_01 subject. Original image with
no artifacts is shown in (a). Images with RF artifacts where the most distorted
pixels are multiplied by factors of 5 and 10 are shown in (b) and (c), respectively.

using nonparametric multivariate kernel density estimation. In
this process, we represent boundaries by signed distance func-
tions, and we compute relative poses using moments. We incor-
porate the learned densities as priors into our MAP estimation
framework, and derive the gradient flow expressions for the op-
timization problem. We implement the gradient flow using an
active contour-based iterative algorithm. In the course of this al-
gorithm, we perform appropriate alignment operations between
the segmenting curve and the training data. In particular, we
perform alignment with respect to global pose, enabling us to
evaluate the contribution from the relative pose prior densities;
and we also perform alignment with respect to both global and
relative pose, enabling us to evaluate the contribution from the
joint shape prior densities. This leads to an overall evolution
driven by the observed MR data as well as the learned shape
and relative pose prior densities. In this way, not only the ob-
served data and the shape prior information about single struc-

Fig. 16. Performance in the presence of RF overflow artifacts. “0” indicates the
case with no artifacts, whereas “5” and “10” correspond to the two levels of RF
overflow artifacts described in text. (a) Dice scores. (b) Percentage of change in
the Dice scores as compared to the case with no artifacts.

Fig. 17. Sensitivity of the proposed technique to the number of training
samples used. Plots show the Dice score achieved on the subject IBSR_01 for
(a) Caudate Nucleus and (b) Putamen.

tures, but also the learned statistical relationships among struc-
tures in terms of both shape and pose have an impact on the final
segmentation. We present experimental results of segmenting
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up to five Basal Ganglia structures simultaneously and in a cou-
pled fashion. First we demonstrate the improvement provided by
our technique over existing active contour-based methods, espe-
cially in challenging scenarios involving data with low contrast,
occlusion, or vague structure boundaries. Our quantitative per-
formance analysis supports these observations. Next, we com-
pare our approach to FSL FIRST and FreeSurfer. Although our
approach does not exploit the intensity statistics of the data, it
achieves comparable performance. Furthermore, on data cor-
rupted by intensity inhomogeneities, our technique appears to
be more robust. The proposed approach could also be applied to
segmenting other basal ganglia structures, or in fact to any other
segmentation problem involving any number of multiple, cou-
pled objects. One could improve upon our experimental results
by using a learning-based data term in our framework, that could
potentially model the intensity characteristics more accurately.

Further experimental analysis of our approach could involve
data of normal and diseased subjects. When such data are in-
cluded in the training set, our approach will be able to exploit
that. Furthermore we should note that the nonparametric density
estimation structure allows our approach to learn multimodal
densities. Hence, in the process of segmenting a test image given
a training population involving multiple “subclasses” of data
(e.g., normal and diseased), our approach should automatically
guide the segmentation towards one of the “subclasses” in the
prior. Even further analysis could involve testing the behavior
of the algorithm when the test subject belongs to a “subclass”
not included in the training set.

APPENDIX

A) Implementation Details and 3-D Ground Truth Labeling:
We provide a 3-D image editor for creating and visualizing
ground truths of anatomical structures in medical images. A
snapshot of the application program is shown in Fig. 18. This
editor is able to read data in DICOM (see [71]) and Analyze
(see [72]) formats. The manual labeling of the structures is per-
formed by using spline contours which are drawn along the
boundary of the target objects. The user goes through the slices
of the volume, and at each level depicts the splines. Once all
the slices are finished, inside of the contours are filled and the
slices are merged to result in a labeled volume. Splines are im-
plemented using vtkSplineWidget class (see [73]) and visual-
ization methods are implemented using VTK library [74]. The
open-source code and more details are freely available at [68].

The level set based segmentation framework has been im-
plemented using ITK [75], which is a publicly available tool
that provides C++ libraries in an object oriented framework. We
have built our segmentation modules as inherited from ITK level
set framework which provides an optimized (fast) curve evolu-
tion algorithm in 3-D.

B) Computation of the Coupled Shape Prior Flow: In this
section, we describe the computation of the gradient flow of

. From (8), we have

(22)

Fig. 18. 3-D ground truth editor. The left window is a 2-D sectioning plane
where the user can use drawing tools. On the right window, the current plane
on the left is superimposed to the volumetric data, in order to provide 3-D posi-
tioning information.

where is the signed distance function for the training

shape and the object. Note that is a function of time .
1) Derivation of the Coupled Shape Prior Evolution For-

mula: Consider the derivative of the product of kernels

Then

(23)

Next, consider the derivatives of the kernels

(24)
where x denotes the position vector. Substituting (24) into (23),
we obtain

Since are common multipliers

(25)

Employing the inner product



UZUNBAŞ et al.: COUPLED NONPARAMETRIC SHAPE AND MOMENT-BASED INTERSHAPE POSE PRIORS 1973

and (25) we have
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In order to maximize (22), we evaluate gradient directions,
which assure the fastest increase of the functional
for each object contour. The gradient directions for the contours

are

(26)

2) Coupling Effect of Multiple Shapes: The set of (26) im-
pose that the active contours evolve toward shapes that manifest
local maximum of objects’ joint shape prior. At the local max-
imum of the joint shape prior , the gradient flow is zero,
i.e., at the steady state, when the joint shape prior is maximum,
there is no flow (for any of the contours). At steady state, we
have

where x denotes the position vector. Therefore, we impose the
following constraints:

(27)

where Note that,

and thus .
The set of (27) are equivalent with (11). Then, the coupled

shapes at the local maximum satisfy

C) Analytical Computation of Relative Pose Prior Flow:
Without loss of generality, in this Appendix, we present for-
mulae for processing. The cases and are similar.

During the evolution of active contours, the relative pose
parameters depend on time. Therefore, from (18), we have

(28)

Define

and

(29)

In addition, let and
. With these notations, we have the following interpretations:

and .
In the following, we develop the derivative of the orientation

angle with respect to time. We use trigonometric relationships
to model the moment based expressions, while keeping in mind
their dependence on time. Therefore, we have
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(30)

Define the following coefficients:

(31)

Then, by substituting (31) into (30), we have

(32)

Further, substituting (32) in (19), we have

Therefore, we have
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Note that we use index to represent the anatomical structures
of interest and use index to iterate over the training set. For ex-
ample, if the multistructure ensemble consists of Caudate Nu-
cleus and Putamen, then , and . Although
and appear as upper script indices, they are not powers. Note
also that in these derivations, we have neglected the weights in-
volved in the distance computation for notational simplicity.

Define the moments pose force (MPF) of the object as

(33)

Equation (33) is identical to (21) when we add in the neglected
weights. With this notation, we have

We define the -uples

and as vector valued up-
date per each pixel. Therefore,

(34)

defines the fastest evolution. The set of (34) are identical to (20).
D) Registration Details: In this Appendix, we provide the

details of the registration methods we have used. Let be an
image that is to be registered, or source image. Let this image
be embedded in the continuous domain , i.e., for any ,

represents a pixel or a voxel value.
Let be the registration result, or a target image. We model
registration by a similarity transformation with the pose
parameter consisting of translation, rotation, and scaling.

The transformation of is defined to be the new image
obtained by moving every pixel/voxel of the image to a
new position making the intensity of at pixel/voxel

the same as the intensity of at location Thus the
two images and are related (with slight abuse of
notation) by for all . Equivalently,

can be written in terms of as follows:

(35)

Assume is a contour, i.e., a curve in 2-D or a surface in
3-D. We define the transformed contour to be the new
contour that is obtained by applying the transformation to every
point on . The shape represented by a contour can also be
represented by a binary image whose value is 1 inside
and 0 outside .

1) Registration Based on Moments: In this section we de-
scribe the moment-based method of registration we use. We
mention that this method is also described in [59] and is a rigid
body transform that employs an isotropic scaling.

Let be the origin of the coordinate axes of and
, , and be the coordinate axes. Let be a 3-D
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surface in and be a function. Then,
.

The similarity transformation with the pose pa-
rameter consists of translation

, rotation , and scaling , and
it maps a point to as fol-
lows:

. We describe the out-

line of the moments based registration scheme in Algorithm 1.
Algorithm 1 Compute Moments Based Registration Func-

tion: Input:
none —a 3-D surface, which is a registration source

none —a 3-D surface, which is a registration target
Output:

none —a function that represents a
moment-based registration scheme

CompCanonicRegistrationFunction
1) Compute the mass centers of and . Note

that the mass centers are given by the vector
. Let and

be the mass centers of and respectively.
2) Define , which are the parameters of the

translation .
3) Compute the principal axes of and . Let and

be the 3 3 matrices that describe the directions of the
inertia axes for the first and the second surface, respectively
[see also (16)].

4) Let .
5) Compute the volumes of and . Let and

be the volumes of and , respectively.
6) Let which defines an isotropic scaling

of on each one of the three axes of coordinates.
When the mass center of is centered in the origin, the inertia

axes are parallel with the coordinate axes, and the volume of the
source equals the one of , we say that the pose of the target

is the canonic pose of . Alternatively, the mass center of
together with the inertia axes defines the canonic orientation of
the source.

2) Registration Based on Energy Minimization: In this
section we describe the energy minimization based method of
registration we use in 2-D for the coupled shape prior based
forces. We mention that this method is also described in [39],
[41].

Alignment of Training Curves by Similarity Transforms:
We discuss how to align the training curves .
In particular, a similarity transform is applied to each curve
such that the transformed curves are aligned. Let us first de-
fine the similarity transform and then provide a criterion for
alignment. The similarity transformation with the pose
parameter consists of translation , ro-
tation , and scaling , and it maps a point

to as follows:

.

We now provide a criterion for alignment. Given training
curves, we obtain aligned curves by a similarity

transformation with pose estimate for each
. The pose estimates are chosen such that they

minimize an energy functional for alignment. The energy func-
tional we use is given by

(36)

where is a binary map whose value is 1 inside and 0 out-
side , and is a transformed binary map whose value is
1 inside and 0 outside . Following (35), and

are related by .
The numerator in (36), which is the area of set symmetric differ-
ence between two interior regions of and ,
basically measures the amount of mismatch between
and , and the denominator is present to prevent all the
binary images from shrinking to improve the cost function. The
double summation in (B-9) implies that we compare every pair
of the binary maps in the training database. To estimate the pose
parameters, we fix the pose parameter for the first curve as the
one for the identity transform and compute by

where we use gradient descent to compute .
Alignment of the Candidate Curve: Consider the problem

of aligning the candidate curve with the aligned training
curves . To this end, we estimate a pose param-

eter such that is well aligned to

by minimizing an energy functional:

where and are binary maps whose values are 1 inside and
0 outside and , respectively.
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