
Efficient Unified Arithmetic for Hardware

Cryptography

Erkay Savaş1 and Çetin Kaya Koç2

1 Sabanci University, erkays@sabanciuniv.edu
2 Oregon State University, koc@cryptocode.net

The basic arithmetic operations (i.e. addition, multiplication, and inversion)
in finite fields, GF (q), where q = pk and p is a prime integer, have several
applications in cryptography, such as RSA algorithm, Diffie-Hellman key ex-
change algorithm [1], the US federal Digital Signature Standard [2], elliptic
curve cryptography [3, 4], and also recently identity based cryptography [5, 6].
Most popular finite fields that are heavily used in cryptographic applications
due to elliptic curve based schemes are prime fields GF (p) and binary exten-
sion fields GF (2n). Recently, identity based cryptography based on pairing
operations defined over elliptic curve points has stimulated a significant level
of interest in the arithmetic of ternary extension fields, GF (3n).

Even though the aforementioned three popular finite fields are dissimilar
mathematical structures, their elements are represented using similar data
structures inside the digital circuits and computers. Furthermore, similarity
of algorithms for basic arithmetic operations in these fields allows a unified
module design. For example, the steps of the original Montgomery multiplica-
tion algorithm [7], which is one of the most efficient methods for multiplication
in finite fields, GF (p) and rings slightly differ from those of the Montgomery
multiplication algorithm for binary extension fields, GF (2n) given in [8]. In
addition, it is almost straightforward to extend the Montgomery multiplica-
tion algorithm for ternary extension fields, GF (3n), by essentially keeping the
steps of the algorithm intact. Similarly, addition or inversion operations can
be performed using similar algorithms that can be realized together in the
same digital circuit.

To summarize, an arithmetic module which is versatile in the sense that
it can be adjusted to operate in more than one of the three fields is feasible,
provided that this extra functionality does not lead to an excessive increase
in area and dramatic decrease in speed. Quite contrarily, a unified module
that is capable of performing arithmetic in more than one field in the same,
unified datapath brings about many advantages, one of which is the improved
{area × time} product.

2 Erkay Savaş and Çetin Kaya Koç

1 Fundamentals of Extension Fields

The elements of the prime finite field GF (p) are the integers {0, 1, 2, ..., p−1}
where p is an odd prime. The addition and multiplication operations in GF (p)
are modular operations performed in two steps:

1. regular integer addition or multiplication, and
2. reduction by the prime modulus p if the result of the first step is greater

than or equal to the modulus.

The elements of the binary extension field GF (2n) can be represented as
binary polynomials of degree less than n if polynomial basis representation is
used. Analogous to the odd prime used in GF (p), a binary irreducible poly-
nomial of degree n is used to construct GF (2n). The addition in GF (2n) is
simply performed by modulo-2 addition of corresponding coefficients of two
polynomials. Since it is basically a polynomial addition there is no carry prop-
agation and the degree of the resulting polynomial cannot exceed n − 1. On
the other hand, multiplication in GF (2n) is more complicated and sometimes
it is beneficial to use other type of representation techniques than standard
polynomial basis such as Gaussian normal basis [9]. Here, we always use poly-
nomial basis for GF (2n) because of its suitability to the unified architecture.

Polynomial basis representation of GF (2n) is determined by an irreducible
binary polynomial p(x) of degree n. Given p(x), all the binary polynomials of
degree less than n, which has the form A(x) = an−1x

n−1 + . . . + a1x + a0,
are elements of GF (2n). Multiplication in GF (2n), similar to multiplication
in GF (p), is performed in two steps:

1. polynomial multiplication followed by
2. a polynomial division of the result from Step 1 by the irreducible polyno-

mial p(x).

Similar to binary extension fields, the elements of ternary extension fields
GF (3n) can be represented as (ternary) polynomials of degree at most n− 1,
whose coefficients are from the base field GF (3). In order to utilize polynomial
basis for ternary arithmetic, an irreducible ternary polynomial p(x) of degree
n is needed. The addition operation in GF (3n) is polynomial addition where
the corresponding coefficients of two ternary polynomials are added modulo-3
and there is no carry propagation. The multiplication is also done in two steps:
a polynomial multiplication followed by reduction by the irreducible ternary
polynomial p(x).

2 Addition and Subtraction

The most fundamental arithmetic operation in finite fields and rings, on which
all other arithmetic operations are based, is the addition operation. The key
point to an efficient finite field arithmetic is to design fast and light-weight

Efficient Unified Arithmetic for Hardware Cryptography 3

adder circuits. In many cryptographic applications in order to balance the
speed and area efficiency, adders utilizing redundant representation are pre-
ferred. The most basic form of redundant representation is the carry-save form
in which an integer is represented as the sum of two other integers, namely
x = xC + xS where xC and xS are known as carry and sum components of
the integer, respectively. The addition operation for carry-save representation
can then be performed using full-adders which have three binary inputs and
two binary outputs. Full-adders connected to each other in cascaded fashion
can perform addition where one of the operands are in redundant form while
the other in non-redundant form.

S

Cout

Cin

xi
yi

fsel

Fig. 1. The dual-field adder circuit

It is possible to perform both GF (p) and GF (2n) addition operation using
so-called dual-field adder (DFA) [12], which is illustrated in Figure 1. DFA
shown in Figure 1 is basically a full-adder equipped with the capability of
performing bit addition both with and without carry. It has an input denoted
as fsel that provides this functionality. When fsel = 1, the dual-adder circuit
performs bit-wise addition with carry which enables the circuit operating in
GF (p)-mode. When fsel = 0, on the other hand, the output Cout is forced to
0 regardless of the values of the inputs. Consequently, the output S produces
the result of modulo-2 addition of three binary input values. At most only two
of the three binary input values of DFA can have nonzero values in GF (2n)-
mode.

An important aspect of designing a DFA is not to increase the critical
path delay (CPD) of the circuit, which otherwise would have a negative effect
in the maximum applicable clock frequency; a situation is against the design
goal of the unified modules. However, a small amount of overhead in area can
be accommodated. Gate level realization of DFA shown in Figure 1 clearly
demonstrates that there is no increase in the CPD since the two XOR gates
dominate the CPD as in the case of a regular full adder. Area differs slightly
due to one extra input, i.e. fsel and additional gates that are used to suppress
the carry out in GF (2n)-mode. However, this increase in area is very small,
therefore tolerable, compared to two separate adders for GF (p) and GF (2n)

4 Erkay Savaş and Çetin Kaya Koç

which would incur much more overhead in area if a non-unified approach were
preferred.

As described above 3×2 adder arrays in cascade are in many cases sufficient
since addition operation is mostly needed in multiplications where one of the
operands is always in non-redundant form as in [10]. In this case, the carry-
save form is only used during the multiplication for partial product and the
result of the multiplication has to be converted to non-redundant form using a
carry-propagation adder after the multiplication is completed. However, when
the two operands are both in carry-save redundant form, then 3 × 2 adder
arrays in cascade cannot be used for unified addition. Instead, 4 × 2 adder
arrays are needed to operate on both operands of redundant form. Using 4×2
adder arrays eliminate the need a conversion after multiplication, which is
especially useful in elliptic curve cryptography where there are many addition
and subtraction operations in between multiplication operations.

Classical carry-save redundant representation method has one major draw-
back due to the difficulty of performing subtraction operation. When two’s
complement representation is used to facilitate the representation of negative
numbers as well as subtraction operation, the carry-save representation poses
certain difficulties. For example, during the subtraction of two’s complement
operands, a carry overflow indicate whether the result is negative or positive.
Since there can be a hidden carry overflow in carry-save representation, com-
putationally intensive operations may be needed to determine the sign of the
result, which in turn incurs significant increase in CPD and area.

Avizienis [11] proposed the redundant signed digit (RSD) representation to
overcome this difficulty. Arithmetic in the RSD representation is almost iden-
tical to carry-save arithmetic. An integer is still represented by two positive
integers; however, this time the integer is now represented as the difference
(as opposed to the sum in carry-save representation) of two other integers.
An integer X, therefore, is represented by x+ and x−, where X = x+ − x−.
As can easily be deduced from the definition of RSD, there is no need for
two’s complement representation to handle negative numbers and subtraction
operation. The RSD is, thus, a more natural representation when both ad-
dition and subtraction operations need to be supported. This is indeed the
case in elliptic curve cryptography and Montgomery multiplication and in-
version algorithms. An additional benefit of RSD representation is the fact
that the comparison operation in GF (p)-mode is now possible and efficient.
Integer comparison in GF (p)-mode can be performed utilizing a subtraction
operation. After subtracting one integer from the other, a sign test can be
performed directly by checking the first nonzero bit in significant positions
of the result. This is in general an easy method that can be implemented by
masking the most significant bits to determine which number is greater.

Realization of RSD arithmetic is very similar to carry-save arithmetic.
RSD arithmetic needs generalized full adders which are shown in Figure 2.
As observable from Figure 2, GFA-0 is a conventional full adder. From the
realization perspective, GFA-1, GFA-2 and GFA-3 are equivalent to GFA-0

Efficient Unified Arithmetic for Hardware Cryptography 5

realization in ASIC and thus there is no associated overhead in either CPD
or area.

Logic Symbol

Type

Function

GF-0 GF-1 GF-2 GF-3

x x x xy y y y

z z z z

C C C CS S S S

x+y+z = 2C+S x-y+z = 2C-S -x+y-z = -2C+S -x-y-z = -2C-S

Fig. 2. Generalized full adders

The addition of two n-bit RSD integers, X and Y , Z = X + Y , can be
done by cascading two layers of GFAs of types 1 and 2 as shown in Figure 3.
An additional circuitry is needed to force the digit instances of (1, 1) to (0, 0)
since 1− 1 = 0. Subtraction of two n-bit integers, T = X − Y can be realized
using the same addition circuit in Figure 3 by swapping y+ and y−. The adder
(or subtractor) circuit which is originally designed for GF (p) arithmetic can
easily be converted into a dual-field adder (or subtractor) by forcing the carry
output of each GFA into 0 in GF (2n)-mode.

y+
0

0

0
y-
0

x+
0

x-
0

z+
0z-

0

x-
n-1 x+

n-1

y-
n-1

y+
n-1

0

00

x-
n-2 x+

n-2

y-
n-2

y+
n-2

z-
n+1 z+

n+1 z-
n

z+
n z-

n-1
z+
n-1 z-

n-2
z+
1

Fig. 3. Addition circuit with GFAs for two n-bit operands in RSD form

One of the side benefits of RSD representation and associated adder struc-
tures is their suitability to a full unified arithmetic that incorporates ad-
dition/subtraction in three major finite fields, namely GF (p), GF (2n) and
GF (3n). Below is the RSD representation of elements of these three fields:

• Prime field GF (p): Elements of prime fields can be represented as in-
tegers in binary form. Assuming that the digits are signed, the values
that digits have and their corresponding representations are {0, 1,−1} and
{(0, 0), (1, 0), (0, 1)}.

6 Erkay Savaş and Çetin Kaya Koç

• Binary extension field GF (2n): A common practice is to consider el-
ements of binary extension field as polynomials with coefficients from
GF (2). This allows to represent GF (2n) elements by simply arranging the
coefficients of the polynomial into a binary string. A digit in GF (2n)-mode
can take the values of 1 and 0, that can be represented as {(0, 0), (1, 0)}.

• Ternary extension field GF (3n): Elements of ternary extension fields
can be considered as polynomials whose coefficients are from GF (3). Thus,
each coefficient can take the values −2,−1,−, 1, 2. The digit values −2
and 2 are congruent to 1 and −1 modulo 3, respectively. Therefore, the
RSD representations for possible coefficient values of 0, 1, and −1 are
{(0, 0), (1, 0), (0, 1)}.

A unified adder that operates in three fields can be derived from the ad-
dition circuit in Figure 3. When compared to GF (p)-only adder, the unified
adder circuit has only marginally higher CPD while the overhead in area can
be higher. However, when the area cost of three non-unified adders imple-
mented in separate datapath far outweighs this overhead in the unified design
as shown in [24].

3 Multiplication

In this section, we firstly provide the original unified Montgomery multiplica-
tion algorithm in [12], which operates only in GF (p) and GF (2n). We then
present a dual-radix unified multiplier in [13] where the multiplier calculates
faster in GF (2n)-mode than in GF (p)-mode. We finally discuss the support
in the unified multiplier for multiplication in GF (3n).

3.1 Montgomery Multiplication Algorithm

In [7], Montgomery described a modular multiplication method which proved
to be very efficient in both hardware and software implementations. An ob-
vious advantage of the method is the fact that it replaces division operations
with simple shift operations. The method adds multiples of the modulus rather
than subtracting it from the partial result. And opposite to the subtraction of
modulus in the regular modular multiplication which can be performed after
all the digits of the multiplicand are processed, the addition operation can
start immediately after the least significant digit of the multiplicand is pro-
cessed. Especially the second feature accounts for the inherent concurrency in
the algorithm. Refer to [7, 14, 15] for detailed explanation of the algorithm.

Given two integers a and b, and a prime modulus p, the Montgomery
multiplication algorithm computes c̄ = MonMult(a, b) = a ·b ·R−1 (mod p)
where R = 2n and a, b < p < R and p is an n-bit prime number. The
Montgomery multiplication does not directly compute c = a · b (mod p),
therefore certain transformation operations must be applied to the operands

Efficient Unified Arithmetic for Hardware Cryptography 7

a and b before the multiplication and to the intermediate result c̄ in order to
obtain the final result c. These transformations are applied as in the following
example:

ā = MonMult(a,R2) = a · R2 · R−1 (mod p) = a · R (mod p),

b̄ = MonMult(b,R2) = b · R2 · R−1 (mod p) = b · R (mod p),

c = MonMult(c̄, 1) = c · R · R−1 (mod p) = c (mod p).

Provided that R2 (mod p) is precomputed and saved, we need only a single
MonMult operation to carry out each of these transformations. However,
because of these transformation operations, performing a single modular mul-
tiplication using MonMult might not be advantageous even though there is
an attempt to make it efficient for a few modular multiplications by elimi-
nating the need for these transformations [16]. Its advantage, on the other
hand, becomes obvious in applications requiring multiplication-intensive cal-
culations such as modular exponentiation, elliptic curve point operations, and
pairing calculations over elliptic curve points.

The Montgomery multiplication algorithm with radix-2k for GF (p) can be
given as in the following:

Algorithm A
Input: a, b ∈ [1, p − 1], p, and m
Output: c ∈ [1, p − 1]
Step 1: c := 0
Step 2: for i = 0 to m − 1
Step 3: q := (c0 + ai · b0) · (p

′

0) (mod 2k)
Step 4: c := (c + ai · b + q · p)/2k

where p′0 = 2k − p−1
0 (mod 2k). In the algorithm, the multiplier a is written

with base (radix)-2k as an array of digits ai so that a =
∑m−1

i=0 ai·2
k·i, where m

is the number of digits in a and m = dn/ke. In Step 4, the multiplicand b, the
modulus p, and the partial result c enter the computations as full-precision
integers. However, in the real implementations b, p, and c can be treated
as multi-word integers in order to design a scalable multiplier and in each
clock cycle one word of these values will be processed. One may also consider
this representation as writing the multiplicand, the modulus and the partial
result with digits b(j), p(j), and c(j) of w bits, so that b =

∑e−1
j=0 b(j) · 2w·j ,

p =
∑e−1

j=0 p(j) · 2w·j , and c =
∑e−1

j=0 c(j) · 2w·j where e = dn/we. Note that the

base-2w used to represent b, p, and c in Step 4 is different from the radix-2k

used to represent the multiplier a in Step 3. Note also that q, c0, b0, and p′0
are all k-bit integers.

In order to avoid a possible confusion due to the usage of two different
bases, we elect to refer the digits of b, p and c as words when implementing
Step 4, and use the term digit exclusively for the multiplier a, and for b0,

8 Erkay Savaş and Çetin Kaya Koç

p′0, and c0 in Step 3 when they are in the same equation with the digits of
a. Digits can be easily distinguished by the subscript notation (e.g. ai or b0)
from superscript notation of word (e.g. b(j)). We will also use the notation
xi,j to denote the jth bit in the ith digit of x.

In addition, the radix of the multiplier architecture is determined by the
base used to represent the multiplier a.

The Montgomery multiplication algorithm for GF (2n) is given below:

Algorithm B
Input: a(x), b(x), p(x), and m
Output: c(x)
Step 1: c(x) := 0
Step 2: for i = 0 to m − 1
Step 3: q(x) := (c0(x) + ai(x) · b0(x)) · p′0(x) (mod xk)
Step 4: c(x) := (c(x) + ai(x) · c(x) + q(x) · p(x))/xk

where p′0(x) = p−1
0 (x) (mod xk). As one easily observes, the two algorithms

are almost identical except that the addition operation in GF (p) becomes a
bitwise modulo-2 addition in GF (2n). Although the operands are integers in
the former algorithm and binary polynomials in the latter, the representations
of both are identical in digital systems. In Algorithm A, there must be an extra
reduction step at the end to reduce the result into the desired range if it is
greater than the modulus. On the other hand, this step is not essential part
of the algorithm and there are simple conditions that can be added to the
algorithm in order to eliminate it [17, 18], hence we intentionally exclude it
from the algorithm definitions.

One can also observe that the computations performed in Step 3 are of
different nature in two algorithms and depending on the magnitude of the
radix used, the part of the circuit in charge of implementing them might
become very complicated. However, one can easily demonstrate that these
computations can be performed in a unified circuitry for small radices.

From this point on, we will only use the notation introduced in Algo-
rithm A for both GF (p) and GF (2n) and leave polynomial notation com-
pletely out of our representation of field elements in GF (2n). Operations will
be deduced from the mode (GF (p) or GF (2n)) in which the module is op-
erated. The elements of both fields are represented identically in the digital
systems.

Processing Unit

In this section, we explain the design details of the processing unit (PU) with
radix-2, which is basically responsible for performing Step 3 and Step 4 of
Algorithm A:

Step 3: q := (c0 + ai · b0) · (p
′

0) (mod 2k)
Step 4: c := (c + ai · b + q · p)/2k

Efficient Unified Arithmetic for Hardware Cryptography 9

Since we use radix-2 for our unified multiplier for sake of simplicity (noting
that it is always possible to extend it to higher radices), the least-significant
bits (LSB) of the operand digits, ai, b0, and c0 will determine which one of
the values in {0, b, p, b + p} is added to the partial result c. In Figure 4, the
architecture of the processing unit (PU) used in the unified multiplier with
w = 2 is illustrated. The first layer of dual-field adder deals with the addition
of b to the partial result c while the second layer does with the addition
of p. The value q (binary for radix-2) calculated in Step 3 of Algorithm A
determines whether the modulus p is added while the value a determines
whether the multiplicand b is added to the partial result.

p0
(j)p1

(j) b0
(j)b1

(j)

a
i

q

DFA

cs
0
(j)cs

0
(j)

DFA

cs
1
(j) cs

1
(j)

DFADFA

FF

FFFFFF

cs
0
(j-1)cc

0
(j-1)cs

0
(j)cs

1
(j-1)

Fig. 4. Processing unit with radix-2 where word size w = 2

As can be observed from Figure 4, there are flip-flops (FF) to delay some
of the bit values generated during the calculations. The FF right after the
first dual-field adder layer delays the most significant bit of carry from the
previous word to the current word. One can think of this bit as carry-out

from the previous word since the carry part of c is one bit shifted to the left
relative to the sum part in the carry-save form. The particular arrangement of
FFs at the output of the second dual-field adder layer implements right-shift
operation in Step 4 of Algorithm A.

The unified architecture consists of one or (generally) more processing
units (PU), identical to the one shown in Figure 4, organized in a pipeline.
Each PU takes a digit (k-bits) from the multiplier a, the size of which depends

10 Erkay Savaş and Çetin Kaya Koç

b
(0)

, p
(0)

b
(0)

, p
(0)

b
(0)

, p
(0)

b
(1)

, p
(1)

b
(2)

, p
(2)

b
(3)

, p
(3)

b
(4)

, p
(4)

b
(e+1)

,

p
(e+1)

b
(1)

, p
(1)

b
(2)

, p
(2)

a
0

a
1

a
2

(0)

(0)

(0)

(0)

(0)

(0)

c
(0)

c
(1)

c
(2)

c
(e)

c
(0)

c
(e)

b
(e+1)

,

p
(e+1)

c
(e-1)

Fig. 5. Execution graph of Montgomery multiplication algorithm [10]

on the radix, and operates on the words of b, c and p successively starting
from the least significant words. Starting from the second cycle it generates
one word of partial result each cycle which is communicated to the next PU.
After e + 1 clock cycles, where e is the number of words in the modulus (i.e.
e = dn/we), a PU finishes its portion of work and becomes free for further
computation. When the last PU in the pipeline starts generating the partial
results, the control circuitry checks if the first PU is available. If the first PU
is still working on an earlier computation, the results from the last PU should
be stored in a buffer until the first PU becomes available again. Refer to [10]
for more information about the length of the buffer to store the partial results
when there is no available PU in the pipeline. In Figure 5 the execution graph

Efficient Unified Arithmetic for Hardware Cryptography 11

of the Montgomery multiplication algorithm and dependencies between the
processing units are illustrated.

Each column in the dependency graph represents the computation which
is undertaken by a PU for one digit of the multiplicand a while each circle rep-
resents the operations for one word of p, b and c. The time advances from top
to bottom where the operation represented by a circle takes exactly one clock
cycle. An example of pipeline organization with t PUs is shown in Figure 6.

PU
1 PU

2
PU

t

L

a

t

c

h

L

a

t

c

h

L

a

t

c

h

Reg-c

Reg-p

Reg-b

Reg-a

a
i a

i+1
a
i+t-1

k k k

2w

w

w

c(j)

Fig. 6. Pipeline organization with two processing units

A redundant representation (carry-save) is used for the partial result in
the architecture. Thus, for the partial result we can write c = cc + cs, where
cc and cs stand for the carry and sum part of the partial result, respectively.
In addition, one must note that the length of the register for partial result, c
in Figure 6 is twice wider than the other registers.

Given that carry-save notation is used for the partial result and that each
iteration is executed on word-by-word basis, the Algorithm A can be expressed
as follows:

Algorithm A (modified)
Input: a, b ∈ [1, p − 1], p, and m
Output: c ∈ [1, p − 1], where c = (cc, cs)
Step 1: cc := 0, cs := 0
Step 2: for i = 0 to m − 1
Step 3: q := (c0 + ai · b0) · (p

′

0) (mod 2k)
Step 4: for j = 0 to e − 1
Step 5: (cc(j), cs(j)) := (cc(j) + cs(j) + ai · b

(j) + q · p(j))/2k

The proposed architecture allows designs with different word lengths and
pipeline organizations for different values of operand precision. In addition,

12 Erkay Savaş and Çetin Kaya Koç

the area can be treated as a design constraint. Thus, one can adjust the design
to the given area, and choose appropriate values for the word length and the
number of pipeline stages, in accordance.

The propagation delay of PU is independent of word size w when w is
relatively small (increases only slightly for larger values of w due to carry-free
arithmetic), and thus we assume that the clock cycle is the same for all word
sizes of practical interest. The area used by registers for partial sum, operands
and modulus does not change with the word or digit sizes.

The proposed scheme yields the worst performance for the case w = m,
since some extra cycles are introduced by PU in order to allow word-serial
computation, when compared to other full-precision conventional designs. On
the other hand, using many pipeline stages with small word size values brings
about no advantage after certain point. Therefore, the performance evaluation
reduces into finding an optimum organization for the circuit.

ASIC standard cell realizations of both unified and non-unified (GF (p)-
only) designs demonstrate that area overhead of the unified multiplier is only
2.75% and that there is no overhead in critical path delay [12]. Therefore,
the saving in the area is significant when the unified design is compared to
a hypothetical architecture that has two separate datapath for GF (p) and
GF (2n) multipliers. Furthermore, this saving in area does not bring about a
penalty in time performance, therefore improvement in area is identical to the
improvement in metric of {area × time}.

3.2 Dual-Radix Multiplier

The original unified multiplier in [12] uses radix-2 design and offers an equal
performance for both GF (p) and GF (2n) of the same precision in terms of
clock count. For this very reason, however, the original design is not optimized
since it does not take the advantage of using GF (2n), which is, in general,
more efficient than GF (p) in hardware implementations. Our first observation
is that this situation can be remedied by putting to use the part of the circuitry
which is underutilized in GF (2n) mode. This allows us to run the multiplier
module in higher radix values for GF (2n) than those for GF (p) at the expense
of using some amount of extra gates without significantly increasing the signal
propagation time.

In this section, we present the radix-(2,4) multiplier architecture intro-
duced in [13], where the multiplier uses radix-2 in GF (p)-mode while it uses
radix-4 in GF (2n)-mode. The radix-(2,4) multiplier is in fact the first mem-
ber of the dual-radix multiplier family, which also includes radix-(4, 8) and
radix-(8, 16) [13]. We only include the radix-(2,4) multiplier for the sake of
simplicity in explaining.

Precomputation in Montgomery Multiplication Algorithm

The dual-radix unified multiplier architecture utilizes a precomputation tech-
nique in order to decrease the critical path delay of the original unified mul-

Efficient Unified Arithmetic for Hardware Cryptography 13

tiplier in [12]. Note that Step 4 of the Algorithm A computes

c := (c0 + ai · b + q · p)/2k

where division by 2k is simply a right shift by k bits and q is calculated in the
previous step. Depending on the radix value chosen for the multiplier, the k-
bit digit q can be determined by the least significant digits (LSD) of b, p and c,
and the current digit of a. Similarly, the multiple of b that participates in the
addition is determined solely by ai. As a result, the LSDs of the operands, ai,
b0, and c0 will determine which one of the values in {0, b, p, b + p, 2p, 2b, 2b +
2p, . . .} is added to the partial result c. If one precomputes and stores the
value of b + p, the calculations in Step 4 can be significantly simplified.

There are two implications of the precomputation technique. Firstly, the
precomputed value must be stored, implying an increase in the register space.
And secondly, there must be a so-called selection logic to select which multiples
of b and p must participate in the addition in Step 4. The selection logic can
be designed in such a way that it is parallel to PU and thus it results in no
overhead in the critical path delay. On the other hand, the precomputation
technique also simplifies the design since Step 4 can be performed with only
one addition, once the selection logic generates its output.

Processing Unit

As pointed out earlier a processing unit (PU) is basically responsible for per-
forming Step 3 and Step 4 of Algorithm A. Since the multiplier uses radix-2 for
GF (p), the least-significant bits (LSB) of the operand digits, ai, b0, and c0 will
determine which one of the values in {0, b, p, b+p} is added to the partial result
c. In the case of GF (2n), multiplication is performed in radix-4. Therefore, the
LSDs (least significant digits) of b, p, and c and of the current digit of a are
required in order to determine q. The LSB of p is always 1, then only p0,1, the
second least significant bit of the modulus, is included in the computations.
Consequently, ai,1, ai,0, b0,1, b0,0, c0,1, c0,0 and p0,1 determine one of the follow-
ing values to be added to the partial result: {0, b, p, b + p, x · b, x · p, x · (b + p)}
(Note that ai,j is the jth least significant bit of ith digit of a). Multiplication
by x results in shifting one bit to the left, hence it is identical to multiplication
by 2. Division by xk and 2k are identical operations and the latter is used to
denote the right shift operation by k bits.

In Figure 7, the architecture of the processing unit (PU) used in the dual-
radix multiplier is illustrated. The local control logic in Figure 7 contains the
selection logic which generates the signals, to determine which multiples of
b and p will be in the calculations. For example, The selection signal (1011)
indicates that Step 4 will be c := (c + 3b + 2p)/2k. The symbols cc0 and cs0

in Figure 7 represent the least significant digits of carry and sum part of the
partial result c, respectively. Note that the cary part cc of the partial result
is always 0 in GF (2)-mode. Similarly, in GF (p)-mode, the multiplexer on the
right hand side always yields cc(j) since radix-2 is used in this mode.

14 Erkay Savaş and Çetin Kaya Koç

MUX 1 MUX 2

0 x2x2x2

L

a

t

c

h

(b+p)(j)

b(j)

p
(j)

cc(j)

 (3, 2)

Adder Array

cs(j)

Next

Stage

cc(j) cs(j)

Next Stage

Selection

 Logic

fsel

a
i

b
0

p
0

cc
0

cs
0

Fig. 7. Processing unit of dual-radix architecture with radix-2 for GF (p) and radix-4
for GF (2n)

3.3 Support for Ternary Extension Fields, GF (3n)

The Montgomery multiplication algorithm for GF (3n), which is very similar
to Algorithm B, is given below [24]:

Algorithm C
Input: a(x), b(x), p(x), and m
Output: c(x)
Step 1: c(x) := 0
Step 2: for i = 0 to m − 1
Step 3: q(x) := (c0(x) + ai(x) · b0(x)) · p′0(x) (mod xk)
Step 4: c(x) := (c(x) + ai(x) · c(x) + q(x) · p(x))/xk

Only difference is due to the computation of p′0(x), which is p′0(x) = 2 ·p−1
0 (x)

(mod xk) (instead of p′0(x) = p−1
0 (x) (mod xk) in Algorithm B).

Original unified multiplier architecture [12] utilizes two layers of (3 × 2)
dual-field adder arrays to perform addition operations in Steps 3 and 4 of
Montgomery multiplication algorithm. This is due to the fact that multi-
plicand (b or b(x)) and modulus (p or p(x)) are assumed to be always in
non-redundant form. This assumption can hold for elliptic curve cryptogra-
phy computations, where many multiplications are needed. If the result of a
multiplication, which is produced in redundant form (e.g. carry-save represen-
tation), is needed for subsequent multiplications, it is immediately converted
to non-redundant representation. In order to eliminate the need for conversion
from redundant to non-redundant representation and associated circuitry, all

Efficient Unified Arithmetic for Hardware Cryptography 15

operands can be kept in redundant form throughout the entire elliptic curve
computations (e.g. elliptic curve scalar point multiplication). This, however,
requires using (4×2) adder arrays to perform addition(or subtraction) of two
redundant form integers. Although it is laden with area and CPD overhead,
one slice of (4× 2) adder can easily be modified to perform one-digit addition
in three fields GF (p), GF (2n), and GF (3n) as explained in Section 2. A mul-
tiplier that can operate in three fields can be designed in the same way the
original unified multiplier [12] is designed. Two important differences of the
new unified multiplier from the original unified multiplier is that it has two
control bits (as opposed to one in the original multiplier) to select the field
mode (GF (p), GF (2n), or GF (3n)), and that the processing unit (PU) has
now two layers of (4× 2) modified-adder arrays. In addition, RSD arithmetic
is employed instead of carry-save arithmetic.

In order to asses the merits of unified multiplier that performs multiplica-
tions of three fields in the same datapath, one needs to compare the unified
multiplier against a hypothetical architecture which has three separate multi-
pliers for these three fields. The {area × CPD} metric can be used in order to
figure out the balance between the saving in area and overhead in the critical
path delay that the unified multiplier will have when compared to hypothet-
ical design. Implementations of both new unified multiplier and hypothetical
design in ASIC standard cell library will demonstrate that the new unified
multiplier considerably improves {area × time} metric when compared to
hypothetical design [24].

4 Inversion

In this section, we give multiplicative inversion algorithms, which allow very
fast and area-efficient unified hardware implementations. The presented algo-
rithms are based on the Montgomery inversion algorithms given in [19]. While
there are several unified inversion units reported in the literature [20, 21, 22]
that compute in two fields GF (p) and GF (2n) there has been no unified
inversion unit proposed to operate in three fields. Therefore, we limit our
discussion, which is based on the techniques and algorithms in [22], only to
two basic fields, namely GF (p) and GF (2n). It is, however, straightforward
to extend the algorithm and its implementation to support the inversion in
GF (3n).

4.1 The Montgomery Inversion Algorithms for GF (p) and GF (2n)

The Montgomery inversion algorithm as defined in [19] computes

b = a−12n (mod p) , (1)

given a < p, where p is a prime number and n = dlog2pe. The algorithm
consists of two phases: the output of Phase I is the integer r such that r =

16 Erkay Savaş and Çetin Kaya Koç

a−12k (mod p), where n ≤ k ≤ 2n and Phase II is a correction step and can
be modified as shown in [23] in order to calculate a slightly different inverse
that can more precisely be called Montgomery inverse:

b = MonInv(a2n) = a−12n (mod p) , (2)

Algorithm D
Phase I
Input: a2n ∈ [1, p − 1] and p
Output: r ∈ [1, p − 1] and k, where r = a−12k−n (mod p) and n ≤ k ≤ 2n

1: u := p, v := a2n, r := 0, and s := 1
2: k := 0
3: while (v > 0)
4: if u is even then u := u/2, s := 2s
5: else if v is even then v := v/2, r := 2r
6: else if u > v then u := (u − v)/2, r := r + s, s := 2s
7: else v := (v − u)/2, s := s + r, r := 2r
8: k := k + 1
9: if r ≥ p then r := r − p
10: return r := p − r and k

The second phase of the Montgomery inversion algorithm simply performs
2n − k left (modular) shifts as a correction step to obtain a−12n (mod p)
from a−12k−n (mod p). The left shift operations are modular in the sense
that a modular reduction operation is performed whenever the shifted value
exceeds the modulus.

In a similar fashion, the Montgomery inversion algorithm for GF (2n) can
be given as follows:

Algorithm E
Phase I
Input: a(x)xn and p(x), where deg(a(x)xn) < deg(p(x))
Output: s(x) and k, where s(x) = a(x)−1xk−n (mod p(x))

and deg(s(x)) < deg(p(x))
and deg(a(x)) + 1 ≤ k ≤ deg(p(x)) + deg(a(x)) + 1

1: u(x) := p(x), v(x) := a(x), r(x) := 0, and s(x) := 1
2: k := 0
3: while (u(x) 6= 0)
4: if u0 = 0 then u(x) := u(x)/x, s(x) := xs(x)
5: else if v0 = 0 then v(x) := v(x)/x, r(x) := xr(x)
6: else if deg(u(x)) ≥ deg(v(x)) then

u(x) := (u(x) + v(x))/x, r(x) := r(x) + s(x), s(x) := xs(x)
7: else v(x) := (v(x) + u(x))/x, s(x) := s(x) + r(x), r(x) := xr(x)
8: k := k + 1
9: if sn+1 = 1 then s(x) := s(x) + xp(x)

Efficient Unified Arithmetic for Hardware Cryptography 17

10: if sn = 1 then s(x) := s(x) + p(x)
11: return s(x) and k

Additions and subtractions in the original algorithm are replaced with
additions without carry in GF (2n) version of the algorithm. Since it is possible
to perform addition (and subtraction) with carry and addition without carry
in a single arithmetic unit, this difference does not cause a change in the
control unit of a possible unified hardware implementation. Step 6 of the
proposed algorithm (where the degrees of u(x) and v(x) are compared) is
different from that of the original algorithm. This necessitates a significant
change to the control circuitry. In order to circumvent this problem we propose
a slight modification in the original algorithm for GF (p).

Before describing the new inversion algorithm, we first point out an impor-
tant difference from the original Montgomery inversion algorithm. In Step 6
of the original Montgomery inversion algorithm two integers, u and v, are
compared. Depending on the result of the comparison it is decided whether
Step 6 or Step 7 is to be executed. We propose to modify Step 6 of the algo-
rithm in a way that instead of comparing u and v, the number of bits needed
to represent them are compared. As a result of this imperfect comparisons,
u may become a negative integer. The fact that u might be a negative inte-
ger may lead to problems in comparisons in subsequent iterations, therefore
u must be made positive again. To do that, it is sufficient to negate r. The
proposed modifications can be seen in the modified algorithm given below.
Note that Algorithm F is in fact a unified algorithm and it is reduced to
Algorithm E provided that all addition and subtraction operations in GF (p)-
mode are mapped to GF (2n) additions in GF (2)-mode. The variable FSEL
is used to switch between GF (p) and GF (2) modes.

Algorithm F
Phase I
Input: a2n ∈ [1, p − 1] and p
Output: s ∈ [1, p − 1] and k, where s = a−12k−n (mod p)

and n ≤ k ≤ 2n

1: u := p, v := a2n, r := 0, and s := 1
2: k := 0 and FSEL := 0 // FSEL := 1 in GF (2n)-mode
3: if u is positive then
4: if (bitsize(u) = 0) then go to Step 15
5: if u is even then u := u/2, s := 2s
6: else if v is even then v := v/2, r := 2r
7: else if bitsize(u) ≥ bitsize(v) then u := (u − v)/2, r := r + s, s := 2s
8: else v := (v − u)/2, s := s + r, r := 2r
9: Update bitsize(u), bitsize(v) and sign of u
10: else (i.e. u is negative)
11: if u is even then u := −u/2, s := 2s r := −r
12: else v := (v + u)/2, u := −u, s := s − r, r := −2r

18 Erkay Savaş and Çetin Kaya Koç

13: k := k + 1
14: Go to Step 3
15: if sn+2 = 1 (i.e. s is negative)
16: u := s + p
17: v := s + 2p
18: if un+2 = 1 then s := v
19: else s := u
20: u := s − p
21: v := s − 2p
22: if vn+1 = 0 then s := v
22-a: if sn = 1 and FSEL = 1 then s := s − p
23: else if un = 0 then s := u
24: else s := s
25: return s and k

Changing the sign of both u and r simultaneously has the effect of multi-
plying both sides of the invariant p = us+vr by −1. Therefore, new invariant
when r < 0 is given as {−p = us + vr.} While u and v remain to be positive
integers, s and r might be positive or negative. Therefore, we need to alter
the final reduction steps to bring s in the correct range, which is [0, p). The
range of s is [−2p, 2p]. As a result we need to use two more bits to represent
s and r than the bitsize of the modulus.

The value u becomes negative as a result of u = (u − v)/2, when
bitsize(u) = bitsize(v) and v > u before the operation. Since u = (u − v)/2
decreases the bitsize of absolute value of u at least by one independent of
whether the result is negative or positive, u will become certainly less than v
after the negation operation. Therefore, if a negative u is encountered during
the operation only steps 11 and 12 are executed.

Note that the variable FSEL is not needed for GF (p)-mode computations.
Further, in GF (p)-mode FSEL = 0 and Step 22-a is never executed. This step
becomes relevant in GF (2)-mode when FSEL = 1.

5 Conclusions

Unified arithmetic has gained a considerable amount of attention from the
researchers and implementors working in applied cryptography. Basic premise
of the unified arithmetic is that it is possible to use the same datapath for
performing arithmetic operations in different fields. In this chapter, we pro-
vided the design principles of the unified arithmetic for three different fields,
namely GF (p), GF (2n) and GF (3n). We also pointed out the advantages of
the unified arithmetic using different metrics such as area, critical path delay,
operation timing, and time × area product. Although there is considerable
amount of work for unified architectures for prime GF (p), and binary exten-
sion GF (2n) fields, there arises a need for research on unified arithmetic units

Efficient Unified Arithmetic for Hardware Cryptography 19

that can operate in three fields GF (p), GF (2n) and GF (3n) especially with
the advent of pairing based cryptography.

6 Exercises and Projects

1. Obtain the truth tables for the four generalized full adders in Figure 2.
2. Provide a gate level implementation of generalized full adders in Figure 2.

Realize your implementation using ASIC standard cell library and com-
pare areas and critical path delays of generalized full adders.

3. Add an additional layer of logic gates to the output of the RSD adder in
Figure 3 to force the output (1,1) to (0,0).

4. Modify the one bit of the RSD adder circuit in Figure 3 so that it computes
addition in three fields, namely GF (p), GF (2n), and GF (3n).

5. Design a unified multiplier of 8 bits that operates in three fields, GF (p),
GF (2n), and GF (3n).

6. Provide a gate level implementation of the selection logic in Figure 7.
7. Design the processing unit of a dual-radix (4, 8) multiplier.
8. Obtain a Montgomery inversion algorithm by modifying the steps of Al-

gorithm E.
9. Implement Algorithm E in software and provide some statistics such as

average number of total iterations and average number of times Steps 4,
5, 6, and 7 are executed.

10. Modify the Step 6 of Algorithm E in such a way that u(x) and v(x) are
compared as if they are integers. Implement the algorithm in software and
check if it works. Obtain the same statistics you obtained in the previous
exercise. Give a comparison.

References

1. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transac-

tions on Information Theory, 22:644–654, November 1976.
2. National Institute for Standards and Technology, “Digital Signature Standard

(DSS)”, Federal Register , 56:169, Aug 1991.
3. N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Computation,

48(177):203–209, Jan 1987.
4. A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic

Publishers, Boston, MA, 1993.
5. D. Boneh and M. Franklin. Identity-based Encryption from the Weil Pairing.

In Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in

Computer Science, pages 213–229. Springer-Verlag, 2001.
6. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances

in Cryptology - CRYPTO 1985, volume 196 of Lecture Notes in Computer Sci-

ence, pages 47–53. Springer-Verlag, 1985.

20 Erkay Savaş and Çetin Kaya Koç

7. P. L. Montgomery. Modular multiplication without trial division. Mathematics

of Computation, 44(170):519–521, April 1985.
8. Ç. K. Koç and T. Acar. Montgomery multiplication in GF(2k). In Proceedings

of Third Annual Workshop on Selected Areas in Cryptography, pages 95–106,
Queen’s University, Kingston, Ontario, Canada, August 15–16 1996.

9. IEEE. P1363: Standard specifications for public-key cryptography. 2000.
10. A. F. Tenca and C. K. Koc, A Scalable Architecture for Montgomery Multipli-

cation, Lecture Notes in Computer Science, 1999, 1717, pp. 94-108.
11. A. Avizienis. Signed-digit number representations for fast parallel arithmetic.

IRE Trans. Electron. Computers, EC(10):389–400, September 1961.
12. E. Savaş, A. F. Tenca, and Ç. K. Koç, “A scalable and unified multiplier ar-

chitecture for finite fields GF (p) and GF (2m)”. In Cryptographic Hardware

and Embedded Systems, Workshop on Cryptographic Hardware and Embedded
Systems, pg. 277-292. Springer-Verlag, Berlin, 2000.

13. E. Savas, A. F. Tenca, M. E. Ciftcibasi, C. K. Koc, Multiplier architectures
for GF (p) and GF (2k), IEE Proceedings Computers and Digital Techniques,
151(2): 147-160, March 2004.

14. S. E. Eldridge. An faster modular multiplication algorithm. International

Journal of Comput. Math, 40:63–68, 1991.
15. Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery

multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.
16. J.-H.Oh and S.-J.Moon. Modular multiplication method. IEE Proceedings,

145(4):317–318, July 1998.
17. Colin D. Walter. Montgomery exponentitation needs no final subtractions.

Electronic Letters, 35(21):1831–1832, October 1999.
18. G. Hachez and Jean-Jacques Quisquater. Montgomery exponentiation with no

final subtractions: Improved results. In Cryptographic Hardware and Embedded

Sytems, Lecture Notes in Computer Science, No. 1965, pages 293–301. Springer-
Verlag, Berlin, 2000.

19. B. S. Kaliski Jr., “The Montgomery inverse and its applications”, IEEE Trans-
actions on Computers, 44(8):1064–1065, Aug 1995.

20. A. A.-A. Gutub, A. F. Tenca, E. Savaş, and Ç. K.Koç, “Scalable and uni-
fied hardware to compute montgomery inverse in GF (p) and GF (2n)”. In B.S.
Kaliski Jr., Ç. K.Koç and C. Paar, editors, Cryptographic Hardware and Em-

bedded Systems, LNCS, pg. 485-500, Springer-Verlag Berlin, 2002.
21. E. Savaş and Ç. K. Koç, “Architecture for unified field inversion with appli-

cations in elliptic curve cryptography”. In Proc. vol. 3, The 9th IEEE Inter-

national Conference on Electronics, Circuits and Systems - ICECS 2002, pg.
1155-1158, Dubrovnik, Croatia, Sept 2002.

22. E. Savas, M. Naseer, A. A-A. Gutub, and C. K. Koc, Efficient Unified Mont-
gomery Inversion with Multibit Shifting, IEE Proceedings Computers and
Digital Techniques, 152(4): 489-498, July 2005.

23. E. Savaş and Ç. K. Koç, “The Montgomery modular inverse - revisited”, IEEE
Transactions on Computers, 49(7):763–766, Jul. 2000.

24. E. Öztürk and E. Savaş and B. Sunar, “A Versatile Montgomery Multiplier
Architecture with Characteristic Three Support”, Under review, 2008.

