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Abstract: We propose a quasi-Newton line-search method that uses negative curvature directions for solving
unconstrained optimization problems. In this method, the symmetric rank-one (SR1) rule is used to update the
Hessian approximation. The SR1 update rule is known to have a good numerical performance; however, it does
not guarantee positive definiteness of the updated matrix. We first discuss the details of the proposed algorithm
and then concentrate on its numerical efficiency. Our extensive computational study shows the potential of the
proposed method from different angles, such as; its second order convergence behavior, its exceeding performance
when compared to two other existing packages, and its computation profile illustrating the possible bottlenecks
in the execution time. We then conclude the paper with the convergence analysis of the proposed method.

Keywords: Quasi-Newton; SR1 update; nonconvexity; negative curvature; unconstrained

1. Introduction. Quasi-Newton methods are distinguished by their use of approximate Hessian
matrices. These approximate matrices are evaluated with respect to some iterative update formula as
the algorithm progresses. The update procedure only requires the gradient of the objective function at
each iteration. Thus, these methods provide a way of obtaining some curvature information without
evaluating the exact Hessian. This is particularly useful when Hessian is very demanding to compute or
cannot be computed at all for some reason. Because they are known to be generally more applicable and
quite efficient, quasi-Newton methods are still widely used tools of nonlinear programming even after the
development of automatic differentiation packages [20].

There are numerous work on the use of quasi-Newton methods either in line-search or trust-region
applications. The methods differ by the formula they use for updating the approximate Hessian matrix
[14]. In this paper, we shall focus on the line-search implementation of the symmetric rank-one (SR1)
update formula to find an optimal solution of the general unconstrained nonlinear programming problem

min f(x)
s.t. x ∈ R

n,
(1)

where f : Rn → R is a real valued differentiable function and its gradient, ∇f(.), is continuous.
The symmetric rank one update computes the approximate Hessian, Bk+1 in iteration k + 1 by using

the current approximation, Bk and the gradient of the objective function in two consecutive iterations
∇f(xk) and ∇f(xk+1) with

Bk+1 = Bk +
(yk −Bkvk)(yk −Bkvk)

⊺

(yk −Bkvk)⊺vk
, (2)

where yk = ∇f(xk+1) − ∇f(xk) and vk = xk+1 − xk. The inverse of the approximate matrices can be
calculated in a similar manner by generating an inverse update rule, which can be achieved by applying
the Sherman-Morrison-Woodbury formula on the SR1 update rule above [11]. This yields,

B−1
k+1 = B−1

k +
(vk −B−1

k yk)(vk −B−1
k yk)

⊺

(vk −B−1
k yk)⊺yk

. (3)

The SR1 formula preserves symmetry of the Hessian but the resulting matrix is not necessarily positive
definite. This could be a drawback in line search applications, since the corresponding (approximate)
Newton direction may fail to be a descent direction. Thus, SR1 formula has generally been used either
when the approximations are expected to be positive definite or within the trust-region implementations.
Another problem with the SR1 formula is that the denominator of the formula may vanish and cause
undefined approximations. A strategy suggested for the solution of this problem is to apply the update
formula only if the condition given by

|(yk −Bkvk)
⊺vk| ≥ r1‖vk‖‖yk −Bkvk‖, (4)
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is satisfied; otherwise, the update procedure is skipped (Bk+1 = Bk). Applying this strategy, the denom-
inator drawback can be overcome at no significant performance cost because the violation of the above
condition is not expected to happen frequently and skipping the update under this condition does not
cause a significant loss of curvature information [20]. A similar strategy can be followed to guarantee
existence of the inverse matrices,

|(vk − B−1
k yk)

⊺yk| ≥ r2‖yk‖‖vk −B−1
k yk‖, (5)

where r1 and r2 denote small positive real numbers.
The theoretical properties of the SR1 formula have been focus of interest, particularly after the in-

fluential work of Conn et al. [8]. In this paper, Conn et al. study the convergence properties of the
formula and show that the sequence of matrices generated by the SR1 formula converges to the exact
Hessian, when the sequence of iterates converges to a limit point and the sequence of steps is uniformly
linearly independent. Kelley and Sachs [17] provide similar convergence results removing the first of these
assumptions. However, Khalfan et al. [18] have observed that the second assumption on uniform linear
independence is generally unsatisfied in practice and by removing this assumption, they show (n + 1)-
step superlinear convergence of the method when the approximate matrices are assumed to be positive
definite. In a follow-up work, they prove the same convergence result for the case where SR1 updates are
used within a trust region framework without the assumption of positive definiteness [7].

Numerical experiments in the literature verify the superior efficiency of the SR1 formula in line search
and in trust region applications (for a list of references, see [16]). However, the formula has generally been
neglected due to its drawbacks as mentioned above. When the formula is modified to overcome those
drawbacks, it becomes less efficient [25]. A solution other than modification of the formula is suggested
by [22]. The idea is to switch to the BFGS formula, whenever the SR1 rule is calculated to produce an
indefinite matrix.

In this study, we welcome indefinite matrices generated by the SR1 formula and make use of this
valuable information about the actual curvature of the objective function. That is, we propose to use
the negative curvature directions, whenever the approximate matrices are indefinite. This approach was
already used in the literature with the exact Hessian matrices. Mainly, two directions are evaluated;
a positive curvature related (modified) Newton direction and a negative curvature direction. Gould et
al. [13] propose line search procedures that follow one of these two directions depending on the relative
improvement in the objective function. A method, using a combination of these two directions, is proposed
by Ferris et al. [10]. In a recent work, Olivares et al. discuss using either a combination or one of these
two directions [21]. The global convergence, that is the convergence to the points that satisfy second
order necessary conditions, has also been shown for these approaches.

In our view, we make the following contributions:

⋄ It has been experimentally observed by many researchers that the SR1 rule performs generally
better than the other quasi-Newton update rules such as BFGS and DFP. However, SR1 rule is in
general not preferred in line search applications due to its risk of failing to find descent directions.
Here, we use the SR1 quasi-Newton update rule in a line search context without requiring the
positive definiteness of the matrices it generates.

⋄ The implementation of our approach results in a new algorithm to solve unconstrained problems.
We give a thorough computational study and confirm that the numerical performance of the
new algorithm is quite promising. This observation is consistent with other observations in the
literature, where the SR1 formula has shown superior performance in the trust-region applications
using the negative curvature directions as well as the (approximate) Newton directions. We also
complement our numerical results with the convergence analysis of the proposed method.

⋄ The idea of including the negative curvature directions in line search applications has been
applied only with exact Hessian matrices before. Our approach adopts a similar idea and uses
the approximate Hessian matrices. This not only provides avoiding the calculation of the Hessian
matrices but also eliminates the need to factorize the Hessian for inversion at every iteration,
since the inverse matrices are readily computed in quasi-Newton applications. We also discuss a
way for eliminating the need to compute a negative curvature direction at each step.

The paper is organized as follows. In Section 2, we introduce the proposed algorithm. We present
our numerical results to illustrate the performance of the new algorithm in Section 3. We then give in
Section 4 the convergence analysis of the proposed algorithm. Finally, we give our conclusions as well as
some future research directions in Section 5.
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2. Proposed Algorithm. We call the proposed algorithm SR1-NC, since it uses the SR1 quasi-
Newton update formula and the negative curvature directions. The algorithm applies the main phases
of a typical line-search procedure as shown in Algorithm 1. The first two lines of Algorithm 1 define
the initialization phase (lines 1-2), where x0, B0, kmax denote the initial iterate, the initial approximate
matrix and the maximum number of iterations, respectively.

In the direction computation phase, the usual quasi-Newton direction sk is computed (line 4). We also
compute a negative curvature direction dk only if we suspect that the Bk matrix is indefinite (lines 5-7,
where λmin(Bk) denotes the smallest eigenvalue of Bk and wmin is the corresponding eigenvector). That
is, we consider the negative curvature direction in the following two cases:

i. y
⊺

kvk < 0, the update formula indicates negative curvature;

ii. s
⊺

k∇f(xk) ≥ 0, the usual quasi-Newton direction is not a descent direction.

When one of these conditions hold, we apply eigenvalue decomposition and set dk collinear to wmin. At
each iteration, either the direction sk or the direction dk is followed. If both directions are computed,
then the estimated decreases they provide are compared. Since we cannot guarantee that the matrices
Bk include the correct curvature information, we may not successfully identify the saddle points. Thus,
we stop the algorithm when the norm of the gradient function value is close to zero (line 3). By the
same reason, we put the safeguard in line 13 and ensure that we have a descent direction unless the
termination condition is satisfied. It is important to note at this point that in all numerical tests, we
observed that the condition in line 13 occurred quite rarely; in fact, this condition is used only for a few
higher dimensional problems that are solved with the large-scale implementation. We shall emphasize
about this remark again in the computational results section, where we point out the strong empirical
support for the second order convergent behavior of the proposed algorithm.

After the direction computation, the algorithm applies an adaptive line-search, which is very similar
to the one in [13]. The line-search procedure is based on either the linear approximation or the quadratic
approximation of f(xk + αdk). In our implementation of the algorithm, we calculated the step size αk

by applying a backtracking procedure that is common in Newton-type methods. When sk is selected, we
start with an initial trial step size of 1 and reduce it until the condition given by relation (6) is satisfied.
On the other hand, when dk is selected, we start with the step size value that had been used the last
time again with the negative curvature direction. If the condition given by relation (6) is violated, we
reduce that value until this condition is satisfied. If the initial trial step size satisfies this condition, we
increase that value until we get the largest step size that does not violate the condition.

Finally, the new iterate is computed by using the selected direction and the step size (line 18). Right
before the end of one iteration, the approximate matrices are updated with the new curvature information
(lines 19-24). To avoid generating undefined matrices, we update Bk and its inverse only when the
conditions given by relations (4) and (5) are satisfied.

3. Computational Study. To evaluate the performance of Algorithm 1, we have conducted two
sets of experiments with small-scale and large-scale implementations of the algorithm. In our subsequent
discussion, we refer to the small-scale implementation as SR1-NC and the large-scale implementation
as LSR1-NC. All results have been taken on a machine with 2.0 GB RAM and a 2.20 GHz dual core
processor. The algorithm has been coded in C++ and compiled with Intel C++ compiler v.11 under
Ubuntu 7.10 operating system. We have used the double precision BLAS and LAPACK [2] procedures
in Intel Math Kernel Library for all linear algebra operations. The source code of the program as well as
the details of the test results given in this paper can be downloaded from [3].

We have used the well-known CUTEr problem set [12]. The most recent version of this set is obtained
from [1]. We have compiled two sets of test problems. In the first set, there are 81 small-scale test
problems, which involve all the unconstrained CUTEr problems with at most 200 variables. In the second
set there are additional 60 large-scale problems and the dimensions of these problems vary between 500
to 10,000. While conducting our experiments, we did not alter the default parameter values of any one of
the test problems. Similarly, the initial solution point is kept as the default one provided by the CUTEr
package.

3.1 Tests with SR1-NC. For the first set of experiments, we have selected two packages as bench-
marks, UNCMIN [23] and TENMIN [24], both of which have been designed to solve small-to-medium
size unconstrained problems. Moreover, both packages have an interface to CUTEr. These packages are
coded in FORTRAN77 language. The UNCMIN and TENMIN packages are obtained from [5] and [4],
respectively.
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Algorithm 1: SR1-NC

Input: x0, µ ∈ (0, 1), τ > 1, kmax, B0, B
−1
0 , ǫP > 0, ǫM > 01

y0 = 0, v0 = 0, k = 02

while k < kmax and ‖∇f(xk)‖ > ǫP do3

sk = −B−1
k ∇f(xk)4

if y
⊺

kvk < 0 or s
⊺

k∇f(xk) ≥ 0 then5

Apply eigenvalue decomposition to solve Bkwmin = λmin(Bk)wmin6

dk = −sgn(w⊺

min∇f(xk))
wmin

‖wmin‖7

else8

dk = 09

if s
⊺

k∇f(xk) ≤ τ‖sk‖(d
⊺

k∇f(xk) +
1
2
d
⊺

kBkdk) then10

pk = sk11

else12

if |d⊺k∇f(xk)| ≤ ǫM ||∇f(xk)|| then13

pk = −∇f(xk)14

else15

pk = dk16

Compute a step length αk > 0 such that17

f(xk + αkpk) ≤ f(xk) + µ[αk∇f(xk)
⊺pk +

1

2
α2
k min(0, p⊺kBkpk)]. (6)

xk+1 = xk + αkpk18

yk = ∇f(xk+1)−∇f(xk)19

vk = xk+1 − xk20

if (4) and (5) are satisfied then21

Compute Bk+1 and B−1
k+1 using (2) and (3), respectively22

else23

Bk+1 = Bk and B−1
k+1 = B−1

k24

k = k + 125

In all our tests, we have used the parameters listed in Table 1 for all packages. With SR1-NC, we have
used the following algorithm specific parameters: B0 = I, µ = 10−3, ǫM = 0 and τ = 2.0. To terminate
any one of the packages, we have used the following five exit codes1: (1) the gradient is close to zero, (2)
step size is close to zero, (3) there is no descent direction, (4) maximum number of iterations is exceeded,
and (5) maximum step size is exceeded in five consecutive iterations. We report all our results with
UNCMIN and TENMIN in Table 3 and Table 4, and with SR1-NC in Table 5 and Table 6 of Appendix
A.

3.1.1 UNCMIN and TENMIN Benchmarks. We first compare our results with that of the
well-known BFGS quasi-Newton update rule. The results for BFGS are obtained running the UNCMIN
package with the proper options. It is important to note that for fair comparison we only include the 48
cases, for which both UNCMIN and SR1-NC have converged to the same point. The problems included
in the benchmark are marked with a † sign in Table 3 and Table 4. We did not use CPU times to compare
the performances because UNCMIN has been coded in Fortran. We observe that C++ requires more
CPU time than Fortran. There are, however, a number of work comparing the relevant compilers and
arguing that the running time performance of these two programming languages would be comparable
after certain fine-tuning [15, 26]. Since the computation times for all problems are quite small and the
differences are negligible, we did not dwell on such fine-tunings within the scope of this work.

1We modified the exit codes for SR1-NC to comply with the ones given for both UNCMIN and TENMIN.
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Table 1: The general parameters used in all tests.

Maximum number of iterations: 100× n

Gradient tolerance: 10−6

Stepsize tolerance: 10−8

Maximum stepsize: 1, 000 ×max{‖x0‖∞, 1.0}
Scale parameter: 1.0

Figure 1 shows the performance profiles for the number of function and gradient evaluations (see [9] for
the details about performance profiles). Clearly, when UNCMIN uses the BFGS update rule (UNCMIN-
BFGS), SR1-NC outperforms UNCMIN-BFGS in both the number of function and the number of gradient
evaluations.
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(b) Number of gradient evaluations.

Figure 1: Performance profiles for SR1-NC (Part I).

We also compare our results with that of the UNCMIN package when finite difference Hessian ap-
proximations are used (UNCMIN-FD), and with that of the TENMIN package when the tensor method
applied with finite difference Hessian approximations (TENMIN-FD). Consequently, we exhaust all op-
tions of UNCMIN and TENMIN for solving small-to-medium size problems using line-search without the
exact Hessian matrices. Table 2 displays the number of problems that each solver could solve success-
fully for different levels of accuracy (‖∇f(x)‖∞ ≤ ǫP ). Notice that the performance of SR1-NC does
not deteriorate as the precision increases. This is an indication about the robustness of the proposed
algorithm.
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In Figure 2, the performance profiles are provided for the number of function and gradient evaluations.
The finite difference approximation implementations generally did not converge to the same points as
SR1-NC. Therefore, the performance profiles could be obtained over a restricted set of only 15 problems,
which are marked with the sign ‡ in Table 3 and Table 4. The results show that the performance of
SR1-NC is compatible in terms of number of function evaluations and superior in terms of number of
gradient evaluations, when compared with finite difference approximations.

Table 2: Number of problems solved successfully within the given iteration limit.

Package ǫP = 10−2
ǫP = 10−4

ǫP = 10−6

UNCMIN-BFGS 51 45 32
UNCMIN-FD 67 59 54
TENMIN-FD 28 22 14
SR1-NC 63 60 55
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Figure 2: Performance profiles for SR1-NC (Part II).

Both benchmark results above are quite promising for SR1-NC. Figures 1 and 2 show that for around
98% of the problems in our test set, SR1-NC was in general more efficient than the other two algorithms
in terms of function and gradient evaluations. There is, however, one exception in terms of the number
of function evaluations. As shown by Figure 2(a) UNCMIN package with finite difference approximations
shows a performance that is quite close to SR1-NC. One remaining question is the cost of eigenvalue
decomposition, which we did not involve in the benchmark above. This issue will be revisited later.
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3.1.2 The Convergence Performance. In this part, we try to analyze the performance of Algo-
rithm 1 by considering the effects of different factors. This analysis includes 60 instances for which our
algorithm could obtain a final gradient with an infinity norm less than 10−5. The corresponding problems
are marked with a ‡ sign in Table 5 and Table 6.

We have mentioned that in Algorithm 1 the update of the approximate Hessian Bk is skipped when
conditions (4) or (5) are violated. However, in our computational study, these conditions are almost
always satisfied. In fact, over all iterations executed during our tests with 81 problems, such a case
occurred in only 4 iterations. On the other hand, for all problems the condition d

⊺

k∇f(xk) ≤ ǫM given in
line 13 of Algorithm 1 has never occurred at any iteration.

We also observed that the number of cases terminated with an exit code of 2 was remarkable (see
column 4 of Table 5 and Table 6). So, we also implemented our algorithm with a stepsize tolerance
of zero, i.e., no terminations are allowed due to very tiny steps. There were 64 successful instances in
this case, and only 4 problems have been prematurely terminated because of the inappropriate stepsize
tolerance parameter.

The first question that we had is related to the global convergence performance of the proposed
algorithm. To check whether the algorithm has exactly converged to a local minimum point, we calculated
the exact Hessian of the objective function at the final iteration for each problem. As it can be seen from
column 10 of both Table 5 and Table 6, except 6 instances out of 60 successful cases, the algorithm has
converged to a point where the exact Hessian is positive definite. This demonstrates empirically that the
proposed algorithm is capable of converging to points that satisfy second order sufficient conditions. We
have also calculated the Frobenious norm of the relative Hessian approximation error at the final point.
The corresponding error values are given in column 9 of both Table 5 and Table 6.

The main motivation of using negative curvature directions is that it prevents the standard line-search
algorithm from failing when indefinite approximate Hessian matrices are obtained. But does it also
provide further performance advantages? How does it contribute to the nice performance results of the
new algorithm? How is the improved performance related to the negative curvature directions as well as
the SR1 update rule itself? To answer these questions and understand the effect of negative curvature
directions, we have decided to control the success of steps taken by the negative curvature directions.
Figure 3(a) shows the percentage of cases among all problem instances for which the ratio of the decrease
in the objective function value, achieved by selecting the negative curvature directions over total objective
function value decrease, is above a given threshold (rdecd > α). For instance the point (0.2, 10) on the
graph implies that among 10% of all problems, at least 20% of the total decrease in the objective function
value is obtained due to the selection of negative curvature directions (see also column 13 of Table 5 and
Table 6). Similarly, Figure 3(b) illustrates the percentage of cases for which the ratio of the number of
iterations, at which the negative curvature direction has been followed, over total number of iterations is
above a threshold (rd > α) (see also column 12 of Table 5 and Table 6). We observe that for 40% of all
problems, at least 1 in every 10 iterations is carried out by following the negative curvature directions.
All these results indicate that although the negative curvature direction steps are not the primary steps
of the proposed algorithm, they provide the crucial information when the algorithm has got stuck. In
addition, one can also concur that the negative curvature direction steps have been complementary to
the gradient related steps rather than being alternatives.

3.1.3 Cost of Backtracking and Decomposition. We also observe that the number of function
evaluations per iteration could be high for SR1-NC (see column 15 of Table 5 and Table 6 in Appendix A).
In Figure 4, we illustrate the cost of backtracking line-search for all instances by plotting the percentage
of cases for which the ratio of the number of function evaluations during line-search over total number
of iterations is above a threshold (rfb > α). The figure supports our hypothesis about the bottleneck
caused by backtracking line-search; for 60% of all problems, at least half of total number of iterations is
spent in the backtracking line-search procedure.

In Algorithm 1 we do not calculate the minimum eigenvalue at each iteration, but eigenvalue decom-
position is still another costly operation of the algorithm. To get an insight about this cost, for each
problem instance we measured the time spent for decomposition and calculated its ratio over the total
solution time (rdt). We note at this point that for those test problems for which the total solution time
is negligibly small, we set rdt = 0. The results given in Figure 5 show that for only 10% of all problems,
the time spent for decomposition exceeds approximately 15% of total solution time (see also column 14 of
Table 5 and Table 6). The smallest eigenvalue and the corresponding eigenvector can also be calculated
approximately in a less costly way for the large-scale implementation of the algorithm. This issue shall
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(a) Objective function value decrease provided by negative curvature directions.
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(b) Frequency of using negative curvature directions.

Figure 3: Performance effect of negative curvature directions in SR1-NC.

be further argued in the next section.

3.2 Tests with LSR1-NC. In the large-scale implementation of the algorithm, we have used a
limited memory SR1 update routine together with the Lanczos procedure. We have applied the compact
form formulations of the limited memory updates [20].

We have compared our results with that of the well-known L-BFGS method. The computer program
for L-BFGS is obtained from [19]. To have a fair comparison, we have adopted the termination condition
of L-BFGS 2 and modified the exit codes of LSR1-NC: 0, successful termination; -1, violation of stepsize
bounds, i.e., αk ≤ αmin or αk ≥ αmax; 1, the maximum number of iterations is exceeded. The parameters
used in LSR1-NC are set to the default values in L-BFGS: ǫP = 10−5; stepsize tolerance, αmin = 10−20;
maximum stepsize, αmax = 1020; maximum number of iterations, 10.000; the size of the memory, 5
pairs. For computing the minimum eigenvalue and the corresponding eigenvector approximately, we have
applied the Lanczos procedure [11]. In our implementation, we have limited the effort spent for negative
curvature direction computation by setting the maximum number of orthogonal base vectors computed
by the procedure to min(n, 20).

We first present the benchmark results. The unconstrained problems of the CUTEr set with at most
10,000 variables are solved with both L-BFGS and LSR1-NC. The problem set contained a total of 141
test problems. The complete results for both algorithms are given in Tables 7 and Table 9 of Appendix A.
In 14 instances, both algorithms terminated with an exit code of either 1 or −1. There are 12 instances for
which LSR1-NC terminated successfully but L-BFGS either exceeded the maximum number of iterations
or ended up with a line-search fail. On the other hand, for 5 instances, L-BFGS terminated successfully
but LSR1-NC either exceeded the number of iterations or stopped because of a line-search error.

We have conducted a benchmark over 91 instances, for which the difference between the final objective
function values reported by both algorithms is less than 10−3. Figure 6 shows the performance profiles in
terms of number of function and gradient calls. In terms of number of function calls, L-BFGS outperforms

2||∇f(xk)||/max(1, ||xk||) < ǫP
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Figure 4: Cost of backtracking line-search in SR1-NC.
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Figure 5: Cost of eigenvalue decomposition in SR1-NC.

LSR1-NC (see Figure 6(a)). This may be again credited to the backtracking line-search procedure (see
also our subsequent discussion about Figure 8). Nonetheless, in terms of number of gradient evaluations,
LSR1-NC performs better than L-BFGS as shown in Figure 6(b).

To get more insight about the performance of the large-scale implementation, we repeat the analysis
we have done for the small-scale version. Figure 7(a) to Figure 9 are the large-scale counterparts of
Figure 3(a) to Figure 5, respectively. Figure 7(a) and Figure 7(b) show similar patterns as in the small-
scale implementation. On average, we observe a decrease in the frequency of using negative curvature
directions. Clearly, the most significant difference is in the cost of decomposition, which is much lower
for LSR1-NC thanks to the Lanczos procedure (see Figure 9). However, as illustrated in Figure 8, the
backtracking line-search procedure in the large-scale implementation uses up a larger portion of the total
number of function evaluations than the small-scale implementation.

Finally, to test the convergence behavior of LSR1-NC, we have also checked whether the exact Hessian
matrix at the final solution point of the algorithm is positive definite. Note that, we have restricted the
size of the memory to only 5 pairs for Lanczos procedure, even though the problem sizes scale up to 10, 000
dimensions. Therefore, initially we did not expect to see a very successful final curvature approximation.
To our surprise, the results have shown that in only 12 cases out of 122 successfully solved instances, the
Hessian matrix at the final solution point is not positive definite, and for other 7 cases the eigenvalue
decomposition procedure has failed. We have also tested whether the orthogonality condition (line 13
of Algorithm 1) has ever occurred in the large-scale implementation. We have observed that out of 141
problem instances, this condition has been activated only for 15 instances.

4. Convergence Analysis. We devote this section to the convergence analysis of Algorithm 1. Ba-
sically, we first discuss that the algorithm is well-defined and then show that it is first order convergent.
Since we compute the curvature approximately, unless we have some information about the exact curva-
ture of the function or how well it is approximated, we do not have any choice but to base some parts of
our convergence proof on the gradient information. As it shall be clear from the proof of the next lemma,



10 Öztoprak and Birbil: SR1-NC

Sabancı University, ©November 29, 2010

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ(
τ)

 

 

lsr1−nc
l−bfgs

(a) Number of function evaluations.

5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ(
τ)

 

 

lsr1−nc
l−bfgs

(b) Number of gradient evaluations.

Figure 6: Performance profiles for LSR1-NC.

we needed the extra step in line 13 of Algorithm 1 to make sure that there exists at least one gradient
related direction at each step.

Here are two standard assumptions that we use in our subsequent results:

A1. The matrices Bk and B−1
k , k ∈ N are bounded.

A2. The function f(·) is bounded below and the lower level set of x0 is compact.

Lemma 4.1 Suppose assumption A1 holds. Then, at a nonstationary point xk, Algorithm 1 computes at
least one nonzero direction vector, pk 6= 0 satisfying

(i) p
⊺

k∇f(xk) < κ||∇f(xk)||
(ii) ‖pk‖ ≤ M

(7)

for some κ > 0, M > 0.
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Figure 7: Performance effect of negative curvature directions in LSR1-NC.
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Figure 8: Cost of backtracking line-search in LSR1-NC.
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Figure 9: Cost of Lancsoz procedure in LSR1-NC.
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Proof.

I. Suppose Bk is positive definite. Then, the conditions in line 5 of Algorithm 1 are not satisfied,
and hence, dk = 0. Thus, we have

pk = sk = −B−1
k ∇f(xk) 6= 0.

Since
‖sk‖ = ‖B−1

k ∇f(xk)‖ ≤ ‖B−1
k ‖‖∇f(xk)‖

and
s
⊺

k∇f(xk) = −∇f(xk)
⊺B−⊺

k ∇f(xk) ≤ ‖B−1
k ‖‖∇f(xk)‖

2,

conditions (i) and (ii) are satisfied by using the boundedness of the approximate matrices.

II. Suppose Bk is indefinite. Then there are two cases:

a. If s⊺kBksk < 0, then s
⊺

k∇f(xk) > 0. This implies that

dk = −sgn(w⊺

k∇f(xk))
wk

‖wk‖
6= 0

with Bkwk = λmin(Bk)wk. Note that d⊺k∇f(xk) < 0 and

(dk)
⊺Bkdk =

1

‖wk‖2
(wk)

⊺Bkwk = λmin(Bk) < 0.

Thus, the condition in line 10 of Algorithm 1 is not satisfied. Furthermore, if |d⊺k∇f(xk)| >
ǫM ||∇f(xk)||, then pk = dk satisfies (i). Since ‖dk‖ = 1, (ii) is trivially true. Otherwise, if
|d⊺k∇f(xk)| ≤ ǫM ||∇f(xk)||, then pk = −∇f(xk), which clearly satisfies both (i) and (ii).

b. If skBksk > 0, then selecting pk = sk or pk = dk works by the previous arguments in part I
and part II.a, respectively.

�

We next prove the existence of a positive step length at each iteration of the algorithm.

Lemma 4.2 Let pk ∈ R
n be the direction vector selected by Algorithm 1 at iteration k. Then, there exists

a step length αk > 0 such that (6) holds.

Proof. By Lemma 4.1, at each iteration k, Algorithm 1 selects a nonzero direction pk satisfying
condition (7). Suppose for contradiction that there exists no αk satisfying (6). Then, there exists a
sequence αj ↓ 0 as j ↑ ∞ such that

f(xk + αjpk)− f(xk) > µ[αj∇f(xk)
⊺pk +

1

2
α2
j min(0, p⊺kBkpk)].

By using the mean value theorem and dividing both sides by αj , we get for θ ∈ (0, 1)

∇f(xk + θαjpk)
⊺pk > µ∇f(xk)

⊺pk + µ
1

2
αj min(0, p⊺kBkpk).

However, for j ↑ ∞ we obtain (1− µ)∇f(xk)
⊺pk > 0, which contradicts that ∇f(xk)

⊺pk < 0. �

We shall next conclude in Theorem 4.1 that Algorithm 1 converges to a point that satisfies the first
order conditions.

Theorem 4.1 Suppose assumptions A1 and A2 hold. Then, the algorithm converges to a point x∗ with
‖∇f(x∗)‖ = 0.

Proof. Note that

f(xk + αkpk) ≤ f(xk) + µ[αk∇f(xk)
T pk +

1

2
α2
k min(0, pTkBkpk)] ≤ f(xk) + µαk∇f(xk)

T pk,

and pk is a gradient related direction by Lemma 4.1. Using also Lemma 4.2, we can apply the standard
convergence analysis for Armijo line-search (see, for instance, [6]).

�
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A very impressive property of the SR1 update is that the approximate matrices it produces are expected
to get closer to the exact Hessian. Its limiting convergence behavior, ‖Bk − ∇2f(x∗)‖ ↓ 0, has already
been studied in the literature [8]. Such a result requires the assumption of uniform linear independence
of the search directions as well as the boundedness and Lipschitz continuity of ∇2f(xk). In our numerical
tests, we have observed that the proposed algorithm has converged to the points that satisfy second order
necessary conditions for most of the successfully solved test problems. This is also true for large-scale
implementation, even in that case we could not extensively use the approximate curvature information
produced by the SR1 updates. On the other hand, it is relatively simple to discuss that the algorithm may
fail to converge to minimizers in the most general case. For example, if the initial Hessian approximation
is selected as a positive definite one and the initial iterate turns out to be a saddle point of the objective
function, the algorithm terminates at this initial point, which is clearly not a minimizer.

5. Conclusion and Future Research. In this paper, we have proposed a quasi-Newton algorithm,
SR1-NC, which uses the efficient symmetric rank-one (SR1) update rule with problems that include local
nonconvexity. We also implemented a large scale adaptation of the proposed algorithm and evaluated its
performance with a thorough computational study on a set of well-known test problems.

Our numerical experiments have revealed that the performance of SR1-NC is quite promising for solving
unconstrained nonlinear programming problems. Although the negative curvature information is not used
very frequently, we have observed that it plays a crucial role whenever a conventional SR1 quasi-Newton
implementation gets stuck. The proposed algorithm requires eigenvalue decomposition, which could
affect the numerical performance. For this reason, we have avoided applying an eigenvalue decomposition
operation at each step. We have proposed a strategy to apply this operation whenever it is necessary. The
numerical results have confirmed the success of this strategy: The number of decompositions was quite few
when compared against the number of iterations. Along the same line, we also observed that there were no
unnecessary decompositions meaning that the negative curvature direction was always used when it was
computed (see columns 11 and 12 of Table 5 and Table 6). For our small-to-medium size test problems,
we did not observe any performance problems with respect to the computation of the exact eigenvalues
and eigenvectors. However, such factorization could be a clear obstacle for solving large-scale problems.
Therefore, we have consulted the well-known Lanczos procedure to estimate the smallest eigenvalue. This
approach, as implemented in the large-scale version of the proposed algorithm (LSR1-NC), turned out
to be quite successful. Our empirical study suggested that the overall performance of LSR1-NC could be
further improved, if one can substitute an effective line-search method for the backtracking procedure.
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We are grateful to Professor A. R. Conn for his careful reading and constructive comments. Finally, we
would like to acknowledge The Scientific and Technological Research Council of Turkey (TÜBİTAK) for
their support under grant 107M455.
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Appendix A. Computational Results. We give our test results with UNCMIN, TENMIN and
SR1-NC in this section. The list of abbreviations that are used in the tables are as follows:

(1) n: problem dimension

(2) E: exit code

(3) Nf : number of function evaluations

(4) N∇f : number of gradient evaluations

(5) ||∇f∗||∞: infinity norm of the final gradient

(6) F : objective function value at the final point

(7) ErrH : Hessian error at the final point

(8) PD: positive definiteness of the final Hessian (1/0) ; (?) indicates eigenvalue decomposition has
failed

(9) NED: number of eigenvalue decompositions

(10) Nd: number of iterations in which a negative curvature direction has been followed

(11) rdecd: ratio of the objective function value decrease by negative curvature directions

(12) rdt: ratio of the CPU time spent for eigenvalue decomposition

(13) Nfb: number of function evaluations in backtracking line-search
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Table 3: The results obtained with UNCMIN and TENMIN.
TENMIN UNCMIN-BFGS UNCMIN-FD

no prob n(1) E(2) N
(3)
f

N
(4)
∇f

||∇f∗||
(5)
∞ F (6) E Nf N∇f ||∇f∗||∞ F E Nf N∇f ||∇f∗||∞ F

1 AKIVA 2 4 1122 603 5.28E-01 6.18 5 9 7 nan NAN 1 9 19 1.65E-09 6.17

2 ALLINITU†‡ 4 1 310 465 3.35E-06 5.74 1 87 31 1.50E-07 5.74 1 20 41 5.20E-10 5.74

3 ARGLINA 200 1 202 202 1.81E-04 200 1 203 2 2.62E-15 200 1 202 202 1.81E-04 200

4 ARGLINB† 200 2 204 603 5.15E+13 7.74E+14 3 277 12 1.20E+05 99.63 2 207 1207 1.67E+03 99.63

5 ARGLINC† 200 2 204 603 5.00E+13 7.47E+14 3 302 15 7.05E+01 101.13 3 206 1006 1.59E-01 101.13

6 BARD†‡ 3 2 209 152 8.49E-05 0.01 1 167 50 2.56E-07 0.01 1 11 29 2.59E-08 0.01

7 BEALE†‡ 2 4 828 603 2.81E-02 0 1 31 16 1.73E-07 1.32E-014 1 11 22 5.20E-08 2.76E-15

8 BIGGS6† 6 2 192 455 1.54E-01 0.3 1 542 157 5.03E-08 0.01 4 608 4201 8.25E-03 0.03

9 BOX3† 3 4 1497 1204 1.85E-04 0.07 1 199 48 1.97E-07 3.89E-014 1 12 33 1.01E-10 5.67E-19

10 BRKMCC†‡ 2 4 1137 603 2.57E-05 0.17 1 81 19 4.58E-07 0.17 1 6 10 5.53E-13 0.17

11 BROWNAL† 200 2 205 603 1.26E+00 0.18 2 272 49 2.37E-06 1.44E-009 1 348 29347 2.76E-10 1.01E-20

12 BROWNBS 2 2 126 60 3.82E+05 3.65E+10 5 4 2 2.00E+06 9.98E+011 5 4 4 2.00E+06 9.98E+11

13 BROWNDEN†‡ 4 4 1302 2005 6.73E-01 85822.2 1 436 124 5.43E-05 85822.2 1 12 36 3.49E-03 85822.2

14 CHNROSNB† 50 4 15049 255051 1.54E+02 592.4 2 3490 726 2.21E-04 4.16E-010 1 226 5050 2.14E-11 6.51E-22

15 CLIFF 2 4 1690 603 9.80E-04 0.2 1 211 168 4.45E-10 0.2 1 30 82 3.98E-09 0.2

16 CUBE† 2 4 707 603 3.89E+00 4.61 1 166 33 5.69E-10 4.02E-021 1 51 103 2.16E-08 3.22E-19

17 DECONVU† 61 2 88 744 1.67E+01 14.84 2 11987 1732 4.05E-05 5.56E-008 1 2040 122637 9.98E-07 6.24E-09

18 DENSCHNA†‡ 2 1 100 66 7.74E-07 6.40E-13 1 31 19 4.85E-07 2.88E-013 1 9 19 6.78E-12 1.15E-23

19 DENSCHNB†‡ 2 1 240 147 1.15E-07 3.51E-15 1 31 14 3.80E-08 3.61E-016 1 15 16 2.83E-07 1.31E-14

20 DENSCHNC† 2 1 237 141 7.28E-07 1.02E-13 1 71 18 4.06E-08 0.18 1 13 31 7.75E-10 2.24E-20

21 DENSCHND† 3 2 32 20 5.98E+05 815702.87 1 217 86 3.05E-07 1.52E-011 1 51 181 6.46E-07 1.55E-10

22 DENSCHNE 3 2 12 20 2.99E+00 3.29 4 1506 301 9.24E-02 0 1 36 57 1.68E-10 7.05E-21

23 DENSCHNF† 2 2 201 111 2.03E-06 1.07E-14 1 47 16 1.07E-08 5.91E-019 1 9 19 6.43E-10 6.82E-22

24 DIXMAANK† 15 2 19 48 3.24E+01 138.96 1 965 944 2.98E-07 1 1 28 193 7.64E-12 39845

25 DJTL 2 4 779 603 8.45E+02 -4991.28 4 2666 201 1.77E+07 -6408.96 2 384 349 2.39E+06 -5283.92

26 ENGVAL2† 3 4 1064 1204 7.46E+00 2.53 3 306 63 1.41E-06 2.96E-016 1 18 53 9.39E-07 1.93E-16

27 ERRINROS† 50 2 62 255 1.28E+04 19177.39 2 2570 451 8.67E-04 39.9 1 108 1582 8.83E-10 40.4

28 EXPFIT†‡ 2 1 106 51 7.55E-08 0.24 1 74 25 2.65E-08 0.24 1 22 28 1.27E-11 0.24

29 GROWTHLS 3 1 9 16 7.11E-42 3542.15 1 12 2 0.00E+00 3542.15 4 304 1201 1.75E+02 39.9

30 GULF† 3 4 1519 1204 9.15E-02 5.78 1 585 130 4.32E-09 4.09E-019 4 305 1201 3.28E-01 2.21

31 HAIRY† 2 1 475 252 1.41E-05 39864 4 596 201 1.02E-01 20 1 64 133 1.84E-16 39864

32 HATFLDD 3 1 16 20 0.00E+00 14.04 1 388 72 1.56E-09 2.55E-007 1 32 93 7.76E-09 6.62E-08

33 HATFLDE 3 2 162 116 1.60E-03 1.54E-004 3 134 41 4.99E-06 1.20E-04 1 38 101 5.09E-07 5.12E-07

34 HEART6LS 6 2 30 63 6.79E+01 101.9 4 3077 601 8.29E+04 16.72 4 607 4201 7.82E+00 9.78

35 HEART8LS 8 2 749 2682 2.04E+01 28.61 4 5687 801 1.30E-01 1.14 1 185 1486 4.06E-12 7.09E-25

36 HELIX 3 4 1511 1204 5.76E-01 0.14 4 311 301 5.42E+00 6.05 1 26 57 9.90E-10 3.24E-21

37 HIELOW 3 5 25 32 nan NAN 5 5 2 nan NAN 1 14 29 5.13E-04 874.17

38 HILBERTA† 2 1 4 4 1.31E-08 1.55E-16 1 168 166 9.55E-07 8.92E-012 1 4 4 1.31E-08 1.55E-16

39 HILBERTB† 10 1 12 12 3.42E-07 2.50E-14 1 33 12 3.14E-07 8.58E-015 1 12 12 3.42E-07 2.50E-14

40 HIMMELBB 2 3 42 33 1.17E-05 3.91E-15 1 20 14 4.46E-07 1.78E-013 1 23 34 1.04E-13 6.17E-33

41 HIMMELBF 4 4 1398 2005 7.59E+01 5684.33 2 168 50 1.13E-02 319.72 1 14 46 3.36E-05 318.57

Continued in Table 4...
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Table 4: The results obtained with UNCMIN and TENMIN (continued).
TENMIN UNCMIN-BFGS UNCMIN-FD

no prob n E Nf N∇f ||∇f∗||∞ F E Nf N∇f ||∇f∗||∞ F E Nf N∇f ||∇f∗||∞ F

42 HIMMELBG† 2 1 41 27 0.00E+00 0 1 20 10 7.27E-07 7.42E-014 1 14 16 6.48E-12 8.01E-24

43 HIMMELBH†‡ 2 1 188 102 4.01E-07 -1 1 29 13 9.85E-11 -1 1 9 7 1.21E-09 -1

44 HUMPS† 2 4 1202 603 6.08E-02 0.01 4 449 201 1.24E-05 7.66E-010 4 247 601 3.52E+01 2152.31

45 HYDC20LS 99 2 103 300 2.72E+08 63399205.8 2 2690 514 2.61E+03 1118.48 4 10000 990001 2.66E+03 1094.9

46 JENSMP 2 1 99 60 1.37E-06 124.36 1 6 2 8.52E-33 2020 1 12 28 3.88E-06 124.36

47 KOWOSB†‡ 4 4 1309 2005 4.30E-04 4.12E-004 1 272 72 1.70E-07 3.08E-04 1 16 41 1.76E-08 0

48 LOGHAIRY†‡ 2 4 662 603 1.16E-01 0.18 1 281 129 1.63E-07 0.18 1 311 544 2.27E-13 0.18

49 MANCINO† 100 2 109 404 7.66E+08 1.09E+12 2 614 250 2.36E-01 1.62E-007 2 117 1011 2.73E-08 5.54E-22

50 MARATOSB† 2 4 1747 603 8.08E-02 1 2 29 6 9.03E-02 1 4 319 601 4.93E+01 0.78

51 MEXHAT 2 4 1127 603 5.10E+01 0.15 3 62 10 5.34E+01 0.38 1 33 88 1.37E-08 -0.04

52 MEYER3 3 4 2029 1204 3.28E+08 7422089.89 3 150 28 1.43E+02 112123.44 4 315 1201 1.42E+02 111980797

53 OSBORNEA†‡ 5 2 1407 2556 2.83E+00 0.05 2 605 138 8.32E-05 7.70E-005 4 509 3001 3.56E-02 0.05

54 OSBORNEB 11 2 228 876 1.50E-01 0.21 5 572 158 nan NAN 1 838 9889 7.90E-07 0.04

55 OSCIPATH† 15 4 4501 24016 1.05E+00 1.09 2 830 146 7.14E-05 0.98 1 29 129 1.69E-07 0.98

56 PALMER1C 8 2 12 27 4.64E+04 44938.69 2 661 201 1.71E+00 168.83 1 15 55 4.30E-08 0.1

57 PALMER1D 7 2 11 24 5.41E+03 39348.14 2 2093 527 2.35E-01 27.94 1 11 25 4.35E-08 0.65

58 PALMER2C 8 2 12 27 4.26E+03 1841.64 2 602 172 2.54E+00 98.07 1 13 37 1.26E-09 0.01

59 PALMER3C 8 2 12 27 1.60E+03 349.95 2 675 155 1.69E+00 54.31 1 13 37 1.76E-09 0.02

60 PALMER4C 8 2 12 27 1.62E+03 325.07 3 781 160 1.85E+00 62.27 1 12 28 6.98E-08 0.05

61 PALMER5C†‡ 6 2 10 21 1.57E-04 2.13 2 191 173 3.20E-06 2.13 1 9 15 4.43E-13 2.13

62 PALMER6C 8 2 12 27 2.94E+02 197.25 4 820 801 2.91E+01 198.87 4 809 7201 2.44E-04 0.04

63 PALMER7C 8 2 12 27 8.53E+02 293.16 3 730 165 3.40E+00 56.9 4 809 7201 2.33E-03 1.5

64 PALMER8C 8 2 12 27 3.67E+02 182.33 2 1283 225 3.34E-02 3.13 1 14 46 5.89E-10 0.16

65 PENALTY2 200 1 202 202 5.95E+05 4.71E+13 1 201 1 2.01E+06 4.71E+013 1 201 1 2.01E+06 4.71E+13

66 ROSENBR† 2 4 937 603 7.59E-01 0.16 1 247 57 5.73E-08 2.15E-016 1 35 73 1.30E-07 1.19E-17

67 S308† 2 1 160 105 2.17E-07 0.77 1 44 21 4.06E-07 0.77 1 13 28 7.02E-12 0.77

68 SENSORS 100 2 110 404 4.21E+01 -126.14 3 4044 700 1.89E-03 -2088.28 1 152 3031 2.16E-04 -1944

69 SINEVAL† 2 4 1015 603 4.76E+00 3.12 4 381 201 3.25E-06 2.59E-014 1 79 154 5.52E-16 9.22E-33

70 SISSER†‡ 2 1 89 87 3.20E-09 5.29E-13 4 204 201 3.27E-05 1.75E-007 1 17 43 4.84E-07 4.16E-10

71 SNAIL†‡ 2 1 166 120 1.53E-09 1.14E-18 1 15 9 3.65E-13 3.32E-026 1 143 262 2.54E-07 2.54E-14

72 STRATEC 10 2 25 66 2.57E+02 2639.42 5 26 7 nan NAN 1 35 221 4.79E-08 2212.26

73 TOINTGOR† 50 2 54 153 2.38E+01 1578.08 2 5656 1191 9.25E-04 1373.91 1 57 307 2.19E-06 1373.91

74 TOINTPSP† 50 2 3338 64311 2.00E+01 999.63 2 2946 529 1.34E-04 225.56 1 69 613 3.60E-06 225.56

75 TOINTQOR† 50 1 52 52 2.18E-06 1175.47 1 1058 207 2.96E-04 1175.47 1 52 52 2.18E-06 1175.47

76 VARDIM 200 2 204 603 8.73E+14 1.12E+16 4 20205 20001 8.49E+08 108228497 1 230 5830 3.68E-11 5.38E-24

77 VAREIGVL† 50 2 54 153 6.13E+00 51.95 1 171 61 8.00E-07 4.41E-013 1 90 919 3.17E-13 6.76E-28

78 VIBRBEAM 8 2 29 63 2.08E+07 6939.6 3 79 8 2.74E+06 1262.99 4 810 7201 3.02E+01 3.84

79 WATSON† 12 2 22 65 3.08E+00 0.42 2 2158 421 6.31E-05 1.35E-005 4 1213 15601 9.72E-03 0

80 YFITU† 3 4 1190 1204 3.57E+01 19.54 2 716 138 8.19E-06 6.67E-013 4 313 1201 5.93E-07 1.86E-09

81 ZANGWIL2† 2 1 4 4 1.95E-09 -18.2 1 6 3 0.00E+00 -18.2 1 4 4 1.95E-09 -18.2
†,‡: Problems included in the benchmark
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Table 5: The results obtained with SR1-NC.
SR1-NC

no prob n E Nf N∇f ||∇f∗||∞ F Err
(7)
H

PD(8) N
(9)
ED

N
(10)
d

r
(11)
decd

r
(12)
dt

N
(13)
fb

1 AKIVA‡ 2 2 2 2 nan nan nan 0 0 0 0 0 0

2 ALLINITU 4 1 16 10 5.48E-07 5.74 2.66E-01 1 1 0 0 0 6

3 ARGLINA 200 1 3 2 3.07E-15 200 4.99E-01 1 1 0 0 0.4 1

4 ARGLINB‡ 200 2 53 7 6.78E+01 99.63 1.23E-13 0 0 0 0 0 46

5 ARGLINC‡ 200 2 52 6 8.43E+02 101.13 1.68E-13 0 0 0 0 0 46

6 BARD 3 1 35 22 8.05E-08 0.01 9.37E-03 1 3 2 0.06 0 13

7 BEALE 2 1 25 15 1.43E-09 2.38E-018 3.58E-05 1 2 1 0 0 10

8 BIGGS6 6 1 58 31 4.74E-07 0.01 1.29E-01 0 7 6 0.16 0 27

9 BOX3 3 1 15 12 6.43E-07 7.61E-014 8.30E-04 1 1 0 0 0 3

10 BRKMCC 2 1 11 6 3.37E-07 0.17 3.41E-04 1 1 0 0 0 5

11 BROWNAL 200 1 33 12 3.45E-08 9.09E-015 3.07E-04 1 1 0 0 0.11 21

12 BROWNBS‡ 2 2 15 10 1.31E+04 4.59E-005 2.77E-05 1 0 0 0 0 5

13 BROWNDEN‡ 4 2 74 16 3.25E-04 85822.2 3.79E-03 1 1 1 0 0 58

14 CHNROSNB 50 2 384 138 9.60E-07 4.06E-015 1.24E-01 1 36 36 0.01 0.08 246

15 CLIFF‡ 2 3 33 4 1.00E+00 35.15 2.68E+12 1 1 0 0 0 29

16 CUBE 2 1 84 34 9.50E-08 2.62E-018 2.08E-06 1 7 6 3.57E-005 0 50

17 DECONVU 61 1 167 65 3.01E-07 2.85E-009 4.72E-01 0 15 14 1.49E-005 0 102

18 DENSCHNA 2 1 15 9 1.01E-09 2.32E-019 2.04E-03 1 2 1 0 0 6

19 DENSCHNB 2 1 12 9 3.22E-09 1.60E-018 1.61E-05 1 1 0 0 0 3

20 DENSCHNC 2 1 27 12 5.96E-09 0.18 4.57E-02 1 2 1 1.58E-005 0 15

21 DENSCHND 3 1 129 66 4.26E-07 3.13E-010 5.13E+00 1 3 2 2.18E-012 0 63

22 DENSCHNE 3 1 34 16 2.90E-07 2.29E-014 1.37E-02 1 2 1 0.01 0 18

23 DENSCHNF 2 1 26 12 1.37E-07 7.95E-017 1.37E-04 1 1 0 0 0 14

24 DIXMAANK 15 1 91 52 1.33E-07 1 5.12E-03 1 7 6 0 0 39

25 DJTL‡ 2 2 423 128 1.81E-02 -8951.54 1.25E-03 1 23 23 0.26 0 295

26 ENGVAL2 3 1 71 34 2.33E-07 1.38E-016 1.42E-03 1 5 4 0.01 0 37

27 ERRINROS 50 2 609 190 4.26E-06 39.9 1.09E+00 1 30 30 0 0.14 419

28 EXPFIT 2 1 28 14 2.08E-07 0.24 1.10E-02 1 2 1 0 0 14

29 GROWTHLS 3 1 17 2 1.54E-89 3542.15 4.01E+92 0 1 0 0 0 15

30 GULF 3 1 48 25 8.62E-10 4.71E-020 1.79E-04 1 2 1 0.04 0 23

31 HAIRY 2 2 39 16 4.58E-06 20 2.55E-05 1 2 2 0.07 0 23

32 HATFLDD 3 1 41 20 1.31E-07 6.62E-008 1.01E-02 1 2 1 1.05E-008 0 21

33 HATFLDE 3 1 59 34 4.97E-09 2.73E-006 1.30E-02 1 4 3 0 0 25

34 HEART6LS‡ 6 2 1081 325 6.39E+00 0 2.79E-01 0 83 83 0.18 1 709

35 HEART8LS‡ 8 4 2327 801 7.41E-02 1.14 1.56E+01 0 185 185 0 1 1526

36 HELIX 3 1 76 36 4.77E-08 6.06E-018 3.61E-03 1 5 4 0 0 40

37 HIELOW‡ 3 2 2 2 nan nan nan 0 0 1 0 0 0

38 HILBERTA 2 1 4 4 1.43E-14 1.88E-027 0.00E+00 1 1 0 0 0 0

39 HILBERTB 10 1 10 6 2.06E-08 8.12E-017 6.85E-01 1 1 0 0 0 4

40 HIMMELBB 2 1 31 8 1.60E-08 3.59E-020 1.77E+01 0 1 0 0 0 23

41 HIMMELBF 4 2 47 21 3.92E-06 318.57 5.68E-03 1 1 1 2.18E-007 0 26

Continued in Table 6...



Ö
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Table 6: The results obtained with SR1-NC (continued).
SR1-NC

no prob n E Nf N∇f ||∇f∗||∞ F ErrH PD NED Nd rdecd rdt Nfb

42 HIMMELBG 2 1 13 8 3.27E-07 2.00E-014 9.47E-04 1 2 1 0 0 5

43 HIMMELBH 2 1 9 7 5.64E-08 -1 6.81E-05 1 1 0 0 0 2

44 HUMPS 2 1 261 73 3.44E-10 8.35E-019 1.85E-02 1 24 23 0.38 0 188

45 HYDC20LS‡ 99 2 558 21 nan nan nan 0 0 0 0 0 537

46 JENSMP 2 2 36 13 5.30E-06 259.58 1.33E-02 0 4 4 0.44 0 23

47 KOWOSB 4 1 32 24 2.01E-07 0 1.28E-02 1 2 1 0.01 0 8

48 LOGHAIRY 2 1 313 99 3.93E-10 0.18 1.62E-08 1 30 29 0.7 0 214

49 MANCINO‡ 100 2 777 82 6.68E+01 0 8.11E-01 0 16 16 2.74E-005 0.02 694

50 MARATOSB‡ 2 4 573 201 2.25E+01 0.94 2.68E-03 0 53 53 2.81E-007 0 372

51 MEXHAT‡ 2 2 71 14 2.67E+00 -0.02 1.23E+02 1 0 0 0 0 57

52 MEYER3‡ 3 2 125 21 2.40E+07 62028.5 4.40E-02 0 4 4 2.89E-007 0 104

53 OSBORNEA 5 1 161 44 1.02E-09 5.46E-005 2.05E-03 1 9 8 1.00E-006 1 117

54 OSBORNEB 11 1 130 57 1.79E-08 0.04 3.56E-02 1 13 12 0.01 0 73

55 OSCIPATH 15 1 55 20 1.22E-07 0.98 1.79E-02 0 2 1 5.27E-006 0 35

56 PALMER1C‡ 8 3 56 8 1.68E+00 162.14 2.60E-09 1 1 0 0 1 48

57 PALMER1D 7 1 60 10 7.19E-10 0.65 4.68E-16 1 1 0 0 0 50

58 PALMER2C 8 1 49 12 6.10E-09 0.01 1.62E-16 1 1 0 0 0 37

59 PALMER3C 8 1 45 12 3.46E-09 0.02 5.19E-16 1 1 0 0 0 33

60 PALMER4C 8 1 45 12 3.11E-10 0.05 3.53E-16 1 1 0 0 0 33

61 PALMER5C 6 1 16 8 1.67E-11 2.13 2.05E-16 1 1 0 0 0 8

62 PALMER6C‡ 8 3 32 10 4.35E-04 0.1 3.54E-08 1 1 0 0 0 22

63 PALMER7C 8 1 39 12 9.17E-09 0.6 1.11E-16 1 1 0 0 0 27

64 PALMER8C 8 1 47 12 2.01E-09 0.16 2.89E-16 1 2 1 4.38E-007 0 35

65 PENALTY2‡ 200 2 3060 258 4.32E+00 3.61E+013 9.09E-02 1 32 32 0.48 0.15 2795

66 ROSENBR 2 1 80 39 8.19E-09 4.74E-020 8.03E-05 1 5 4 0.02 0 41

67 S308 2 1 21 13 2.28E-08 0.77 3.72E-05 1 1 0 0 0 8

68 SENSORS 100 2 172 65 6.31E-07 -2108.53 7.16E-01 1 11 11 0.44 0.04 107

69 SINEVAL 2 1 175 83 3.25E-09 3.75E-020 5.46E-06 1 20 19 0.35 0 92

70 SISSER 2 1 22 19 7.22E-07 8.54E-010 1.67E+03 1 1 0 0 0 3

71 SNAIL 2 1 17 12 5.41E-10 1.21E-019 9.30E-05 1 2 1 0 0 5

72 STRATEC‡ 10 2 37 4 nan nan nan 0 0 0 0 0 33

73 TOINTGOR 50 1 102 49 1.72E-07 1373.91 9.43E-02 1 7 6 0 0.25 53

74 TOINTPSP 50 1 141 62 8.51E-08 225.56 2.64E-02 1 11 10 0.04 0 79

75 TOINTQOR 50 1 44 31 1.78E-07 1175.47 1.59E-01 1 1 0 0 0.33 13

76 VARDIM‡ 200 5 66 15 6.68E+09 1.77E+009 2.85E-01 1 0 0 0 0 50

77 VAREIGVL 50 1 86 41 2.65E-07 3.13E-014 1.39E-01 0 4 3 0 0.33 45

78 VIBRBEAM‡ 8 2 247 42 1.36E-03 10.66 7.12E-02 1 10 10 0.03 1 205

79 WATSON 12 1 77 29 1.30E-07 9.34E-008 1.65E-03 0 4 3 2.80E-009 0 48

80 YFITU 3 2 208 78 9.89E-06 6.67E-013 1.86E-03 1 11 11 0.04 0 130

81 ZANGWIL2 2 1 3 3 0.00E+00 -18.2 5.36E-01 1 1 0 0 0 0
‡ ||∇f∗||∞ > 1.0E-05
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Table 7: The results obtained with LSR1-NC.
L-BFGS LSR1-NC

no prob n E Nf N∇f ||∇f∗|| F E Nf N∇f ||∇f∗|| F PD NED Nd rdecd rdt Nfb

1 AKIVA 2 0 22 22 2.54E-06 6.17 1 10001 10001 nan nan 0 0 0 0 0 0

2 ALLINITU 4 0 14 14 4.23E-07 5.74 0 21 13 1.23E-07 5.74 1 1 1 0.01 0 8

3 ARGLINA 200 0 4 4 2.81E-14 200 0 3 2 4.31E-14 200 1 0 0 0 0 1

4 ARGLINB 200 -1 43 43 1.75E-01 99.63 -1 116 3 1.31E+13 7.40E+011 0 0 0 0 0 112

5 ARGLINC 200 -1 26 26 7.15E-04 101.13 -1 116 3 2.30E+12 2.36E+010 0 0 0 0 0 112

6 ARWHEAD 5000 0 14 14 1.37E-04 1.22E-011 0 36 10 9.40E-05 1.11E-012 1 1 1 2.84E-006 0.25 26

7 BARD 3 0 23 23 1.23E-05 0.01 0 39 17 8.07E-06 0.01 1 5 5 0.06 0 22

8 BDQRTIC 5000 -1 515 515 3.53E-03 20006.26 -1 396 97 4.18E-03 20006.3 1 18 18 0.01 0.27 298

9 BEALE 2 0 15 15 7.97E-06 1.54E-011 0 27 17 2.94E-06 4.22E-013 1 0 0 0 0 10

10 BIGGS6 6 0 46 46 3.71E-05 0.01 0 77 39 2.65E-05 0.01 0 6 6 0.07 0 38

11 BOX3 3 0 12 12 3.75E-05 7.16E-007 0 12 9 2.42E-05 1.90E-007 1 0 0 0 0 3

12 BRKMCC 2 0 8 8 1.08E-08 0.17 0 11 6 3.34E-07 0.17 1 0 0 0 0 5

13 BROWNAL 200 0 13 13 2.29E-05 1.47E-009 0 84 15 3.93E-05 3.84E-011 1 2 2 1.28E-012 0 69

14 BROWNBS 2 0 25 25 9.13E+00 1.72E-010 0 19 14 9.36E-01 1.95E-012 1 0 0 0 0 5

15 BROWNDEN 4 0 27 27 5.82E-05 85822.2 0 80 19 4.81E-06 85822.2 1 1 1 9.02E-014 0 61

16 BROYDN7D 5000 0 1612 1612 3.85E-04 1987.63 1 28301 10001 5.52E+00 1136.93 ? 2578 2578 0.11 0.16 18300

17 BRYBND 1000 0 33 33 4.80E-06 1.08E-012 0 141 58 8.56E-06 3.25E-012 0 8 8 0 0.5 83

18 CHAINWOO 100 0 438 438 9.27E-05 1 0 2097 726 8.74E-05 4.57 1 203 203 0 0.38 1371

19 CHNROSNB 50 0 282 282 4.91E-05 4.12E-011 0 1378 506 7.02E-05 5.09E-011 1 112 112 0 0.13 872

20 CLIFF 2 0 41 41 1.22E-05 0.2 0 321 15 1.32E-05 0.2 1 2 1 1.76E-013 0 306

21 COSINE 10000 0 17 17 1.54E-03 -9999 0 19 10 7.66E-04 -9999 1 1 1 0.27 0 9

22 CRAGGLVY 5000 0 88 88 3.23E-04 1688.22 0 440 153 2.78E-04 1688.22 1 39 39 0 0.23 287

23 CUBE 2 0 50 50 3.32E-09 1.70E-019 0 110 45 2.16E-06 3.02E-015 1 4 4 2.76E-005 0 65

24 CURLY10 10000 1 10001 10001 1.62E-01 -1003162.71 -1 9496 3309 1.21E+00 -1.00E+006 ? 893 893 3.37E-005 0.45 6186

25 DECONVU 61 0 186 186 3.71E-05 1.40E-007 0 726 246 3.88E-05 3.71E-007 0 53 53 6.67E-007 0.6 480

26 DENSCHNA 2 0 11 11 3.56E-07 8.22E-014 0 16 11 1.34E-07 4.49E-015 1 0 0 0 0 5

27 DENSCHNB 2 0 9 9 6.39E-07 5.12E-014 0 11 8 3.47E-06 1.90E-012 1 0 0 0 0 3

28 DENSCHNC 2 0 17 17 2.83E-06 8.49E-013 0 32 14 1.34E-05 0.18 1 1 1 6.58E-006 0 18

29 DENSCHND 3 0 56 56 7.56E-06 1.18E-008 0 152 66 9.60E-06 3.78E-008 1 8 8 0 0 86

30 DENSCHNE 3 0 42 42 6.23E-06 9.72E-012 0 40 17 1.90E-07 9.03E-015 1 1 1 0.01 0 23

31 DENSCHNF 2 0 10 10 1.45E-07 6.81E-017 0 26 12 5.11E-08 5.53E-018 1 0 0 0 0 14

32 DIXMAANA 3000 0 14 14 2.70E-08 1 0 14 10 3.84E-07 1 1 0 0 0 0 4

33 DIXMAANB 3000 0 13 13 9.11E-07 1 0 12 8 8.10E-06 1 1 0 0 0 0 4

34 DIXMAANC 3000 0 14 14 5.55E-06 1 0 14 9 1.74E-06 1 1 0 0 0 0 5

35 DIXMAAND 3000 0 16 16 9.10E-06 1 0 18 10 9.11E-06 1 1 0 0 0 0 8

36 DIXMAANE 3000 0 262 262 8.75E-06 1 0 1290 517 8.12E-06 1 1 127 127 0 0.28 773

37 DIXMAANF 3000 0 239 239 9.24E-06 1 0 1250 458 6.63E-06 1 1 125 125 9.44E-005 0.33 792

38 DIXMAANG 3000 0 237 237 8.98E-06 1 0 2399 926 9.83E-06 1 1 244 244 0.01 0.34 1473

39 DIXMAANH 3000 0 231 231 8.91E-06 1 0 900 319 9.54E-06 1 1 85 85 7.13E-009 0.29 581

40 DIXMAANI 3000 0 1781 1781 2.09E-05 1 0 2198 824 9.86E-06 1 1 211 211 0.01 0.34 1374

41 DIXMAANJ 3000 0 302 302 1.48E-05 1 0 528 220 9.70E-05 1.12 1 51 51 0.18 0.27 308

42 DIXMAANK 15 0 56 56 7.48E-06 1 0 204 97 7.60E-06 1 1 14 14 0.33 0 107

43 DIXMAANL 3000 0 536 536 1.47E-05 1 0 1190 472 2.21E-05 1 1 104 104 0.12 0.36 718

44 DIXON3DQ 10 0 35 35 1.72E-05 1.23E-010 0 141 68 2.62E-05 1.93E-010 1 11 11 0.01 0 73

45 DJTL 2 -1 159 159 2.71E+06 -4804.81 -1 3901 1250 2.50E-04 -8951.54 1 159 159 0.12 0.14 2650

46 DQDRTIC 100 0 21 21 4.02E-06 4.07E-014 0 21 7 6.81E-09 1.27E-018 1 0 0 0 0 14

47 DQRTIC 5000 0 44 44 1.15E+00 3.01 0 244 80 1.94E+00 3.75 1 11 11 4.44E-006 0.16 164



Ö
z
t
o
p
r
a
k

a
n
d

B
ir
b
il:

S
R
1
-
N
C

S
a
b
a
n
c
ı
U
n
iv
e
rsity

,
©

N
o
v
e
m
b
e
r
2
9
,
2
0
1
0

2
1

Table 8: The results obtained with LSR1-NC (continued).
L-BFGS LSR1-NC

no prob n E Nf N∇f ||∇f∗|| F E Nf N∇f ||∇f∗|| F PD NED Nd rdecd rdt Nfb

48 EDENSCH 2000 0 32 32 3.50E-04 12003.28 0 142 48 1.14E-04 12003.3 1 6 6 0 0.38 94

49 EG2 1000 0 5 5 1.46E-06 -998.95 0 14 5 7.29E-07 -998.95 1 0 0 0 0 9

50 ENGVAL1 5000 0 18 18 3.40E-04 5548.67 0 55 30 2.02E-04 5548.67 1 3 3 9.85E-005 0.25 25

51 ENGVAL2 3 0 36 36 1.65E-06 5.18E-016 0 87 43 2.22E-06 3.70E-016 1 4 4 0.1 0 44

52 ERRINROS 50 0 155 155 3.41E-04 39.9 0 587 214 3.38E-04 39.9 1 38 38 6.64E-005 0.67 373

53 EXPFIT 2 0 16 16 2.81E-06 0.24 0 37 17 3.51E-06 0.24 1 2 2 0.01 0 20

54 EXTROSNB 1000 0 4550 4550 3.37E-05 9.35E-009 0 142 56 2.00E-04 3.63E-011 0 9 9 5.94E-008 0.4 86

55 FLETCBV2 5000 0 3 3 2.14E-04 -0.5 0 1 1 4.41E-06 -0.5 1 0 0 0 0 0

56 FLETCBV3 5000 0 22 22 4.77E+02 -4.12E+013 0 97 26 3.76E+01 -3.47E+009 0 12 12 3.76E-005 0.24 71

57 FLETCHBV 5000 0 1341 1341 2.95E+10 -7.57E+024 -1 15244 5486 1.09E+10 -1.70E+024 ? 1386 1386 0.2 0.31 9757

58 FLETCHCR 1000 0 5682 5682 1.26E-04 2.92E-011 0 189 67 2.86E-04 1.43E-010 1 12 12 0.05 0.33 122

59 FMINSRF2 5625 0 287 287 2.59E-04 1 0 1828 677 2.49E-04 1 1 165 165 0.13 0.22 1151

60 FMINSURF 5625 0 645 645 9.95E-06 1 0 4113 1515 9.59E-06 1 ? 383 383 0.15 0.22 2598

61 FREUROTH 5000 -1 45 45 6.59E-03 608159.19 0 56 23 4.55E-04 608159 1 1 1 8.20E-007 0.13 33

62 GENROSE 500 0 1229 1229 1.54E-04 1 0 7549 2671 2.10E-04 1 1 698 698 0.08 0.39 4878

63 GROWTHLS 3 0 204 204 2.64E-07 1 0 17 2 1.70E-89 3542.15 0 0 0 0 0 15

64 GULF 3 0 34 34 6.16E-04 0 0 97 45 4.71E-04 3.84E-005 1 5 5 0.05 0 52

65 HAIRY 2 0 145 145 1.80E-06 20 0 77 27 1.25E-10 20 1 4 4 0.19 0 50

66 HATFLDD 3 0 24 24 1.27E-07 6.62E-008 0 42 23 1.47E-05 6.62E-008 1 1 1 4.08E-008 0 19

67 HATFLDE 3 0 41 41 1.98E-05 5.12E-007 0 129 41 1.01E-05 5.12E-007 1 8 8 7.26E-007 0 88

68 HEART6LS 6 -1 1557 1557 5.16E-01 16.65 0 6977 1613 4.37E-06 6.22E-016 1 402 337 0.03 0.17 5364

69 HEART8LS 8 0 1022 1022 2.79E-05 2.55E-010 0 10778 2943 4.18E-04 1.14 0 790 755 0.02 0.5 7835

70 HELIX 3 0 31 31 9.70E-06 1.72E-013 0 79 40 2.40E-06 4.04E-014 1 4 4 0 0 39

71 HIELOW 3 -1 51 51 1.45E-05 874.17 1 10001 10001 nan nan 0 0 0 0 0 0

72 HILBERTA 2 0 7 7 2.64E-09 2.76E-018 0 4 4 1.27E-13 1.24E-025 1 0 0 0 0 0

73 HILBERTB 10 0 7 7 6.29E-09 1.97E-018 0 9 5 2.69E-06 3.60E-013 1 0 0 0 0 4

74 HIMMELBB 2 0 20 20 6.06E-06 3.75E-010 0 31 8 7.81E-07 8.54E-017 0 0 0 0 0 23

75 HIMMELBF 4 0 26 26 1.16E-02 319.72 0 59 17 1.13E-02 319.7 1 4 4 0.03 0 42

76 HIMMELBG 2 0 13 13 1.15E-07 1.13E-015 0 8 8 6.75E-06 4.22E-012 1 0 0 0 0 0

77 HIMMELBH 2 0 6 6 9.60E-06 -1 0 9 7 4.84E-08 -1 1 0 0 0 0 2

78 HUMPS 2 0 239 239 3.54E-06 6.26E-011 0 714 223 8.15E-06 3.30E-010 1 88 88 0.38 0 491

79 HYDC20LS 99 1 10001 10001 1.75E+03 29.87 1 29135 10001 4.86E+02 61.79 0 2660 2660 0.03 0.26 19134

80 INDEF 5000 -1 27 27 8.71E+01 -3.19E+017 0 26 6 9.53E+01 -2.11E+009 0 2 2 0.01 0.33 20

81 JENSMP 2 0 51 51 1.97E-07 124.36 0 137 34 1.44E-06 124.36 1 13 13 0.46 0 103

82 KOWOSB 4 0 46 46 3.21E-06 0 0 61 27 1.26E-06 0 1 5 5 0.02 0 34

83 LIARWHD 5000 0 26 26 4.33E-04 2.57E-012 0 60 22 1.10E-06 1.82E-016 1 3 3 0 0.22 38

84 LOGHAIRY 2 0 3 3 1.22E-03 6.55 0 1 1 1.74E-03 6.55 1 0 0 0 0 0

85 MANCINO 100 0 14 14 3.77E-04 1.81E-014 0 91 16 3.86E-04 1.88E-014 1 1 1 0 0 75

86 MARATOSB 2 0 1543 1543 5.65E-06 -1 -1 5807 2311 1.13E-05 -1 1 467 467 9.52E-006 0.25 3495

87 MEXHAT 2 0 53 53 5.40E-06 -0.04 0 428 156 1.10E-05 -0.04 1 26 26 4.34E-007 0 272

88 MEYER3 3 -1 614 614 2.04E-01 87.95 0 8531 822 1.14E-03 87.95 1 202 57 1.88E-006 0 7709

89 MOREBV 5000 0 11 11 1.21E-04 5.44E-009 0 34 12 9.69E-05 4.23E-009 1 3 3 0 0.67 22

90 MSQRTALS 1024 0 2200 2200 2.23E-04 4.95E-007 0 12900 4732 1.72E-04 7.31E-006 ? 1237 1237 6.23E-005 0.11 8168

91 MSQRTBLS 1024 0 1702 1702 1.84E-04 1.71E-007 0 9354 3365 1.81E-04 1.07E-006 ? 846 846 0 0.14 5989

92 NONCVXU2 5000 0 1858 1858 5.45E-02 11586.1 0 8087 2904 5.78E-02 11588.4 ? 775 775 6.45E-005 0.29 5183

93 NONCVXUN 5000 0 2713 2713 5.53E-02 11599.18 0 9768 3531 7.11E-02 11607.2 ? 917 917 7.12E-005 0.3 6237

94 NONDIA 5000 0 23 23 8.53E-07 4.59E-019 0 110 53 2.08E-05 3.52E-015 1 4 4 6.31E-005 0.15 57
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Table 9: The results obtained with LSR1-NC (continued).
L-BFGS LSR1-NC

no prob n E Nf N∇f ||∇f∗|| F E Nf N∇f ||∇f∗|| F PD NED Nd rdecd rdt Nfb

95 NONDQUAR 5000 0 184 184 6.40E-04 0 0 479 201 6.57E-04 0 1 38 38 0 0.38 278

96 OSBORNEA 5 0 142 142 1.57E-05 5.46E-005 0 431 118 1.80E-05 5.46E-005 1 25 20 0 0 313

97 OSBORNEB 11 0 200 200 8.91E-05 0.04 0 470 210 8.28E-05 0.04 1 41 41 0.03 0 260

98 OSCIPATH 15 0 12 12 9.94E-06 0.98 0 47 15 2.14E-05 0.98 0 1 1 1.33E-010 0 32

99 PALMER1C 8 1 10001 10001 5.26E+00 168.09 0 3222 771 2.51E-03 0.1 1 187 168 1.14E-007 0.14 2451

100 PALMER1D 7 1 10001 10001 1.45E+04 62.44 0 396 120 1.30E-03 0.65 1 28 27 0 0 276

101 PALMER2C 8 1 10001 10001 4.27E-01 4.4 0 1325 359 1.13E-03 0.01 1 88 81 1.43E-008 0.33 966

102 PALMER3C 8 1 10001 10001 3.14E-01 2.33 0 2465 684 8.67E-04 0.02 1 156 145 1.48E-009 0.4 1781

103 PALMER4C 8 1 10001 10001 9.56E+04 5536.66 0 1399 478 1.16E-03 0.05 1 79 73 3.88E-008 0.33 921

104 PALMER5C 6 0 14 14 2.78E-04 2.13 0 17 9 1.08E-05 2.13 1 0 0 0 0 8

105 PALMER6C 8 1 10001 10001 1.27E+01 0.1 0 2927 988 2.81E-03 0.02 1 205 195 1.06E-008 0.33 1939

106 PALMER7C 8 1 10001 10001 2.97E-01 5.4 0 1431 405 8.95E-03 0.7 1 88 83 7.02E-008 0.33 1026

107 PALMER8C 8 1 10001 10001 2.79E-01 3.01 0 1182 362 5.15E-04 0.16 1 70 62 2.68E-006 1 820

108 PENALTY1 1000 0 79 79 5.19E-07 0.01 0 471 166 5.54E-06 0.01 ? 13 13 1.30E-021 0.11 305

109 PENALTY2 200 -1 106 106 1.65E+01 4.71E+013 -1 222 48 1.26E+03 4.71E+013 1 8 8 0 0.67 173

110 POWELLSG 5000 0 54 54 1.64E-06 2.00E-011 0 147 56 8.97E-06 8.93E-010 1 5 5 0.02 0.28 91

111 POWER 10000 0 426 426 9.50E-06 1.67E-009 0 3148 1095 9.95E-06 6.07E-009 ? 269 269 1.75E-005 0.47 2053

112 QUARTC 5000 0 44 44 1.15E+00 3.01 0 244 80 1.94E+00 3.75 1 11 11 4.44E-006 0.25 164

113 ROSENBR 2 0 48 48 1.59E-07 2.78E-017 0 112 53 9.97E-06 7.51E-014 1 7 7 0.02 0 59

114 S308 2 0 14 14 7.86E-07 0.77 0 24 16 1.85E-06 0.77 1 0 0 0 0 8

115 SBRYBND 5000 1 10001 10001 5.37E+05 24496.55 1 27716 10001 1.09E+06 40145.8 ? 2504 2504 0.13 0.35 17715

116 SCHMVETT 5000 0 35 35 4.94E-04 -14994 0 185 70 4.83E-04 -14994 1 13 13 2.14E-005 0.07 115

117 SCOSINE 5000 -1 25 25 4.74E+10 2174.5 1 28270 10001 8.45E+07 1349.51 ? 2627 2627 0.08 0.37 18269

118 SENSORS 100 0 23 23 1.92E-05 -2108.53 0 72 28 6.15E-04 -2108.53 1 9 9 0.41 0 44

119 SINEVAL 2 0 97 97 1.99E-07 9.25E-018 0 286 128 7.11E-06 1.34E-014 1 21 21 0.17 0 158

120 SINQUAD 5000 -1 60 60 1.11E-02 -6757013.76 -1 235 21 2.02E-02 -6.76E+006 1 3 3 0.67 0.1 213

121 SISSER 2 0 12 12 5.89E-06 1.16E-008 0 26 23 8.71E-06 2.02E-008 1 0 0 0 0 3

122 SNAIL 2 0 143 143 4.21E-07 4.42E-014 0 19 12 2.15E-06 1.15E-012 0 1 1 7.46E-005 0 7

123 SPARSINE 5000 1 10001 10001 6.12E-04 5.38E-008 1 27281 10001 7.30E+00 0.71 ? 2507 2507 0.05 0.33 17280

124 SPARSQUR 10000 0 39 39 6.10E-06 1.57E-008 0 232 79 3.68E-06 5.49E-009 1 12 12 0 0.1 153

125 SPMSRTLS 4999 0 163 163 4.85E-04 2.84E-007 0 919 353 4.78E-04 3.90E-007 1 91 91 0.02 0.23 566

126 SROSENBR 5000 0 20 20 2.46E-06 4.76E-015 0 28 15 1.34E-04 9.74E-012 1 1 1 3.39E-006 0 13

127 STRATEC 10 -1 65 65 1.19E+07 -8474445.62 1 10034 10001 nan nan 0 0 0 0 0 33

128 TESTQUAD 5000 0 5185 5185 9.44E-06 1.28E-012 1 28658 10001 3.91E-01 1.47E-005 ? 2712 2712 5.85E-005 0.53 18657

129 TOINTGOR 50 0 107 107 2.43E-04 1373.91 0 587 229 1.48E-04 1373.91 1 56 56 0.01 0.38 358

130 TOINTGSS 5000 0 18 18 1.90E-05 10 0 3 2 1.39E-40 10 1 0 0 0 0 1

131 TOINTPSP 50 0 102 102 2.76E-04 225.56 0 443 175 2.40E-04 225.56 1 40 40 0.29 0.33 268

132 TOINTQOR 50 0 37 37 1.30E-04 1175.47 0 127 50 1.11E-04 1175.47 1 6 6 2.16E-005 0 77

133 TQUARTIC 5000 0 26 26 1.60E-06 1.54E-014 0 36 17 9.02E-05 1.02E-013 1 1 1 0 0 19

134 TRIDIA 30 0 96 96 9.94E-06 1.80E-012 0 463 179 1.15E-05 1.72E-012 1 44 44 0 1 284

135 VARDIM 200 0 42 42 5.64E-06 2.96E-018 0 160 66 5.00E-07 2.33E-020 1 2 1 5.53E-013 1 94

136 VAREIGVL 50 0 25 25 2.56E-06 6.96E-013 0 114 48 9.60E-06 7.94E-012 1 7 7 2.43E-005 0 66

137 VIBRBEAM 8 1 10001 10001 1.83E-01 5.19 -1 15103 4267 2.01E-01 10.36 1 1127 1091 0.01 0.13 10835

138 WATSON 12 0 627 627 9.74E-06 1.56E-007 0 760 310 8.38E-06 1.68E-007 0 71 71 0.04 0.33 450

139 WOODS 4000 0 115 115 5.40E-04 2.42E-009 0 76 28 2.78E-04 9.40E-011 1 3 3 0 0 48

140 YFITU 3 0 96 96 9.97E-04 1.62E-011 0 284 113 1.22E-04 6.97E-013 1 10 10 0 0 171

141 ZANGWIL2 2 0 3 3 3.91E-15 -18.2 0 3 3 0.00E+00 -18.2 1 0 0 0 0 0
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