
Efficient Hardware Implementations of High 
Throughput SHA-3 Candidates Keccak, Luffa and Blue 
Midnight Wish for Single- and Multi-Message Hashing

 
Abdulkadir Akın, Aydın Aysu, Onur Can Ulusel, and Erkay Savaş 

Sabanci University 
Faculty of Engineering and Natural Sciences, Orhanli, 34956 Tuzla, Istanbul, Turkey 

{abdulkadir, aydinaysu, onuracansel}@su.sabanciuniv.edu, erkays@sabanciuniv.edu 
 

ABSTRACT 
In November 2007 NIST announced that it would organize the 
SHA-3 competition to select a new cryptographic hash function 
family by 2012. In the selection process, hardware performances 
of the candidates will play an important role. Our analysis of 
previously proposed hardware implementations shows that three 
SHA-3 candidate algorithms can provide superior performance in 
hardware: Keccak, Luffa and Blue Midnight Wish (BMW). In this 
paper, we provide efficient and fast hardware implementations of 
these three algorithms. Considering both single- and multi-
message hashing applications with an emphasis on both speed and 
efficiency, our work presents more comprehensive analysis of 
their hardware performances by providing different performance 
figures for different target devices. To our best knowledge, this is 
the first work that provides a comparative analysis of SHA-3 
candidates in multi-message applications. We discover that BMW 
algorithm can provide much higher throughput than previously 
reported if used in multi-message hashing. We also show that 
better utilization of resources can increase speed via different 
configurations. We implement our designs using Verilog HDL, 
and map to both ASIC and FPGA devices (Spartan3, Virtex2, and 
Virtex 4) to give a better comparison with those in the literature. 
We report total area, maximum frequency, maximum throughput 
and throughput/area of the designs for all target devices. Given 
that the selection process for SHA3 is still open; our results will 
be instrumental to evaluate the hardware performance of the 
candidates.   

Categories and Subject Descriptors 
B.5.1 [Register-Transfer-Level Implementation]: Design – 
data-path design, styles. 

General Terms 
Performance, Design, Security. 

Keywords 
cryptographic hash functions, hardware implementation, SHA-3. 

1. INTRODUCTION 
Cryptographic hash functions reduce arbitrary length input 
messages to a digest of fixed length. The need for cryptographic 
hash functions was first identified by Diffie and Hellman for 
digital signature scheme [1]. During 1970s, many researchers 
helped providing (e.g. Rabin [2] and Merkle [3]) the definitions, 
requirements and constructions for cryptographic hash functions. 
Easy computation, non-invertibility, strong/weak collision 
resistance and ciphertext indistinguishability are the main 
properties of secure cryptographic hash functions. 

The need for efficient and secure hash functions was well 
understood during the 1980s. In order to meet this demand, SHA-
1 and SHA-2 hash functions were published by the National 
Institute of Standards and Technology (NIST) in 1993 and 2002, 
respectively. Powerful attacks on SHA-1 [13] and similarly 
constructed SHA-2 variants [14], led to the initiation of SHA-3 
open competition by NIST [4]. 51 candidates of the SHA-3 
competition passed round 1, and 14 candidates advanced to the 
round 2 [4]. The final round candidates are scheduled for 2010 
and the winner will be announced in 2012. 

Hardware implementations of cryptographic algorithms are much 
more secure than software realizations [5]. In addition, they can 
be optimized to satisfy application’s specific requirements, e.g. 
higher performance, low area, low power, better resource 
utilization. Since different aspects of hardware performances of 
the SHA-3 candidates play a significant role in the selection 
process, comparisons of hardware implementation of 14 
remaining candidates are given in detail in [6] and [7]. The 
hardware architectures [6][7] are designed to provide the highest 
throughput for single message hashing (SMH), whereby hardware 
is assumed to process a single message stream at a time. It has 
also been shown in [8] that pipelined architectures increase the 
performance of Luffa for multi-message hashing (MMH), where 
the hardware processes more than one message concurrently.  

Paucity of hardware implementations of SHA-3 candidates that 
exploit MMH to achieve higher performance calls for a more 
thorough study of the issue. To reveal the true potentials of SHA-
3 candidates, we developed two hardware architectures each for 
 

 

 



Table 1.  Normalized throughput values for the SHA-3 
candidates 

Algorithm Throughput 
(Gbit/s) 

Throughput 
Normalized  
to 100 MHz 

Throughput  
Normalized 
to 100 GE 

Throughput 
Normalized 
to 100 MHz 
and 100 GE 

BLAKE 3.97 2.33 8.70 5.10 
BMW 5.36 51.22 3.16 30.18 

CubeHash 4.67 3.20 7.92 5.44 
ECHO 2.25 1.58 1.59 1.12 
Fugue 4.09 1.60 8.85 3.46 
Grøstl 6.29 2.33 10.77 3.99 
Hamsi 5.57 3.20 9.49 5.46 

JH 4.99 1.31 8.49 2.23 
Keccak 21.23 4.35 37.70 7.73 
Luffa 13.74 2.84 30.56 6.33 
Shabal 3.28 1.02 5.98 1.87 

SHAvite 3.15 1.38 5.49 2.41 
SIMD 0.92 1.42 0.89 1.37 
Skein 2.50 5.12 2.45 5.02 

 
the three high throughput SHA-3 candidates (six in total), namely 
Keccak, Luffa, and Blue Midnight Wish (BMW)1; one for SMH 
and the other for MMH applications. Our implementation results 
show that different configurations and design techniques result in 
higher performance for a given candidate. This study also aims to 
reveal as many aspects (e.g., frequency, throughput, latency, area 
efficiency, target device) pertaining to hardware performances of 
the three candidates as possible to enhance the insight on the 
algorithms for the selection process. 

We present synthesis results of six hardware architectures for four 
target devices: Spartan 3, Virtex II and Virtex IV FPGAs, and 
90nm ASIC. 256-bit versions of each algorithm are implemented 
and all architectures are verified using the reference 
software/hardware submissions of the competitors. We mainly 
target high throughput hardware architectures of the three 
candidates, without unnecessarily increasing the area. The 
area/performance results of our SMH and MMH implementations 
are compared with the best-performance architectures proposed in 
[6][7][8][11][12]. The implementation results show that our 
architectures provide better efficiency in majority of the cases. 

The rest of the paper is organized as follows. Section 2 explains 
the reason for selecting Keccak, Luffa and BMW for hardware 
implementation and Section 3 explains MMH methodology for 
hardware design. Overview of Keccak, Luffa and BMW are 
presented in Section 4. The proposed hardware architectures for 
Keccak, Luffa and BMW will be described in Section 5. The 
implementation results will be given in Section 6. Section 7 will 
conclude the paper. 

2. SELECTION PROCESS OF THREE 
SHA-3 CANDIDATES 
In [7], the hardware implementation results of 14 second-round 
candidate SHA-3 algorithms are presented. All the 
implementations are synthesized using a uniform tool chain, 
standard-cell library, target technology, and optimization 

                                                                 
1 We explain the selection technique for these three candidates in 

Section 2. 

heuristics. The implementation results of [7] are summarized in 
the second column of Table 1. As seen from Table 1, Keccak 
gives the highest throughput of 21.23 Gbit/s while Luffa comes 
second with the throughput of 13.74 Gbit/s. The design 
methodology in [7] targets high throughput architectures for SMH 
applications and does not inspect architectures that are tailored for 
MMH applications. In general, the SMH design methodology 
favors single pipelining for each round. In the case of MMH, the 
hardware can be fully pipelined and pipeline stages can be fully 
utilized. In order to gain an insight on true potentials of the SHA-
3 candidates in hardware implementation with the MMH 
applications in mind, we normalize the throughput results 
according to area and frequency values given in [7], as shown in 
the last three columns of Table 1. 

The normalization suggests some interesting results; e.g. BMW 
having high performance. We must note that the values obtained 
through normalization are in abstract level and not used as an 
objective in our design process– and our implementations confirm 
that they are not achieved –; but they provide a deeper 
understanding and intuition to the multi-variable (e.g. area, clock 
frequency, and throughput) optimization problem for throughput 
comparison in MMH. Normalization results show that Keccak 
and Luffa have the highest throughputs (37.7 Gbit/s and 30.6 
Gbit/s) under area normalization as well as non-normalized results 
(21.23 Gbit/s and 13.74 Gbit/s) since they are relatively light-
weight designs while BMW is quite heavy. But, surprisingly, 
BMW achieves the highest throughput under frequency (51.22 
Gbit/s) and frequency/area (31.18 Gbit/s) normalizations. For the 
frequency/area normalization, Keccak and Luffa follows BMW 
with throughputs of 7.73 Gbit/s and 6.33 Gbit/s, respectively. 

Since hardware performance is one of the most important factors 
for the SHA-3 hash function; Keccak, Luffa and BMW are 
implemented in this work using the multi-message design 
methodology which utilizes pipelined architectures and re-timing 
techniques. While high throughput is always the primary goal, our 
architectures are designed to achieve this goal with minimum area 
for each design. 

3. MULTI-MESSAGE HASHING 
METHODOLOGY FOR HARDWARE 
In literature, Eq. 1 is generally used for calculating throughput for 
SMH architectures. 

)1(Frequency
latency

BlocksizeThroughput ×=  

where latency is the number of clock cycles required for 
processing one message block and Blocksize is the length of the 
message block which is processed by the hash function at a given 
time.  
The formula for calculating throughput of the MMH is given in 
Eq 2. 

)2(# Frequency
latency

MHBlocksizeThroughput ×
×

=  

#MH is the number of messages that can be simultaneously 
hashed at a given time, which is equal to the number of pipeline 



stages in a single round of a hash algorithm. If the algorithm is 
not round-based (e.g., BMW) then #MH is equal to the number of 
total pipeline stages. For MMH applications, many messages can 
be simultaneously processed due to pipelining. Pipelining 
increases both the frequency and number of messages that can be 
hashed in parallel, which has a positive effect on throughput.  
However, if the number of messages that will be hashed is less 
than the number of the pipeline stages, full utilization of the 
architecture cannot be achieved. As a result, the throughput of the 
MMH algorithm decreases due to the latency overhead. Therefore 
in order to show the full potential of the MMH architectures, 
number of the messages that will be hashed concurrently is 
assumed to be more than or equal to the number of pipeline 
stages. 
In pipelined datapath, pipeline registers are used to relay data 
from one stage to the next. In addition, certain input signals need 
to be forwarded to the subsequent pipelined stages through so-
called synchronization registers. The need for pipeline and 
synchronization registers will, however, have an adverse effect on 
area, resulting in a poor area/frequency tradeoff. 
Hardware replication in both FPGA and ASIC designs (e.g. 
having two identical circuits to compute the hash values of two 
independent messages) can also increase the throughput of the 
hardware for MMH applications. However, increasing the 
frequency by using efficient pipelining may yield better 
area/throughput tradeoff than hardware replication for MMH. 
Configurations, where hardware replication and efficient 
pipelining are used together, provide further increase in 
throughput. 

4. BRIEF DESCRIPTION OF SELECTED 
ALGORITHMS 

4.1 Keccak Algorithm 
Keccak algorithm [4] uses KECCAK-f permutation which 
consists of a number of simple rounds with logical operations and 
bit permutations. Each round has 5 steps and 24 rounds form a 
KECCAK-f permutation. The input and output of a Keccak round 
are 5×5 matrices whose entries are 64-bit words. The round 
formulae are given in Fig. 1. 

In Fig. 1, A and RC (round constant) are inputs, ⊕ (XOR), AND, 
and NOT represent bitwise logical operations. The output of a 
round is formed on the 5×5 matrix A. The variables x and y 
represent the matrix index and the operations on x and y are done 
modulo 5. ROT(I[x, y], j) denotes the cyclic shift operation of the 
64-bit number at I[x, y] by the amount of j to the left.  In ρ and π 
steps, the rotation is done by the amount of r[x, y]. In each round, 
a different RC is used. The round constants are given in the 
specifications of the candidate [4].  

Keccak has an absorbing and a squeezing phase. The input 
message is divided into blocks of 1088-bit and XORed onto a part 
of the state (which is initially zero and 1600-bit long) and the 
result is passed through a KECCAK-f permutation. The output is 
truncated to 256 bits. The phases are detailed in Fig 2, where Z is 
the output, and r = 1088, c = 512, w = 64, and d = 32 in our 
implementations. They are the values used in the implementation 
in [7] 

 

Round[b](A, RC) 
 θ STEP 
  C[x] = A[x, 0] ⊕ A[x, 1] ⊕ A[x, 2] ⊕ A[x, 3] ⊕ A[x, 4]     ∀x in 0…4 
  D[x] = C[x-1] ⊕ ROT(C[x+1], 1)                                      ∀x in 0…4 
  A[x, y] = A[x, y] ⊕ D[x]                                                     ∀(x, y) in (0…4,0…4) 
 ρ AND π STEPS 
  B[y, 2x+3y] = ROT(A[x, y], r[x, y])                                                     ∀(x, y) in (0…4,0…4) 
 χ STEP 
  A[x, y] = B[x, y] ⊕ ((NOT B[x+1, y]) AND B[x+2, y])        ∀(x, y) in (0…4,0…4) 
 ι STEP 
  A[0, 0] = A[0, 0] ⊕ RC  

Figure 1.  Round operations of a KECCAK-f permutation 
 

Keccak[r, c, d](M) 
 Initialization and padding 
  S[x, y] = 0     ∀(x, y) in (0…4, 0…4) 
  P = M ⎢⎢byte(d) ⎢⎢byte(r/8) ⎢⎢0x01⎢⎢0x00 || ... || 0x00                           
 Absorbing Phase for every block Pi in P 
  S[x, y] = S[x, y] ⊕ Pi[x + 5y] ∀(x, y) such that x+5y < r/w 
  S = KECCAK–f[r + c](S)  
 Squeezing Phase 
 Z = empty string 
 while output is requested 
  Z = Z ⎢⎢S[x, y] ∀(x, y) such that x+5y < r/w 
  S = KECCAK–f[r+c](S)  
 return Z 

Figure 2. Phases of Keccak algorithm 



 
Figure 3. Block diagram of the Message Injection module 

 

 
Figure 4. Block diagram of the Step module 

 
Figure 5. Block diagram of MixWord function 

4.2 Luffa Algorithm 
Luffa algorithm [4] employs a variant of sponge function [9][10]. 
It utilizes s-boxes, and XOR and shift operations to hash a 
message. The input block sizes can be 224, 256, 384 or 512 bits, 
processed as 32-bit data words. Luffa’s compression function is 
known as the round function, which comprises one Message 
Injection (MI) and one Permutation (P) stage. 

MI module combines the hash values of previous message blocks 
(i.e., H0

i-1, H1
i-1, H2

i-1), with the current message block (M i). A 
message block in Luffa-256 can be represented by the matrix over 
a ring GF(28)32. Block diagram of MI for Luffa-256 can be seen in 
Fig. 3. The inputs are the current message block and the hash 
values calculated by the three permutation blocks for the previous 
message block, each of which is 256 bits and have a constant 
initial value. The symbol ⊕ in Fig 3 represents a three input XOR 
operation and ⊗ represents a single multiplication in GF(28)32 by 
constant 2. 

The permutation stage (P) for Luffa-256 is made of three 
permutation blocks, which work in parallel and each block 
receives one of the 256-bit outputs of the MI as input. These 
blocks are referred as Permute blocks. Each Permute block starts 
with a permutation of the input which is called tweak, and then 
iterates 8 rounds of the Step function shown in Fig. 4. 

Each Step function in three Permute blocks processes data in 32-
bit words, denoted as ak, 0 ≤ k < 8 in Fig. 4. There are three 
submodules in Step function referred as SubCrumb, MixWord, and 
AddConstant. The SubCrumb module is a nonlinear permutation 
implemented by 32 identical s-boxes (4-bit input, 4-bit output). 
The s-box can be shown as a mapping defined as s[16] = {7, 13, 
11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14}. 

MixWord is a Feistel ladder of 4 rounds, which is used to mix two 
words together. The block diagram of the MixWord is shown in 
Fig. 5. AddConstant module performs two XOR operations on the 
words a0 and a4 with predetermined constants. These constants 
differ for each round of the step function; which can be hardwired 
in the implementation.  

The resulting hash values of the Step modules H0
i, H1

i, H2
i, are 

given as inputs to the next message block. Once the last block of 
the message is computed, a blank round using a 256-bit all-zero 
message is computed and the output hash of the message is found 
by XORing the final results of the three Step functions. 

4.3 The Blue Midnight Wish Algorithm 
The BMW hash function [4] uses quadrupled pipe {Qa, Qb} (each 
of which is m-bit variable) and double pipe H (which is an m-bit 
variable) for iteratively computing new Qa, Qb, H values and the 
message digest, where m is the message block size. In generic 
description, BMW uses three steps: preprocessing, hash 
computation and finalization. Preprocessing step involves 
padding, parsing and initialization of variables as many hash 
algorithms use. The block diagram of the hash computation and 
finalization steps of the BMW algorithm are shown in Fig. 6. 
Hash computation and finalization steps involve three functions 
f0, f1 and f2.  

The function f0 is used to compute the first part of quadrupled 
pipe (Qa) by diffusing the message block M and double pipe H, 
where H is initialized to a constant value.  

The function f1 is used with two sub-functions expand1 and 
expand2. The function f1 takes M and Qa as inputs and using a 
technique called “multi-permutation” generates Qb as an output. 
Its designers propose that the security of BMW can be increased 
with increasing the expand1 rounds and decreasing the expand2 
rounds. However, expand1 is more complex than expand2, 



therefore designers recommend using two rounds for expand1 and 
fourteen rounds for expand2. 

The function f2 is used in folding (compression) part of the BMW 
algorithm and it reduces 3m-bit of M, Qa, and Qb to m-bit new 
double pipe H.  

The basic operations of the BMW algorithm are addition and 
subtraction modulo 232, shift, rotate, and bitwise XOR.  

Finalization step is similar to the hash computation; the only 
difference is that final step uses constant value instead of message 
block to form m-bit Hfinal.  The least significant n-bit (length of 
resulting hash value) of Hfinal are given as hash of the message. 

5. HARDWARE IMPLEMENTATIONS 
Pipelined hardware architectures, generally, are not suitable for 
SMH applications since only one stage would be active at any 
instance, resulting in a very low utilization of resources. 
However, MMH favors pipelines, since the blocks of different 
messages can be overlapped in the pipeline. The hardware 
architectures exploring the most efficient solutions for both 
single- and multi-message hashing applications are explained in 
subsequent sections. The #MH parameters for Keccak, Luffa and 
BMW are 5, 2 and 18, respectively.  

5.1 Hardware Implementation of Keccak 
One round of KECCAK-f permutation consists of the steps, θ, ρ, π, 
χ and ϊ. The top-level diagram of the hardware implementation for 
one round is given in Fig. 6. The architecture of the round is fully 
pipelined and operations in a pipeline stage are performed in a 
parallel fashion.  

Following the dependency graph of θ step, three-stage pipeline is 
used for its implementation, where each stage implements one 
sub-step of θ (cf. Fig. 1). Since new input arrives at each clock 
cycle in MMH, additional (synchronization) registers are required 
to forward the input to the later stages of θ step in addition to 
pipeline registers (cf. Fig. 8). θ step requires only bitwise XOR 
and cyclic shift operations by fixed amount. 50 bitwise XOR and 
25 cyclic shift operations over 64-bit variables are performed in 
parallel in the hardware implementation of θ step. 

 

The ρ and π step, implemented in one stage, utilizes cyclic shift 
operations where the shift amount depends on the position of the 
64-bit element in the (5×5) state matrix. Since both operations are 
linear, instead of using two cyclic shifts, the hardware uses only 
one cyclic shift with a shift amount of (rρ + rπ). Only one pipeline 
stage is used to implement this operation. At each clock cycle the 
result of the cyclic shift operation is written to a register. It uses a 
total of 25 cyclic shift operations. 

The final stage combines both χ and ϊ steps. The χ operation is a 
combination of the NOT, AND, and XOR operations over 64-bit 
variables. Since ϊ operation is only an XOR operation of 64-bit 
number at position of (0,0) of the 5×5 matrix it is done in the 
same pipeline stage with the χ operation. The cost of moving ϊ to 
another pipeline step is 24×64 bit pipeline registers and since the 
operation is not in the critical path, we prefer doing it in the same 
pipeline stage with χ. The total number of 64-bit operations are 25 
NOT, AND, and 26 XOR. The total 64-bit operations in one 
KECCAK-f permutation round is 76 XOR, 25 NOT, 25 AND, and 
50 cyclic shift operations.  

Increasing the pipeline stages, where it is unnecessary (i.e. 
partitioning non-critical paths), results in a greater area without 
increasing the operating frequency. In our design, we use an 
optimized pipeline partitioning as shown in Fig. 8 where the 
datapath with 5-stage pipeline is implemented for one round of 
KECCAK-f permutation.  

For SMH implementation, no pipelining is used; i.e. one round is 
completed in one clock cycle, resulting in a lower operating 
frequency. All we do is to remove all the pipeline registers except 
for the output register to retain the output of one round of 
KECCAK-f permutation. Implementation results and the effects of 
design choices for both SMH and MMH architectures are 
discussed in Section 6.  

 

 
Figure 6. High-Level Pipeline Stages of Keccak Hardware 

 
Figure 7. Representation of BMW algorithm 

 



 
Figure 8. Block Diagram of Keccak Hardware

5.2 Hardware Implementation of Luffa 
Luffa Algorithm consists of two main modules as explained 
earlier; message injection (MI) and permutation (P), where P 
contains Tweak and Step modules. For each message block, MI 
and Tweak are performed only while the Step modules Q0, Q1, and 
Q2 are used for eight consecutive rounds as shown in Fig. 9. 

The block diagrams for MI, Tweak and Step modules are not 
given since each of them has a very regular flow resulting in 
straightforward architectures. ROMs are used to implement S-
Boxes instead of multiplexers. Since the constants to be used in 
step functions are initially known, a module for constant 
generation is not implemented. The constant values of 
consecutive rounds are given sequentially. 

The critical path of message injection module consists of 3 XOR 
gates while the critical path of permutation module consists of 5 
XOR gates and a read operation from ROM for S-Boxes. The cost 
of shift operations is negligible in hardware implementations 
since they are nothing more than interconnects. 

Two different hardware designs are implemented for the Luffa 
algorithm. The initial design for SMH consists of a set of registers 
(FR0, FR1, FR2 in Fig. 9) to forward the results of Step modules to 
the following round. Note that the registers are placed between 
the Tweak module and the Step modules instead of at the end of  

  

 
Figure 9. Block Diagram of the Luffa Hardware Architecture 

permutation module (cf. Fig. 9). This approach decreases the 
combination delay of a single round and increases the frequency 
noticeably at the cost of one extra cycle for message injection. 

The second design is a high throughput architecture which is 
implemented to enhance the efficiency for MMH case. Since the 
Luffa algorithm has already a small combinational delay, we 
partition the Step function into two pipeline stages. The first stage 
consists of a ROM and two XOR gates while the second has 3 
XOR gates. This division is done by inserting the pipeline stage 
after the second round of the Feistel ladder in MixWord functions. 
Addition of a single register stage increases the frequency of 



hardware for about 35% at the cost of 8% area overhead for ASIC 
implementation as shown in Table 2.  

5.3 Blue Midnight Wish Hardware 
Implementation 
Top level block diagram of the proposed pipelined and parallel 
hardware architecture for the implementation of BMW algorithm 
is shown in Fig. 10. BMW algorithm does not use multiple rounds 
for hashing of a single message block. As shown with dashed line 
in Fig. 10, the resulting value Hi is used as input in the processing 
of the next message block. Hardware architecture of f0 for MMH 
is shown in Fig. 11, where the computation starts with mixing the 
bits of the previous hash block (Hi-1) and message block (M i). 
Mixing can be implemented by only wiring in hardware. Since the 
operations are not in the critical path, f0 is implemented as a single 
pipeline stage. In SMH version of the architecture, the registers at 
the output (cf. Fig. 11) are removed. 

 
Figure 10. Block Diagram of the BMW Hardware 

Architecture 

 
Figure 11. Hardware Architecture of f0 function 

 
Figure 12. Hardware Architecture of Pipelined f1 function 



 
Figure 13. Hardware Architecture of f2 function 

Hardware architecture of the function f1 for MMH is shown in 
Fig. 12. f1 requires  two expand1 and 14 expand2 sub-functions, 
each of which uses s and r sub-functions, 16 additions, and 
AddElement operations. Since each expand function waits for the 
previous expand function to complete, they cannot work in 
parallel. This necessitates registering of 512-bit Hi-1, Mi and Qi 
values to forward them throughout the pipeline.  For MMH 
version, 16 pipeline stages are used to implement f1 while for 
SMH hardware, all pipeline and synchronization registers are 
removed. 
Hardware architecture of f2 function implementation for MMH is 
shown in Fig. 13. f2 takes 512-bit Mi, Qa

i and Qb
i as inputs, and 

generates 512-bit Hi. It basically compresses 2048-bit input to the 
512 bits. In the finalization step, the leftmost 256 bits of the Hfinal 

forms the hash of the message. f2 is implemented as a single 
pipeline stage and it is the same for both SMH and MMH. 

6. IMPLEMENTATION RESULTS 
We implement our designs using Verilog HDL, and the hardware 
implementation results of the three candidate hash algorithms, 
namely Keccak, Luffa and BMW are given in Table 2, where 
SMH and MMH stands for architectures optimized for single- and 
multi-message hashing, respectively. The table contains the 
frequency, latency, area, throughput, and efficiency results for 
target FPGAs and ASIC synthesis. Efficiency2 in the last column 
is a metric defined as the throughput per unit of resources. We 
provide Efficiency metric mainly for comparing our hardware 
implementations of the candidate algorithms. Efficiency metric 
should be carefully used for realizations that use the same (or 
close) target technology and the tool chain. Xilinx XST is used 
for FPGA synthesis and Synopsys Design Compiler with 
Synopsys 90nm Generic Library under typical operating 
conditions is used for ASIC synthesis. The area is given in terms 
of gate equivalent (GE) and slice count. The hardware results are 
also compared with the implementation results of the designs in 
[6][7][8][11][12]. 

                                                                 
2 Efficiency values of FPGAs are not comparable to efficiency 

values of ASIC realizations. 

One natural result that can be observed from Table 2 for all 
designs is that total area is lower in SMH implementations. This is 
due to the fact the SMH architectures do not have pipeline and 
synchronization registers. Pipelined datapath in MMH, on the 
other hand, significantly increases the throughput due to the 
increase in the operating frequency at the cost of additional area. 
In what follows, we summarize, evaluate, and interpret 
implementation results for each algorithm. 
Keccak: SMH variant of Keccak provides high throughput, 
comparable to Luffa, while it has the lowest resource (slice or 
GE) usage. One of its advantages over Luffa and BMW 
algorithms to achieve high throughput is its large BlockSize, 
which is 1088 bits, whereas the BlockSize of Luffa and BMW is 
256 and 512 bits, respectively. Its efficiency is again very high 
and almost the same as Luffa’s. To the best of our knowledge, 
MMH implementation of Keccak is the first in the literature and 
we observe that the algorithm is very suitable for MMH 
applications. It is again relatively low area and high throughput 
architecture which provides the highest efficiency for all target 
devices but Virtex 2, where its efficiency is very close to the best 
(i.e., BMW).  When compared with Luffa, its efficiency improves 
much better for MMH. One notable fact is that its MMH variants 
can achieve the highest clock frequency in MMH except for 
Virtex 2.   
Luffa: SMH variant has throughput values comparable to (in 
most cases higher than) Keccak. Except for ASIC, it has the 
highest throughput among the three. It is relatively low area 
architecture. Our SMH variant is superior to the architecture in 
[11], implemented using a comparable ASIC technology, in terms 
of area and efficiency. Luffa, however, does not gain speedup 
from pipelining (for MMH) as much as Keccak and BMW do. It 
takes, on the other hand, very little extra area to obtain MMH 
variant, which consumes the lowest area in each target 
technology. When our MMH variant of Luffa is compared against 
the only MMH implementation in literature [8], one can observe 
that ours provides a much better alternative thanks to its high 
efficiency metric (cf.  2.83 and 0.74). Note that the difference in 
efficiency values will not change much even if the technology 
differences are accounted for. Having much higher efficiency 
enables replication of MMH architecture to achieve even higher 
throughput values. For example, replicating our MMH variant of 



Table 2. The hardware implementation results of SHA-3 candidates. 

 Algorithm Hashing    
Method 

Target 
Technology 

Frequency 
(MHz) 

# of 
Rounds 

Latency 
(cycles) 

Area 
(Slices/GE) 

Throughput 
(Gbits/s) 

Efficiency = 
Throughput/ 
(Area×106) 

Keccak SMH 81 24 25 2,024 3.46 1.71 

Keccak MMH 338 24 121 4,356 14.85 3.41 

Luffa SMH 157 8 9 2,956 4.37 1.48 

Luffa MMH 203 8 17 3,733 5.97 1.60 

BMW SMH 4.2 1 1 10,531 2.11 0.20 

BMW MMH 

Spartan 3 

57 1 18 12,477 28.7 2.30 

Keccak SMH 137 24 25 2,024 5.81 2.87 

Keccak MMH 342 24 121 4,356 14.99 3.44 

Luffa SMH 301 8 9 2,952 8.37 2.84 

Luffa MMH 425 8 17 3,721 12.49 3.36 

BMW SMH 6.71 1 1 10,432 3.36 0.32 

BMW MMH 

Virtex 2 

86.3 1 18 12,244 43.15 3.52 

Keccak SMH 143 24 25 2,024 6.07 3.00 

Keccak MMH 509 24 121 4,356 22.33 5.13 

Luffa SMH 308 8 9 2,989 8.56 2.86 

Luffa MMH 471 8 17 3,719 13.85 3.72 

BMW SMH 9.01 1 1 10,486 4.51 0.43 

BMW MMH 

Virtex 4 

116 1 18 12,497 57.98 4.64 

Keccak SMH 455 24 25 10.5k 19.32 1.84 

Keccak MMH 1,695 24 121 23.2k 74.41 3.21 

Luffa SMH 769 8 9 11.5k 21.37 1.86 

Luffa MMH 1,205 8 17 12.5k 35.44 2.83 

BMW SMH 53 1 1 55.9k 26.32 0.47 

ou
r h

ar
dw

ar
e 

im
pl

em
en

ta
tio

n 
re

su
lts

 

BMW MMH 

90nm ASIC 

266 1 18 160.1k 132.98 0.83 

Keccak SMH Spartan 3A 85 24 25 3393 4.8 1.41 
[12] 

Keccak SMH Virtex 5 122 24 25 1412 6.9 3.61 

Luffa SMH Altera S-3 47 1 1 16,552 12.042 0.73 
[6] 

BMW SMH Altera S-3 9.55 1 1 12,917 4.889 0.38 

Keccak SMH 180nm ASIC 488 24 25 56.31k 21.23 0.38 

Luffa SMH 180nm ASIC 483 8 9 44.9k 13.74 0.31 [7] 

BMW SMH 180nm ASIC 10.46 1 1 169k 5.358 0.03 

Luffa SMH 130nm ASIC 1124 8 9 30.8k 31.9 1.07 
[8] 

Luffa MMH 130nm ASIC 508 1 9 156.6k 115.5 0.74 
BMW SMH 90nm ASIC 52 1 1 60.0k 26.66 0.54 

[11] 
Luffa SMH 90nm ASIC 100 1 1 68.9k 25.70 0.70 

 



Luffa 10 times will result in a throughput of 350 Gbit/s. This 
justifies the area efficient design approach for high speed MMH 
applications. 

BMW:  In every case, BMW consumes much more area than the 
other algorithms due to the fact that it does not use round function 
approach whereby a simple function is repeatedly executed many 
times. The SMH variant is the slowest for FPGA realizations and 
it cannot achieve high clock frequency values. A surprising result 
is that our implementation of SMH variant is the fastest in ASIC 
realization; a result, which is similar to [11]. One reason for its 
poor performance in FPGA realizations is related to the fact that it 
does not use round function approach. Simple, but many, 
arithmetic/logical operations employed in BMW in a long 
datapath, if implemented using LUTs, will tend to incur high area 
and long interconnect delay while ASIC realizations will not 
suffer from the same problem. However, BMW, due to its high 
area consumption, may suffer from its poor efficiency values in 
each case for the applications where both speed and area 
constraints are important. Due to its structure, BMW is suitable 
for pipelining since its high latency datapath can be partitioned 
evenly and profitably. Therefore, its MMH variant provides the 
highest throughput (132.98 Gbits/s) among all designs due to the 
fact that deep pipelining improves clock frequency up to five 
times. In this respect, BMW benefits from the pipelining much 
more than Luffa and Keccak do. Another important observation is 
that FPGA realizations do not observe a significant area increase 
between SMH and MMH (less than 20%) as in the case of ASIC 
where increase is almost three fold. The relatively lesser increase 
of area in FPGAs can be attributed to the better utilization of 
registers in FPGA slices in MMH architecture, which are usually 
wasted in SMH case. The MMH variant has the worst efficiency 
compared to the MMH variants of Luffa and Keccak.  

Note that the numbers of pipeline stages in Keccak and Luffa 
implementations, which are directly related to #MH and 
throughput, are significantly lower than that of BMW. The 
number of pipeline stages can also be increased (therefore 
throughput, too) if their rounds are un-rolled. However, as can be 
deducted from Eq. 2, further increase in the number of pipeline 
stages in this manner will increase throughput and area roughly at 
the same rate, which in turn cannot increase the efficiency 
significantly. In other words, hardware replication and round 
unrolling result in a similar effect for MMH applications. In this 
respect, our choices for the numbers of pipeline stages for each 
design provide optimal configurations for efficient and high 
throughput hash computations.  

7. CONCLUSION 
We presented efficient, high throughput hardware 
implementations of SHA-3 candidates Keccak, Luffa and Blue 
Midnight Wish with an emphasis on MMH applications. We 
basically employed pipelining, parallelism and re-timing 
techniques to improve the performances and efficiencies of our 
designs. Implementation results of six different architectures are 
provided for ASIC and three different FPGA devices. We 
compared our results with those in literature when possible and 
fair. To the best of our knowledge, this is the first work that 
provides a comparative analysis of three high performance SHA-3 
candidates for MMH applications. We also evaluated and 
commented on the results and give a perspective for each 

candidate to increase the insight on different aspect of the 
hardware performance of each. Our architectures provide the 
highest efficiency values in majority of the cases. 

8. ACKNOWLEDGMENTS  
This work is supported by the Scientific and Technological 
Research Council of Turkey (TUBITAK) under project number 
105E089 (TUBITAK Career Award). 

9. REFERENCES 
[1] W. Diffie, M. E. Hellman: New directions in cryptography. 

IEEE Trans. On Information Theory IT-22 (6), 644-654 
(1976). 

[2] M. O. Rabin: Digitalized signatures. In: Lipton, R., DeMillo, 
R. (eds.) Foundations of Secure Computation, pp. 155–166. 
Academic Press, NY (1978). 

[3] R. Merkle: Secrecy, Authentication, and Public Key 
Systems. UMI Research Press (1979). 

[4] National Institute of Standards and Technology (NIST). 
Cryptographic Hash Algorithm Competition Website. 
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html. 

[5] H. Bar-El, Security Implications of Hardware vs. Software 
Cryptographic Modules. Discretix White Paper. October 
2002. 

[6] ECRYPT II. SHA-3 Hardware Implementations. 
http://ehash.iaik.tugraz.at/wiki/SHA-
3_Hardware_Implementations. 

[7] S. Tillich et al: High-Speed Hardware Implementations of 
BLAKE, Blue Midnight, Wish, CubeHash, ECHO, Fugue, 
Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, 
SIMD and Skein. Cryptology ePrint Archive. October 2009. 

[8] M. Knezevic, I. Verbauwhede: Hardware Evaluation of the 
Luffa Hash Family. 4th Workshop on Embedded Systems 
Security 2009, Grenoble, France.  

[9] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, 
“Sponge Functions,” Ecrypt Hash Workshop 2007. 

[10] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “On 
the Indifferentiability of the Sponge Construction,” 
Advances in Cryptology, Eurocrypt’08, Lecture Notes in 
Computer Science, Vol. 4965, Springer-Verlag, pp. 181–
197, 2008. 

[11] A. H. Namin and M. A. Hasan, “Hardware Implementation 
of the Compression Function for Selected SHA-3 
Candidates”. 

[12] J. Strömbergson, Implementation of the Keccak Hash 
Function in FPGA Devices, 2009. 

[13] X. Wang, Y. L. Yin, H. Yu: Finding Collisions in the Full 
SHA-1. CRYPTO 2005: 17-36. 

[14] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, L. Wang: 
Preimages for Step-Reduced SHA-2. ASIACRYPT 2009: 
578-5. 

 

 


