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Abstract  

Background 

Phylogenetic analysis can be used to divide a protein family into subfamilies in the 

absence of experimental information. Most phylogenetic analysis methods utilize 

multiple alignment of sequences and are based on an evolutionary model. However, 

multiple alignment is not an automated procedure and requires human intervention to 

maintain alignment integrity and to produce phylogenies consistent with the 

functional splits in underlying sequences. To address this problem, we propose to use 

the alignment-free Relative Complexity Measure (RCM) combined with reduced 

amino acid alphabets to cluster protein families into functional subtypes purely on 

sequence criteria. Comparison with an alignment-based approach was also carried out 

to test the quality of the clustering.  

Results 

We demonstrate the robustness of RCM with reduced alphabets in clustering of 

protein sequences into families in a simulated dataset and seven well-characterized 

protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl 

cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% 

accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal 

oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% 

accuracies, respectively. 

Conclusions 

The overall combination of methods in this paper is useful for clustering protein 

families into subtypes based on solely protein sequence information. The method is 

also flexible and computationally fast because it does not require multiple alignment 

of sequences. 
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Background  
Proteins that evolve from a common ancestor can change functionality over time [1] 

and produce highly divergent protein families that can be divided into subfamilies 

with similar but distinct functions (i.e., functional subfamilies or subtypes) [2]. 

Identification of subfamilies using protein sequence information can be carried out 

using phylogenetic methods that can reveal the evolutionary relationship between 

proteins by clustering similar proteins together in a phylogenetic tree [3-5]. The most 

common method for identifying similarities in sequences through phylogenetic 

analysis starts with the construction of a multiple alignment of homologous sequences 

using a substitution matrix. Multiple alignment scores are then transformed into a 

distance matrix to construct a phylogenetic tree. Often the branching order of a 

phylogenetic tree exactly matches the known functional split between proteins [1] and 

branch lengths are proportional to the extent of evolutionary changes since the last 

common ancestor. 

 

Multiple sequence alignment (MSA) is constructed using a scoring scheme which 

reward or penalize each substitution, insertion and deletion to get an optimum 

alignment of the given sequences. The quality of an MSA is connected to the chosen 

parameters that are entered manually and an expert handling is almost always required 

to maintain alignment integrity by observing general trends in each protein family. As 

such different alignment parameters may yield different phylogenetic trees that are 

only as good as the MSA that the trees are derived from [6, 7]. 

 

Phylogenetic analysis is broadly divided into two groups of methods. Algorithms in 

the first group calculate a matrix representing the distance between each pair of 
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sequences and then transform this matrix into a tree using a tree-clustering algorithm. 

Algorithms in the first category utilize various distance measures with different 

models to account for nucleotide or amino acid substitutions. In the second group, the 

tree that can best explain the observed sequences under the chosen evolutionary 

model is found by evaluating the fitness of different tree topologies [6, 8]. The second 

category can further be divided into two groups based on the optimality criterion used 

in tree evaluation: maximum parsimony and maximum likelihood. Under maximum 

parsimony [9], the preferred phylogenetic tree is the tree that requires the least 

evolutionary change to explain the observed data whereas under maximum likelihood 

[9, 10], it is the most probable tree under the chosen evolutionary assumption. 

 

The prediction of subfamilies from protein MSAs have been carried out previously by 

comparing subfamily hidden Markov models, subfamily specific sequence profiles, 

analyzing positional entropies in an alignment, and  ascending hierarchical method [4, 

5, 11, 12]. All of these methods require an alignment of biological sequences that 

assume some sort of an evolutionary model. Computational complexity and the 

inherent ambiguity of the alignment cost criteria are two major problems in MSA 

along with controversial evolutionary models that are used to explain them. 

 

A novel approach for phylogenetic analysis based on Relative Complexity Measure 

(RCM) of whole genomic sequences have been previously proposed by Otu et al, that 

eliminates the need for MSA and produces successful phylogenies on real and 

simulated datasets [8]. The algorithm employs Lempel-Ziv (LZ) complexity [13] and 

produces a score for each sequence pair that can be interpreted as the "closeness" of 

the sequence pairs. Unequal sequence length or different positioning of similar 
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regions along sequences (such as different gene order in genomes) is not an issue as 

the method has been shown to handle both cases naturally. Moreover, RCM does not 

use any approximations and assumptions in calculating the distance between 

sequences. Therefore, RCM utilizes the information contained in sequences and 

requires no human intervention. 

 

Application of RCM to genomic sequences for phylogenetic analysis was successfully 

carried out on various datasets containing genomic sequences [8, 14]. Moreover, Liu 

et al [15] extended this method further to integrate the hydropathy profile and a 

different LZ-based distance measure for phylogenetic analysis of protein sequences 

while Russell et al integrated a merged amino acid alphabet containing 11 characters 

to represent all amino acids to reduce complexity prior to calculating a pairwise 

distance measure to be used as a pairwise scoring function in determining the order 

with which  sequences should be joined in a multiple sequence alignment problem 

[16]. 

 

Application of RCM to evaluate genomic sequences is relatively straight forward 

since RCM based on Lempel-Ziv complexity scores  can capture each mutation in 

DNA sequences and register it as an increase in the complexity scores of compared 

sequences. However, substitution of one residue into another in proteins is tolerable as 

long as the substituted residue is not highly conserved and physicochemical and 

structural properties of the substituted and the native residues are not fundamentally 

different [17-19]. Employment of hydropathy-index-based grouping of residues is one 

way of a preprocessing requirement to capture only the mutations that would not be 

tolerated in a protein sequence since LZ algorithm is not capable of accounting for 
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amino acid substitution frequencies and similarity scores. Hence, any application that 

uses RCM to generate a distance matrix of protein sequences should be linked to 

treating the sequence with a reduced amino acid alphabet (RAAA) prior to calculating 

their RCMs. 

 

In this paper, we utilize RCM with different reduced amino acid alphabets and assess 

RCM's potential in clustering protein families into functional subtypes based solely on 

sequence data. This method clustered seven well-characterized protein families into 

their functional subtypes with  92% - 100% accuracy. 

 

Methods 

Datasets 

Simulated Dataset 

Performance of RCM was tested on a simulated dataset that contains 10 randomly 

evolved protein sequences from a root sequence of length 500 by using INDELible 

V1.02 [20]. Simulated protein sequences were generated according to the following 

parameters:   

    1.  JTT-dcmut [21] was chosen as the amino acid substitution model.  

    2.  Power law insertion/deletion length distribution model with a=1.7 and 

maximum allowed insertion/deletion length of 500 were used.  

    3.  Both insertion and deletion rates were set to the default parameter of 0.1 relative 

to average substitution rate of 1%.  

    4.  Length of the root protein sequence was set to 500.  
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    5.  The rooted tree with 10 taxa that reflects the true phylogenetic evolution of the 

sequences was generated along with the true MSA from which the true tree was 

inferred.  

    6.  The true MSA was then inputted into ClustalW2 [22] and the bootstrap tree was 

generated (1000 bootstrap trials, including positions with gaps, and correcting for 

multiple substitutions) 

 

Protein Datasets 

RCM was tested on seven protein datasets. Number of sequences, number of 

subfamilies, average length, standard deviation of sequence lengths and mean percent 

identities (PID) [23] of sequences for each family are summarized in Table 1. Protein 

sequences for mandelate racemases, crotonases, haloacid dehalogenases and vicinal 

oxygen chelates (VOC) were extracted from extensively curated Structure-Function 

Linkage Database which contains sets of subfamily grouping for a large set of protein 

families. SFLD contains protein families with a hierarchical classification scheme 

based on sequence, structure and conserved chemical reactions at the superfamily, 

subgroup, and family levels [24].  Crotonases and haloacid dehalogenases were 

filtered such that subfamilies that contain less than 3 sequences or more than 200 

sequences were removed to prevent sequence number bias and to reduce 

computational complexity. Unknown or unspecified amino acids were discarded (21, 

22 and 10 occurrences in mandelate racemase, crotonase and VOC family, 

respectively). The protein sequences for acyl transferase (AT) domains and 

nucleotidyl cyclases were obtained from reference [25]. The protein sequences in the 

hard-to-align dataset that contains glycoside hydrolase family 2 (GH2) members were 
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adapted from reference [3] . Expert curated annotations of protein sequences and 

abbreviations used for sequences in this study are provided in Additional File 1.  

Reduced Amino Acid Alphabets 

Sequence space of proteins is redundant and generates only a limited number of folds, 

domains, and structures [26]. Various strategies have been devised that take a coarse-

grained approach to account for the degeneracy of sequences by grouping similar 

amino acids together [17-19, 27-30]. Grouping is usually carried out based on 

structural and physiochemical similarities of amino acids [28]. Grouping of amino 

acids in sequence space can help develop prediction methods for various sequence 

determinants and decrease the amount of search space in procedures employed in 

directed evolution experiments [26, 31]. One of the finest examples is the reduction of 

amino acid alphabet into a binary code that is composed of characters representing 

polar and non-polar amino acid residues [27]. Grouping of amino acid residues has 

also been used extensively in Hydrophobic-Polar (HP) lattice model to explain the 

hydrophobic collapse theory of protein folding [32].  

 

A recent study was carried out by Peterson et al to test the performance of over 150 

RAAAs on the sequence library from DALIpdb90 database and showed that RAAAs 

improves sensitivity and specificity in fold prediction between protein sequence pairs 

with high structural similarity and low sequence identity [33].  

 

We tested performances of six amino acid reduction schemes with 15 different level 

of groupings to separate proteins into functional subfamilies (Table 2). These included 

three top performing RAAA (HSDM17, SDM12, GBMR4) from reference [33] and 

three random RAAA of size 4.  
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Substitution Matrices 

Amino acids that are within the same group in a RAAA are considered identical [33]. 

Substitution matrices that assign the same similarity score to each amino acid within 

the same group were obtained from reference [33]. For those RAAAs in the EB 

scheme and the three random RAAAs, new substitution matrices were created from 

BLOSUM62 frequency counts using the same procedure outlined in reference [33]. 

Lempel-Ziv Complexity 

In this paper, a normalized distance measure that was previously used for 

phylogenetic tree construction of whole genome sequences was employed. The 

distance measure was based on Lempel-Ziv [34] complexity and was known to 

accurately cluster all related genomic sequences under one branch of the tree [8]. 

 

Lempel-Ziv (LZ) complexity score of a sequence is obtained by counting the number 

of steps required to generate a copy of the primary sequence starting from a null state. 

At each step, an amino acid or a series of amino acids are copied from the 

subsequence that has been constructed thus far allowing for a single letter innovation. 

The number of steps needed to obtain the whole sequence is identified as the LZ-

complexity score of the given sequence. The exhaustive library of a sequence is 

defined as the smallest number of distinct amino acid or amino acid combinations 

required to construct the sequence using a copying process described by Lempel and 

Ziv [34]. For example, the LZ-complexity of the simple sequence 'AAILNAIIANNL' 

would be obtained as shown in Table 3. Since seven steps are needed to generate the 

whole sequence, the LZ-complexity score for this sequence is 7. The LZ-complexity 

of a sequence 'X' compared to a sequence 'Y' is known as the RCM of 'X' with respect 

to 'Y'. This is the number of steps required to construct sequence 'X' beginning with 
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'Y' instead of a null sequence. Five different distance metrics have been suggested by 

Otu et al [8] , however, this work used only the following normalized distance metric 

that accounts for the differences in sequence lengths: 

2
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where c(XY) and c(YX) are RCM of X appended to Y and Y appended to X, 

respectively. Remaining four LZ-based distance measures defined in Out et al 

performed slightly worse than the above distance (data not shown). Although in 

performance between five measures were not significant, we adopted the 

aforementioned distance for its ability to account for length variance. 

Distance Matrix & Phylogenetic Tree  

The relative complexity measure (RCM) for creation of the distance matrix was 

utilized as previously described [8]. Phylogenetic trees were generated from distance 

matrices using neighbor-joining [35] program of the phylogeny inference package, 

PHYLIP 3.68 [36]. Un-rooted trees were rooted with midpoint rooting by placing the 

root halfway between the two most distinct taxa. Midpoint-rooted trees were 

converted to cladograms (i.e., branch lengths are discarded) using the Retree program 

of PHYLIP package [36]. Phylogenetic trees for all protein families and RAAAs are 

shown in supplementary materials (Additional File 2) in Newick format and can be 

visualized with a tree-drawing program. 

ClustalW2 

Protein sequences in each family were aligned using ClustalW2 [22] for comparison 

with RCM. MSAs were performed using updated substitution matrices with gap 

extension and gap opening penalties provided in Table 2. Bootstrap analyses were 
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carried out 100 times and trees containing bootstrap values were created using 

ClustalW2 with the neighbor-joining clustering algorithm. For convenience, MSAs 

that were carried out using ClustalW2 will be referred as the MSA or the MSA 

method for the rest of the article. 

Tree Based Classification (TBC) 

TBC algorithm [4] was used to check the accuracy of each tree in separating protein 

families into subfamilies. TBC divides a tree into disjoint subtrees and assigns a 

protein subfamily to a subtree that maximizes the number of true positives when the 

proportions of fp/(tp+fp) and fn/(tp+fn) are both equal to 0.5 for a given subtree, 

where fp is the number of false positives, fn is the number of false negatives and tp is 

the number of true positives. Above proportions correspond to the “maximal allowed 

contamination” level that minimizes the TBC error over the whole tree. 

 

 TBC requires a bifurcating tree of sequences in a protein family and an attribute file 

that contains expert curated assignment of each sequence to a particular subfamily.  

TBC accuracy (i.e., the percentage of correctly classified sequences) is the primary 

performance measure to evaluate the division of protein families into subtypes using 

the TBC algorithm. TBC accuracy is equal to 1- %TBC error where %TBC error is 

the total number of fp, fn, and unclassified sequences divided by the total number of 

sequences. For a detailed analysis of the TBC algorithm, refer to reference [4].   

Protocol 

The proposed algorithm operates on a set of sequences in FASTA format. After one of 

the alphabets given in Table 1 is applied to all the sequences in the dataset, RCMs are 

calculated and used to obtain the distance between each pair for the neighbor–joining 

clustering to create a phylogenetic tree. For each RAAA, a single tree based on RCM 
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is generated and analyzed using TBC algorithm to determine how well it clusters 

different subfamilies under different branches of the tree. 

 

For simulated dataset, three phylogenetic trees were compared: The true tree 

generated by INDELible, the bootstrap tree and the RCM tree. INDELible creates a 

true MSA of the simulated protein sequences. This alignment was used in ClustalW2 

and bootstrapped 1000 times and the resulting tree was called the bootstrap tree. The 

third tree is the RCM tree that was generated by the proposed approach.  

 

For seven protein datasets, first, the original fasta sequences were used to calculate 

RCMs and their associated RCM trees. Second, the original fasta sequences were re-

coded using different RAAAs (Table 2) and the reduced sequences were used to 

calculate their RCMs and the associated RCM trees.  

 

A similar procedure was applied to the phylogenetic trees using the MSA method. For 

each protein family, MSA was carried out using the corresponding substitution 

matrices and gap penalties provided in Table 2. MSA-based trees were created 

following bootstrap analysis (100 replicates) with ClustalW2. 

 

Finally, for each family, a total of 16 phylogenetic trees (1 for 20-letter alphabet, 12 

for RAAAs, and 3 for random RAAAs) for each method are generated and checked 

how well they separated families into subfamilies. A summary of the overall 

workflow is depicted in Figure 1. 
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Results and Discussion 

Simulated Dataset 

Phylogenetic analysis of protein sequences has been intimately connected with MSA. 

A phylogenetic tree is generated from an evolutionary distance matrix using MSA of 

sequences. However, for real biological datasets, the true tree is rarely known. 

Therefore, protein sequence evolution was simulated to study the reliability of the 

RCM method. A simulated protein dataset containing 10 protein sequences was 

generated to show that RCM coupled with a RAAA can produce a phylogenetic tree 

(RCM tree) that is consistent with the true tree and the bootstrap tree. The true tree is 

produced by INDELible and is the original tree that reflects the evolution of 10 

simulated sequences. On the other hand, the bootstrap tree is the tree that was 

produced by ClustalW2 using the true MSA implied by INDELible. The bootstrap 

tree is identical to the true tree and the bootstrap supports for all branches are high 

reflecting the consistency [37] in the branching. The RCM tree was produced by the 

alignment-free RCM approach. The RCM tree is identical to both the true tree and the 

bootstrap tree reflecting its potential for use in phylogenetic analysis of protein 

sequences. The tree topology of only one of the trees is shown in Figure 2 since they 

are all identical. 

Performance of the RCM approach 

We applied the RCM approach to seven protein datasets. RCM method showed an 

efficient division of protein families into subfamilies using RAAAs. Phylogenetic 

trees of the seven protein families using RCM approach are shown in Figure 3 for 

ML15 alphabet. Detailed comparison of RCM with MSA in terms of TBC accuracy, 

the number and percentage of TBC error for each RAAA and each dataset is provided 

in Additional File 3. 
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Crotonases 

Members of crotonase family contain 467 protein sequences from 13 different 

subfamilies and catalyze diverse metabolic reactions with certain family members 

displaying dehalogenase, hydratase, and isomerase activities. TBC accuracy varied 

between 96.4% and 100% for RCM. The top performing RAAA with the smallest size 

was GBMR4 that resulted in 100% TBC accuracy. TBC accuracy was 100% for all 

RAAAs tested with MSA.  

 

Mandelate Racemases 

The mandelate racemase dataset contains 184 sequences that are assigned to 8 expert 

curated subfamilies. All mandelate racemases contain a conserved histidine, 

presumably acting as an active site base [38]. When the RCM approach was tested on 

mandelate racemases, all resulting trees showed correct assignment of functional 

subfamilies into 8 different clusters with 100% accuracy using all alphabets except 

GBMR4 that resulted in 96.7% TBC accuracy. 

 

Vicinal oxygen chelates (VOC) 

VOC family contains 309 sequences from 18 different subfamilies. The number of 

TBC accuracy varied between 77.7% and 92% for RCM and 81.9% to 91.3% for 

MSA. Members of VOC have an average sequence length of 294 amino acids and a 

mean PID of 14% (Table 1). The low PID and the highly divergent nature of this 

family make its subfamilies susceptible to misclassification more than other families 

based on sequence information alone. In this dataset, EB8 performed better than 20-

letter alphabet (92.2% vs. 91.3%) with RCM while GBMR4, ML4, EB8, EB, EB13 

and 20-letter alphabets resulted in 91.3% TBC errors with MSA.  
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Haloacid dehalogenases 

Haloacid dehalogenases contains 195 sequences that belong to 14 different 

subfamilies. Haloacid dehalogenase family is similar to VOCs in its highly divergent 

nature based on the low mean PID (12%) that places the sequences in this family in 

the “twilight zone” to infer any relation between sequences based on sequence 

information alone.  ML15 was the best performing RAAA for RCM with 96.9% 

accuracy (Table 4). The size of the best performing RAAA for this family is larger 

compared to other families hinting that highly divergent sequences may require larger 

alphabets with lower level of grouping.   

 

Nucleotidyl cyclases 

Nucleotidyl cyclase family has two functional subfamilies, adenylate and guanylate 

cyclases that correspond to use of the substrates ATP and GTP respectively. The 

nucleotidyl cyclase family with 33 adenylate cyclases and 42 guanylate cyclases was 

clustered into two distinct subfamilies with 100% accuracy using both methods and 

all RAAAs except EB5 and EB8 for RCM and ML4 and EB5 for MSA, all of which 

resulted in 98.7% accuracy (Table 4). Moreover, the clustering result for the 

nucleotidyl cyclases are in agreement with the result obtained previously by the MSA-

dependent clustering algorithm that uses the residues with the highest evolutionary 

split statistic to split protein families into functional subfamilies [25]. 

 

Acyl transferases (AT) 

The AT domains of Type I modular polyketide synthases are responsible for the 

substrate selection. Most incorporate either a C2 unit (malonyl-CoA substrate) or a C3 

unit (methylmalonyl-CoA substrate). The choice of substrate can be deduced from the 
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chemical structure of the polyketide product [25]. In the acyl transferase dataset, 99 of 

the 177 sequences use C2 units whereas 78 use C3 units as substrate.  

 

Previously, Goldstein et al [25] used evolutionary split statistic  and clustered the AT 

domains into 2 subfamilies with 2 false assignments for the 5 residue-long motif. The 

number of false assignments increased to 5 with increasing motif length (up to 30-

residue long) suggesting that the utilization of a larger motif increases the noise and 

error rate. As such, inclusion of only 5 residues (less noise) with high split statistics 

increases the assignment accuracy (5 vs. 2 false assignments).  

 

A similar trend is observed in the case of RCM.  While the TBC accuracy for AT 

domains was only 91% (15 false assignments) with the 20-letter alphabet (Table 4), 

the accuracy increased to 97% (5 false assignments) with the utilization of the ML4, 

ML8, EB9, ML10, EB11, SDM12, EB13, and HSDM17 alphabets. Furthermore, 4 of 

the 5 misclassified sequences using the above reduced alphabets are contained in the 

2, 3 and 4 false assignments produced by the Goldstein et al’s approach using the 5,10 

and 15 residue-long motifs, respectively. Although the accuracy was higher 

previously, it should be noted that the RCM approach did neither require an MSA of 

sequences nor any other sequence-based statistics. The accuracy was 97.2% for MSA 

using the top performing RAAAs. There was no immediate evidence suggesting a 

specific characteristic for incorrectly classified sequences. 

 

Glycoside hydrolase family 2 (GH2) 

 The final dataset contains 33 members of the GH2 family with a (β/α)8 fold. The 

subfamilies and the number of sequences from each subfamily are β-galactosidases 
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(6), β-mannosidases (12), β-glucuronidases (7) and exo-β-D-glucosaminidases (8). 

This dataset was  used previously and chosen because it was cited as a “hard-to-align” 

dataset by classical alignment approaches [3]. The GH2 family was clustered into 4 

functional subfamilies with 100% accuracy using ML4 and GBMR4 – the two top 

performing RAAAs – with RCM (Table 4). TBC accuracy was 100% for all RAAAs 

tested with MSA.  

The effect of the size of the RAAA on clustering performance 

The comparison of RCM with MSA in terms of TBC accuracy and the percentage of 

TBC error are summarized in Table 4 for the 20-letter alphabet and the top 

performing RAAA with the minimum size. In cases where two RAAAs of the same 

size give identical TBC results, both of them are reported. Three trends can be 

observed from the data in Table 4. 

 

First, for five of the seven families (crotonases, mandelate racemases, nucleotidyl 

cyclases, acyl transferases, and GH2 hydrolases), both methods perform equally well 

comparably.  For VOC, RCM outperforms MSA while for haloacid dehalogenases, 

MSA slightly outperforms RCM. It is important to note that both VOCs and 

dehalogenases have the two lowest mean PIDs (12% vs. 14%) and low mean 

sequence lengths with large standard deviation. Low PID and low sequence length are 

two features in alignments that render inference of relationship based only on 

sequence information difficult. Nonetheless, TBC accuracies of both families with 

their respective top performing RAAAs are comparable to the results obtained from 

the protein families with higher mean PIDs and longer mean sequence lengths. 
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Second, either ML4 or GBMR4 is sufficient to obtain high TBC accuracy for all 

datasets except VOCs and haloacid dehalogenases. Indeed, apart from the 

aforementioned families, ML4 and GBMR4 can produce either identical or better 

results than all other alphabets using either RCM or MSA, implying that as little as an 

alphabet size of 4 would be sufficient to capture most of the sequence information that 

might yield considerable improvements in inferring relationship based on sequence 

information when both mean PID and the length of the aligned regions in an MSA is 

above a certain threshold. 

 

Third, for the datasets with low mean PIDs and average sequence lengths, a larger 

RAAA size may be required to obtain identical or better results than the 20-letter 

alphabet using both RCM and MSA. This is especially evident with the RCM 

approach. While the minimum RAAA size of the top performer was 4 for 5 datasets 

that have relatively higher average sequence lengths and mean PIDs, it increases to 8 

(EB8) for VOCs and 15 (ML15) for haloacid dehalogenases that have mean PIDs of 

14% and 12%, respectively. Moreover, a subtle but a similar trend is also evident in 

the case of MSA.  While the alphabet size of the top performer was 4 (GBMR4, ML4) 

for VOCs, it increased to 8 (ML8) for haloacid dehalogenases, implying that a larger 

RAAA size may perform better on sequences with lower sequence identities.  

 

It is also interesting to note that the average TBC error for mandelate racemases, 

nucleotidyl cyclases and hydrolases with three random alphabets of size 4 varied 

between 0% and 15.6% for the MSA method. While the groupings of amino acids in 

the random alphabets do not have any physicochemical or structural significance that 

can justify this overall performance, the low percent TBC error may suggest that some 
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subfamilies of these protein families may be very tight with small distances between 

their sequences while larger distance between different subfamilies. This scenario 

coupled with the relatively longer sequences (top three families in terms of mean 

sequence length) within these families may generate sufficiently long aligned regions 

with enough informative sites that can result in a tree that correctly assigns 

subfamilies even the reduced alphabet groupings do not have any structural or 

biological meaning.   

 

However, the trend of low TBC error is not apparent using RCM with random 

alphabets. TBC errors of different protein families using random RAAAs (average of 

three random alphabets) were significantly higher than TBC errors using biologically 

meaningful reduced alphabets for all the families except racemases and nucleotidyl 

cyclases, both of which overlap with the results obtained with MSA. 

 

Performance of RCM approach with different RAAAs to cluster protein families into 

functional subfamilies is eminent. Yet, it must be noted that there is no uniformly 

superior algorithm for tree-based subfamily clustering and that simple protein 

similarity measures combined with hierarchical clustering produce trees with 

reasonable and often high accuracy [4]. Furthermore, if much time has passed since 

the evolution of different subfamilies, then sequences may have diverged beyond the 

point where simple phylogenetic analysis cannot easily give a clear distinction of 

subfamilies.  
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Conclusions  
The application of RCM in generating meaningful phylogenetic trees has been 

previously tested on genomic sequences and made RCM a good alternative to MSA-

based phylogenetic analysis. However, integration of RCM to measure the closeness 

of protein sequences was simply problematic due to the lack and difficulty of 

accounting for amino acid substitutions. In this paper, we introduced an RAAA-based 

approach as a preprocessing of protein sequences prior to calculating pairwise RCMs. 

Utilization of an RAAA that is consistent with the structure and function of the 

proteins or an RAAA that reflects the general trends in specific protein families under 

study can result in successful phylogenies that can cluster each protein superfamily 

into functional subfamilies. 

 

In finding functional subtypes of a protein family, it is often of interest to find out if 

the mechanisms that manipulate a certain clustering are of evolutionary or functional 

origin. Although these two signals may be overlapping and hard to separate, RCM 

could be used to address this issue by finding differences in exhaustive histories in 

two sequences when they are concatenated. The “words” that result in an observed 

difference can then be analyzed and correlated to a functional and/or evolutionary 

origin. We believe future work can focus in this direction building on the current 

approach that does not attempt to trace back the origin of differentiating sequence 

signals but provides a powerful clustering method of protein families into functional 

subtypes without using multiple sequence alignment. 

 



 - 21 - 

 

Authors' contributions 
UOS and HHO participated in the design of the study and supervised all the 

experiments. AA performed all the experiments and wrote the initial manuscript and 

the final manuscript. HHO provided the LZ algorithm, revised the first and the final 

manuscript. All authors read and approved the final manuscript.  

Acknowledgements  
The authors would like to thank Cem Meydan and Ozgur Gul for helpful discussions, 

Eric Peterson for supplying the perl script for the generation of substitution matrices. 

HHO is partially supported by a grant from The Dubai Harvard Foundation for 

Medical Research. 



 - 22 - 

 

References 

1. Wallace IM, Higgins DG: Supervised multivariate analysis of sequence 

groups to identify specificity determining residues. BMC Bioinformatics 

2007, 8:135. 

2. Georgi B, Schultz J, Schliep A: Partially-supervised protein subclass 

discovery with simultaneous annotation of functional residues. BMC Struct 

Biol 2009, 9:68. 

3. Kelil A, Wang S, Brzezinski R, Fleury A: CLUSS: clustering of protein 

sequences based on a new similarity measure. BMC Bioinformatics 2007, 

8:286. 

4. Lazareva-Ulitsky B, Diemer K, Thomas PD: On the quality of tree-based 

protein classification. Bioinformatics 2005, 21(9):1876-1890. 

5. Wicker N, Perrin GR, Thierry JC, Poch O: Secator: a program for inferring 

protein subfamilies from phylogenetic trees. Mol Biol Evol 2001, 

18(8):1435-1441. 

6. Brocchieri L: Phylogenetic inferences from molecular sequences: review 

and critique. Theor Popul Biol 2001, 59(1):27-40. 

7. Baldauf SL: Phylogeny for the faint of heart: a tutorial. Trends Genet 2003, 

19(6):345-351. 

8. Otu HH, Sayood K: A new sequence distance measure for phylogenetic 

tree construction. Bioinformatics 2003, 19(16):2122-2130. 

9. Felsenstein J: Evolutionary trees from DNA sequences: a maximum 

likelihood approach. J Mol Evol 1981, 17(6):368-376. 

10. Nei M: Phylogenetic analysis in molecular evolutionary genetics. Annu Rev 

Genet 1996, 30:371-403. 

11. Hannenhalli SS, Russell RB: Analysis and prediction of functional sub-

types from protein sequence alignments. J Mol Biol 2000, 303(1):61-76. 

12. Brown DP, Krishnamurthy N, Sjolander K: Automated protein subfamily 

identification and classification. PLoS Comput Biol 2007, 3(8):e160. 

13. Ziv J, Lempel A: A universal algorithm for sequential data compression. 

IEEE Trans Inf Theory 1977, 23:337-343. 

14. Bastola DR, Otu HH, Doukas SE, Sayood K, Hinrichs SH, Iwen PC: 

Utilization of the relative complexity measure to construct a phylogenetic 

tree for fungi. Mycol Res 2004, 108(Pt 2):117-125. 



 - 23 - 

 

15. Liu N, Wang T: Protein-based phylogenetic analysis by using hydropathy 

profile of amino acids. FEBS Lett 2006, 580(22):5321-5327. 

16. Russell DJ, Otu HH, Sayood K: Grammar-based distance in progressive 

multiple sequence alignment. BMC Bioinformatics 2008, 9:306. 

17. Wang J, Wang W: A computational approach to simplifying the protein 

folding alphabet. Nat Struct Biol 1999, 6(11):1033-1038. 

18. Etchebest C, Benros C, Bornot A, Camproux AC, de Brevern AG: A reduced 

amino acid alphabet for understanding and designing protein adaptation 

to mutation. Eur Biophys J 2007, 36(8):1059-1069. 

19. Li T, Fan K, Wang J, Wang W: Reduction of protein sequence complexity 

by residue grouping. Protein Eng 2003, 16(5):323-330. 

20. Fletcher W, Yang Z: INDELible: a flexible simulator of biological sequence 

evolution. Mol Biol Evol 2009, 26(8):1879-1888. 

21. Kosiol C, Goldman N: Different versions of the Dayhoff rate matrix. Mol 

Biol Evol 2005, 22(2):193-199. 

22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, 

McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al: Clustal W 

and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948. 

23. Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755-

763. 

24. Pegg SC, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, Chang PJ, 

Huang CC, Ferrin TE, Babbitt PC: Leveraging enzyme structure-function 

relationships for functional inference and experimental design: the 

structure-function linkage database. Biochemistry (Mosc) 2006, 45(8):2545-

2555. 

25. Goldstein P, Zucko J, Vujaklija D, Krisko A, Hranueli D, Long PF, Etchebest 

C, Basrak B, Cullum J: Clustering of protein domains for functional and 

evolutionary studies. BMC Bioinformatics 2009, 10:335. 

26. Strelets VB, Shindyalov IN, Lim HA: Analysis of peptides from known 

proteins: clusterization in sequence space. J Mol Evol 1994, 39(6):625-630. 

27. Dill KA: Theory for the folding and stability of globular proteins. 

Biochemistry (Mosc) 1985, 24(6):1501-1509. 

28. Murphy LR, Wallqvist A, Levy RM: Simplified amino acid alphabets for 

protein fold recognition and implications for folding. Protein Eng 2000, 

13(3):149-152. 



 - 24 - 

 

29. Prlic A, Domingues FS, Sippl MJ: Structure-derived substitution matrices 

for alignment of distantly related sequences. Protein Eng 2000, 13(8):545-

550. 

30. Solis AD, Rackovsky S: Optimized representations and maximal 

information in proteins. Proteins 2000, 38(2):149-164. 

31. Munoz E, Deem MW: Amino acid alphabet size in protein evolution 

experiments: better to search a small library thoroughly or a large library 

sparsely? Protein Eng Des Sel 2008, 21(5):311-317. 

32. Lau KF, Dill KA: A lattice statistical mechanics model of the 

conformational and sequence spaces of proteins. Macromolecules 1989, 

22(10):3986-3997. 

33. Peterson EL, Kondev J, Theriot JA, Phillips R: Reduced amino acid 

alphabets exhibit an improved sensitivity and selectivity in fold 

assignment. Bioinformatics 2009, 25(11):1356-1362. 

34. Lempel A, Ziv J: On the Complexity of Finite Sequences. IEEE Trans Inf 

Theory 1976, 22(1):75-81. 

35. Saitou N, Nei M: The neighbor-joining method: a new method for 

reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425. 

36. Felsenstein J: PHYLIP - Phylogeny Inference Package (Version 3.2). 

Cladistics 1989, 5:164-166. 

37. Holmes S: Bootstrapping Phylogenetic Trees: Theory and Methods. Stat 

Sci 2003, 18(2):241-255. 

38. Gerlt JA, Babbitt PC: Divergent evolution of enzymatic function: 

mechanistically diverse superfamilies and functionally distinct 

suprafamilies. Annu Rev Biochem 2001, 70:209-246. 

 

 

 

 

 

 

 



 - 25 - 

 

Figures 

Figure 1 - Protocol Overview 

For RCM, the original sequences and sequences recoded with reduced alphabets are 

used to calculate RCM-based distances which are then inputted sequentially to the 

Neighbor-Joining and Retree programs of the PHYLIP v3.68 package. For MSA, first, 

alignments are carried out using ClustalW2 with substitution matrices corresponding 

to each amino acid alphabet. Following bootstrap analysis with ClustalW2, Retree 

program is used to root the trees with midpoint rooting and to discard branch lengths. 

Each phylogenetic tree is then inputted to the TBC algorithm along with its attribute 

file that shows the expert assignment of each sequence to each family to calculate the 

TBC error. 

Figure 2 – Tree topology of the simulated dataset 

 The identical topology of the three phylogenetic trees (i.e., RCM tree, bootstrap tree 

and true tree) for the simulated dataset is shown. 

Figure 3 – Phylogenetic trees of protein families 

RCM trees were drawn using ML15 alphabet. For each family, the taxa corresponding 

to different subfamilies are colored differently. (A) Crotonases (B) Mandelate 

racemases (C) Vicinal oxygen chelates (D) Haloacid dehalogenase (E) Nucleotidyl 

cyclases (F) Acyl transferases (G) GH2 hydrolases 
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Tables 

Table 1 – General Properties of the Datasets 

Family # of sequences # of subfamilies µ Length σ Length µ PID* 

Crotonases 467 13 332 87 21 

Mandelate racemases 184 8 416 74 27 

Vicinal oxygen chelates 309 18 294 108 14 

Haloacid dehalogenases 195 14 303 137 12 

Nucleotidyl cyclases 75 2 1059 200 21 

Acyl transferases 177 2 290 12 41 

GH2 hydrolases 33 4 872 160 15 

* Mean Percent Identity (µ PID) is the average of all pairwise sequence identities in a 

given family. 

 

Table 2 - Reduced Amino Acid Alphabets 

Scheme Size Matrix Gaps
#
 Reference 

ML* 4,8,10,15 BL50    12/2   [28] 

EB
§
 13,11,9,8,5 BL62  11/1 [18] 

HSDM* 17 HSDM  19/1 [29] 

SDM* 12 SDM  7/1 [29] 

GBMR* 4 BL62  11/1 [30] 

RANDOM
§
 4,4,4 BL62  11/1 This study 

Reduced amino acid schemes used in this study.* Substitution matrices for these 

reduced alphabets were obtained from reference [33].
 § 

BL62 frequency counts were 

used to derive these substitution matrices using the formula outlined in reference [33]. 

#Gap opening/ gap extension penalties used for MSAs in ClustalW2. 
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Table 3 - Lempel-Ziv Complexity 

Sequence X = AAILNAIIANNL 

Exhaustive History Complexity 

A 1 

AI 2 

L 3 

N 4 

AII 5 

AN 6 

NL 7 

HE(X) C(X)=7 

The exhaustive library construction and Lempel-Ziv complexity score calculation of 

sequence X. 
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Table 4 – TBC errors for top performing RAAA   

 

 
TBC accuracy and percentage of TBC error are reported for the 20-letter alphabet and 

the top performing RAAA. If two RAAAs with the same size have identical TBC 

accuracies, both RAAAs are reported at the final row in the table.  Bold entries 

correspond to top performers using RCM and MSA for the specified datasets 

 

 

 

 

 

 

 

 

 

 

  
Crotonases 

Mandelate 

racemases 

Vicinal oxygen 

chelates 

Haloacid  

dehalogenases 

Nucleotidyl 

cyclases 
Acyl transferases 

GH2 

hydrolases 

  
RCM MSA RCM MSA RCM MSA RCM MSA RCM MSA RCM MSA RCM MSA 

Accuracy 100 100 100 100 91.6 91.3 93.3 99.5 100 100 91.5 97.2 87.9 100 

20 letter 

Error 0 0 0 0 8.4 8.7 6.7 0.5 0 0 8.5 2.8 12.1 0 

Accuracy 100 100 100 100 92.2 91.3 96.9 99.5 100 100 97.2 97.2 100 100 Statistics for 

top performing 

RAAA 
Error 0 0 0 0 7.8 8.7 3.1 0.5 0 0 2.8 2.8 0 0 

Top 

performing 

RAAAs 

RAAA GBMR4 
ML4 

GBMR4 
ML4 

GBMR4 

ML4 
EB8 

GBMR4 

ML4 
ML15 ML8 

ML4 

GBMR4 
GBMR4 ML4 

ML4 

GBMR4 

ML4 

GBMR4 

ML4 

GBMR4 
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Additional files 
Additional file 1 – Fasta header mappings 

This file contains the fasta header abbreviations for protein families and expert 

assignment of sequences to each subfamily. Some bioinformatics programs that take 

fasta files as input have fasta header size limitations ranging from 8 to 10 characters 

long. 

 

Additional file 2 – Phylogenetic trees for all the datasets in Newick 

Phylogenetic tree files for all families are presented in Newick format. For simulated 

dataset, there are 3 phylogenetic trees. For each protein dataset, there are 32 

phylogenetic trees: 16 RCM trees and 16 MSA trees. All trees reflect only the tree 

topology (i.e., Branch lengths are discarded).  

 

Additional file 3 – TBC errors for all families and all RAAAs 

Detailed comparison of RCM and MSA is reported in terms of the number and 

percentage of TBC error for every protein family and RAAA under consideration.  
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