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Abstract. Crowds must be simulated believable in terms of their ap-
pearance and behavior to improve a virtual environment’s realism. Due
to the complex nature of human behavior, realistic behavior of agents in
crowd simulations is still a challenging problem. In this paper, we pro-
pose a novel behavioral model which builds analytical maps to control
agents’ behavior adaptively with agent-crowd interaction formulations.
We introduce information theoretical concepts to construct analytical
maps automatically. Our model can be integrated into crowd simulators
and enhance their behavioral complexity. We made comparative analy-
ses of the presented behavior model with measured crowd data and two
agent-based crowd simulators.

1 Introduction

Crowd constitutes a critical component in many virtual environment and enter-
tainment applications. Believable behavior and appearance of a crowd improves
a virtual environments realism. Recent advances in graphics hardware address
the issue of photo-realistic rendering of crowds. However, due to the complex na-
ture of human behavior, realistic behavior of agents in crowd simulations is still
a challenging problem. Previous approaches either propose i) global solutions
with high level formulations [1] - which can simulate large numbers of agents
however are not suitable for creating complexity in the crowd or ii) low-level
scripted, complex agent-based methods - which are computationally expensive
and requiring expertise and effort in the production phase [2].

In this paper, we are proposing an analytical agent-based behavioral model
that integrates global knowledge about crowd formation into local, agent-based
behavior control. We use analytical representations of crowd’s activities, called
behavior maps which are constructed with a statistical framework based on in-
formation theory. Our model proposes an agent definition responsive to behavior
map values and agent-crowd interaction formulations. Agents behaving in real-
istic, variable and complex manners can be achieved with our behavioral model
without the need for low-level scripting.



Our proposed model is founded on analytic maps to represent activities of the
crowd. We borrow ideas from behavioral mapping techniques used in psychol-
ogy research to build an analytical model of the environment. These techniques
involve place-centered maps, which keep track of behavior of individuals within
a specific space and time. These maps display how and when a place is being
populated [3]. In our model, we utilize the notion of place-centered maps in
crowd simulations and propose behavior maps. Behavior maps are automatically
generated statistical analysis maps which record and represent both spatial and
temporal dynamics of agents. Methods to construct behavior maps are derived
from scene analysis methods introduced in [4].

Information theory constitutes the theoretical foundation of behavior map con-
struction. We use information theory quantities, i.e. information entropy and
Kullback-Leibler divergence to construct behavior maps. At each time step of
a simulation, physical properties of agents, i.e. position and velocity, are listed
and classified. The resulting behavior map conveys probabilistic and statistical
information of agents’ locomotion.

Agents access behavior maps and modify their intrinsic properties. How agents
respond and behave according to their intrinsic properties and behavior maps
are defined with agent-crowd interaction formulations.

Beneath all this high level structure, we utilize a multi-agent navigation sys-
tem to solve agent-agent and agent-environment interactions through collision
detection and path planning algorithms. Our model (Figure 1) can extend any
existing agent-based crowd simulator. In this paper, we extend Reciprocal Ve-
locity Obstacles (RVO) multi-agent navigation system introduced in [5].

The rest of the paper is organized as follows: in Section 2, we review the
related literature. In Section 3.1, we introduce behavior maps. In Section 3.2, the
general agent representation is given. In Section 3.3, agent-crowd interactions are
formulated. Section 4 discusses the results obtained with the model. To conclude,
final remarks are made at the conclusion section.

2 Related Work

An overall idea of the challenges and improvements in crowd simulation can be
obtained in [6] by Thalmann et.al.. There are several behavioral models proposed
in the literature and a survey by Kasap et.al. [7] covers most of these studies.
There have been many studies on agent-based crowd models to create human-
like behaviors. Seminal works of Reynolds used behavioral models considering
local rules [8] and create emergent flocking [9] behaviors. There is considerable
work on agent-based crowd simulators incorporating psychological models and
sociological factors. In [10], Luo et.al. model social group and crowd related be-
haviors. Their main focus is a layered framework to reflect the natural pattern
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Fig. 1. Overall structure of our model. 1) Behavior map is produced 2) Agents are
assigned a specific cell value 3) Agent’s intrinsic properties are modified with behavior
map value 4) Agents’ locomotion is determined by simulator

of human-like decision making process. In [11], Rymill et.al. tried to improve the
quality of agent behavior by adding theories from psychology. In their work, they
tried to produce more realistic collision avoidance responses. Musse et.al. [2] de-
veloped virtual human agents with intentions, beliefs, knowledge and perception
to create a realistic crowd behavior. In [12], Pelechano et.al. assigned psycho-
logical roles and communication skills to agents to produce diverse and realistic
behaviors. In a more recent work, [13] created an improved model by using psy-
chological and geometrical rules with a social and physical forces model. There
are studies which model the virtual environment as maps to guide agents’ behav-
iors. In [14] Shao et.al. modeled the environment with topological, perception
and path maps to generate autonomous agents. [15] used adaptive roadmaps,
which evolve with the dynamic nature of the environment. In [16], Sung et.al.
assign situations and behaviors directly to environment rather than the agents



themselves. The concept of behavior maps have been used in robotics and vision
field. [17] defined behavior maps as encoding context information of the environ-
ment, and use these maps to autonomously navigate a robot on rough terrain.
Berclaz et.al. [18] used behavior maps to encode probabilities of moving in a
certain direction on a specified location and used these maps to track trajecto-
ries of people and to detect anomalies in people’s behaviors. In their study, they
used expectation maximization algorithms to detect anomalies.

We integrated theories from behavioral modeling and borrowed ideas from
studies representing the environment with guidance maps. To compute these
maps, we employed quantities from information theory. Information theory have
been introduced into computer graphics field by Feixas et.al. [19] which proposes
a framework to measure scene complexity by using information theory quantities.
In a recent study, Turkay et.al. [4] used information theory based formulations to
automatically control the virtual camera in a crowded environment. In [20], they
extended their information theory based model to control how agents behave in a
crowd simulation. We improve the behavioral model proposed in [20] and develop
concrete formulations and methods to use this behavioral model to extend any
crowd simulator’s variability and realism.

3 Analytical Behavioral Model

Our model provides global knowledge on crowd’s activities and enables the crowd
simulator to incorporate agent-crowd interactions to modify agents’ behavior.
Behavior maps constitute the foundation of our model. They record and ana-
lytically represent crowd’s activities. Second element of our model is a generic
agent representation to access behavior maps. The final element in our model is
a set of formulations to link the underlying crowd simulator with behavior maps.
We customize the agent representation to fit into the current crowd simulator’s
features before developing these formulations.

3.1 Crowd Representation With Behavior Maps

Behavior maps are analytical representations of the crowd which span over the
whole virtual environment and monitor agents’ locomotion during the simula-
tion. We formulate agent-crowd interactions through using behavior maps in
our calculations. A behavior map, B, is a 2D grid, consisting of w rows and h
columns, where each cell is a square with side length l. In this work, we assume
that the environment consists of only horizontal paths. Figure 2 illustrates how
different types of behavior maps are constructed.

Let A = {a1, a2, ..., an} be the set of agents present in a simulation, where ai
represents a single agent. Physical properties of an agent can be described as
ai = {u,v : u,v ∈ R2} where u defines the position and v defines the velocity
of agent ai. The activity of an agent is described by: i) its position ii) direction



and magnitude of its velocity vector. Activity of a single agent is added into our
model in two steps. First, the agent’s position is registered to the corresponding
cell in B by mapping its position to the wxh grid and secondly its velocity vector
is quantized to be added as a sample in probabilistic distributions.

Figure 2 illustrates behavior map construction. A behavior map is constructed
as a convex combination of two information theory based maps called entropy
map and expectance map. In [4], these maps have proven to represent the tem-
poral and spatial dynamics of crowd’s locomotion.
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Fig. 2. Behavior map construction. 1) Current distribution crowd locomotion 2) Older
distributions are merged with a temporal filter 3) Entropy and expectance maps are
calculated 4) Behavior map is constructed with convex combination using user-defined
weights

Behavior Map Construction

Information theory deals with the quantification of information. Information
entropy is the key measure in information theory [21] and it is the first quantity
we use in our model to construct behavior maps. Let X be a discrete random
variable which takes values from set χ with probability distribution p(x) =
Pr[X = x], x ∈ χ. Entropy, H(x) of random variable X is defined by:

H(x) = −
∑

x∈χ

p(x) log p(x) (1)

Entropy provides insight about how likely a system produces varied outcomes.
Namely, it is a measure of uncertainty of a random variable.



The other quantity we have utilized is Kullback-Leibler divergence (KL) [22].
Take two probability mass functions (pmf) p(x) and q(x), divergence between
pmf’s p(x) and q(x) is given by:

D(p‖q) = −
∑

x∈χ

p(x) log
p(x)

q(x)
(2)

which is a non-symmetric metric expressing the difference between two probabil-
ity distributions. Specifically, it represents how probable the distribution defined
by q(x) is likely to occur when p(x) is given.

In order to use these information theory quantities, we use a pmf denoted as
Pv, to characterize the distribution of crowd’s locomotion. Velocity of each agent
is added as a sample to the 2D pmf. As Pv is taking samples over a period of
time, we use a temporally updated and filtered pmf as defined in [4]. This pmf is
denoted as P t1→t2

v
where t1 and t2 are two distinct time steps throughout the

simulation. These information theory quantities, probability distribution func-
tions and the temporal filter mechanism are utilized to construct the components
of a behavior map, which are entropy and expectance map.

Entropy Map Entropy measures the uncertainty of a random variable. If locomo-
tion of an agent is considered as the random variable, entropy values represent
the magnitude of predictability of crowd’s movements. Entropy values denote
whether agents move independently or in a group. Locations with smaller en-
tropy values denote where agents move with similar velocities. Conversely, lo-
cations with higher entropy values represent disorder in agents’ locomotion. To
build an entropy map, E, we begin by considering a random variable, Xi,j (i,j

indicating location on E), drawn according to pmf (P
(t−n∆t)→t

v )i,j . Then, E
can be defined as;

Et = {H(Xi,j) : 0 ≤ i < w, 0 ≤ j < h} (3)

, where H(Xi,j) is the entropy of Xi,j as defined in Equation 1.

Expectance Map Probability distribution of crowd’s activities defines the char-
acteristics of locomotion that are likely to occur at specific locations. We define
the distribution of crowd’s locomotion from time (t − n∆t) to (t −∆t) by pmf

P
(t−n∆t)→(t−∆t)

v and the current distribution of crowd’s locomotion at time t
by P t

v
. We use these two pmfs in Equation 2 to calculate KL divergence values.

These values constitute the second type of behavior map called expectance map.
Expectance map KL is defined as;

KLt = {(D(P (t−n∆t)→(t−∆t)
v

‖P t
v
))i,j : 0 ≤ i < w, 0 ≤ j < h} (4)

KL values indicate the difference between the current distribution and the cu-
mulative distribution of crowd’s locomotion. Use of KL divergence values to



indicate surprise is proposed in [23], where they use KL divergence values to
discover surprising events in video. They employed a principled approach to
prove that KL is a powerful measure to represent surprise. We use KL values to
indicate unexpected, surprising crowd formations. In an expectance map, cells
with high KL values denote surprising activities taking place at those locations.
At cells with lower KL values the state of the crowd remain as expected. Both of
these maps address different aspects in the locomotion of crowd and each map
has certain effects on agent’s behavior. Therefore, a behavior map, B, is the
convex combination of the values of entropy and expectance maps. This map can
be formulated by;

Bt = {w1e
t
i,j + w2kl

t
i,j : 0 ≤ wn < 1, w1 + w2 = 1, 0 ≤ i < w, 0 ≤ j < h} (5)

, where each wi represents user-defined weight values to determine the contribu-
tion of each map. These user-defined weights provides a mechanism to control
how a behavior map is constructed according to the simulation scenario.

3.2 Agent Representation

Agent based crowd simulators have access to several motion engines and anima-
tion sets which define behavioral output types. These types can range from basic
behaviors like changing direction, to complex behaviors like spreading shoulders
to clear its path. The feature set of the crowd simulator and the underlying
agent model define the complexity of agent behavior. In our behavioral model,
we need a generic agent representation to fit into any type of agent based crowd
engine. Our agent representation includes two properties, i) behavior state which
enables interaction between agents and behavior maps and ii) behavior constants
to determine agents’ behaviors in combination with behavior state.

Behavior state, β, is the behavior map cell value assigned to an agent. Agents
on the same cell of the map share the same behavior state. As behavior map
values are altered temporally and spatially, these values are used in agent-crowd
interaction formulations to adaptively control agents’ behavior. Behavior con-
stants, f , are agent specific values which are evaluated as personality attributes.
Each feature of an agent which we want to control adaptively is paired with a
behavior constant. By assigning an f value, behavioral complexity of an agent is
extended and by varying f values, responses of agents to behavior map values are
varied. Behavior constants can be regarded as a mechanism to create complexity
and variation in crowd. To wrap up these concepts with an example, assume a
crowd simulator where agents have the feature of sweating, which we denote as
p0. In our representation, a behavior constant, f0, defines how easy an agent
sweats. And β values adaptively control when and where an agent will sweat.
The agent representation is extended to include these properties, in addition to
physical properties, which are position, u, and velocity, v:

ai = {u,v, β, 〈f0, p0〉 , .., 〈fn, pn〉 : β, fn ∈ [0, 1]∀ n} (6)



pn is a symbolic representation to indicate a feature associated with ai. A single
〈fn, pn〉 pair represents pn is controlled by fn. Notice that for each 〈fn, pn〉 pair,
a formulation should be developed to define how β and fn values control pn.

3.3 Extending a Crowd Simulator

Any crowd simulator can be extended with our behavioral model. Our model
introduces agent-crowd interactions into agent based crowd simulators. In order
to integrate our model, we first need to customize the agent definition given
in Equation 6 according to the capabilities of the crowd simulator. This repre-
sentation is then accompanied with formulations to define how agents handle
behavior map values.

(f0, .., fn), β
s

vp

δ

ai

d

ri

Fig. 3. A composite agent ai, its associated proxy agent ri and certain features of agent
representation

In this study, we use Reciprocal Velocity Obstacles (RVO) multi-agent naviga-
tion system introduced in [5]. We extended this system by implementing com-
posite agents proposed in [24]. A composite agent, ai, is a special agent equipped
with a proxy agent, ri, to model a number of emergent behaviors realistically.
A proxy agent is a virtual agent, which is visible to all agents in the simulation
except its parent ai. ri moves according to ai’s preferences. For example, if ai
wants to move in a certain direction, ri is placed in that direction to clear ai’s
path. With this mechanism ai can display particular behaviors. The features,
pn, of the underlying simulation system (i.e. RVO) can be listed as;

– d : Distance between proxy agent’s position, ri[u], and ai’s position u. The
longer the distance, the further ai can proceed with less collisions.

– s : Radius of the circular area ri occupies. The larger the area, the easier ai
can move.

– vp: This is the preferred velocity of an agent ai. It is the optimal velocity that
would bring the agent to its goal. We modify vp’s direction with a normalized
velocity vector, vb, which is calculated with respect to behavior map values.
vb is calculated as a vector leading to lower value zones found as a result of
a local search.



– m : Indicates agent speed.
– δ : Indicates safety factor which is the range considered by an agent while

calculating possible future collisions. With a high safety factor, an agent
considers a higher number of possible collisions and behaves more careful to
make less collisions.

The agent representation proposed in Equation 6 is customized with respect to
the features of the underlying simulator:

ai = {type, u,v, ri, β, 〈f0, d〉 , 〈f1, s〉 , 〈f2,vp〉 ,

〈f3,m〉 , 〈f4, δ〉 : vp ∈ R
2; fn, β, d, s ∈ R}

(7)

where type indicates whether the agent is a composite or proxy agent. Each f
value with their associated feature is given as pairs. A figure to illustrate the
customized agent definition can be seen in Figure 3. The next step is developing
the formulations to include behavior state, β, and behavior constants, f , values.
We develop formulations to represent agent-crowd interactions for agent ai as:

β = Bi,j

d =
√

f0β dmax + dmin

s =
√

f1β smax + smin (8)

vp =
̂

(vo
p +

√

f2β vb)(
√

f3β mmax +mmin)

δ =
√

f4β δmax + δmin

where Bi,j is the current behavior map value at cell {i,j} and v
o
p is the optimal

velocity leading to agent’s goal. Each property has a user-defined min and max
value to keep the values in a certain range.

4 Results & Test Cases

Our behavioral model extends the variability and complexity of a crowd simu-
lator. We run a number of tests to demonstrate how our model enhances a crowd
simulator’s performance. The tests were run on a system with Intel QuadCore
2.8 GHz and Nvidia GeForce GTX-280. Formulations in our behavioral model
constitute of simple calculations, therefore we observed that integration of our
model into a crowd simulator does not bring significant computational overload.
The number of agents which can be simulated with our model is limited by the
crowd simulator used in our simulations.

4.1 Test Environment

We define analogies between the interpretations of analytical maps with f values
in order to produce realistic crowd simulations. We interpret the analytical maps
of our model as seen in Table 1.



Table 1. Analytical maps and their interpretation

Analytical Map Behavioral Interpretation

Entropy Predictability

Expectance Surprise

In the test environment, agents can have aggressiveness and/or carefulness
properties. To create certain agents which are aggressive and careful, we re-
late features of agents and formulations with f and β values. In Table 2, these
behavior types with their related features and f values are listed.

The interpretations of behavior maps are used to define how agents respond to
them. In areas with high entropy, where agents’ locomotions are diverse, agents
become more careful to avoid collisions, and they become more aggressive to get
through these regions as quickly as possible. As the expectance map indicates the
level of surprise in a specific location, aggressive agents do not panic and behave
more goal-oriented by preserving their optimal velocity, vo

p, and enlarge s, d and
m values in order to display their aggressiveness. On the other hand, high KL
values make an agent less careful. Notice that, while carefulness is proportional
to entropy values, it is inversely proportional to expectance values.

Figure 4 illustrates how agents respond to expectance map (w1 = 0;w2 = 1 in
Equation 5) at micro level. In this figure, a1 is an aggressive agent and a2 is a
calm agent. In time interval t1, a1 and a2 behave identical. In t2, they enter a
high KL zone. a1 responds by enlarging s and d values to keep its vp as close
as possible to optimal. However, a2 mimics a panicking behavior and behaves in
an unexpected manner. At t3, agents return to their initial state. Notice that at
the end of t3, a1 proceeds further.

Table 2. Behavior types, related features and f values associated with these features

Behavior Type Feature f

Carefulness δ f4

Aggressiveness d, s,vp,m f0, f1, f2, f3

4.2 Test Cases

Our model and the underlying crowd simulator require a number of parameters
to be set before performing a test. We build a GUI-based editor to interactively
enter behavior constants and crowd simulator parameters. This authoring tool



a1

a2

a1a1

a2

a2

t1 t2 t3

High KL

(surprise zone)

Low KL Low KL

Fig. 4. Responses of agents to expectance map

enables the designer to disperse f values over the agents to create variation
in crowd interactively. wn values in Equation 5 determine the contribution of
behavior map’s components, therefore weights of each map should be adjusted
according to the simulation scenario. In our tests, we observe that equal wn

(w1 = 0.5;w2 = 0.5) values for each map performed successfully in most of the
scenarios. Results of the following tests can be found in the accompanying video.
A screenshot from our test environment can be seen in Figure 7.

Test - 1 We perform a test to prove the validity of our approach by a com-
parison with a real world scenario. We used room evacuation videos and data
produced in Research Center Jülich, Germany and made available in [25]. These
videos measure the flow of 60 students while evacuating a room with a variable
exit width. We measure the flow of our agents with the formula J = ∆N/∆t,
where N is the number of agents and ∆t is calculated as the difference between
the evacuation times of the first and the last agent. As the video incorporates
students evacuating the room calmly, we set low aggressiveness to our agents.
We observe that our results are consistent with the real world case (Figure 5).
We made further studies with this scenario setting and instead of adding calm
agents, we add aggressive agents into the room. Agents are competing more to
get out quickly in this case, as a result clogging occurred through the exit (Figure
5).

Test - 2 We made comparison tests with two agent-based crowd simulators.
The first one is the flocking model developed by Reynolds [26] and the second
is the RVO library, which we also used as the underlying navigation library in
this paper [5]. These comparative tests incorporate a scenario where four groups
of agents walk through at a piazza. Throughout these test, we create a crowd
with varied f values in our crowd simulator and this creates diversity in crowd’s
behaviors. In other models, agents do not respond to the dynamics of the crowd
and behave identically.
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Test - 3 We run the same scenario from Test - 2 incorporating a crowd consisting
of i) only calm (not aggressive) agents ii) 10% aggressive agents and iii) agents
with various f values. Figure 6 displays the results of these tests. We see that
only by varying the dispersion of f values, our model is capable of creating
diverse and realistic results without requiring any additional scripting or editing
effort.

Test - 4 We adopt a scenario where two groups of agents move towards each
other. This scenario highlights the function of entropy maps (w1 = 1;w2 = 0 in
Equation 5). Before these groups meet, they do not display aggressive behavior
as they produce a behavior map zone with low entropies. However, when these
groups meet, there is a high level of disorder and entropy values increase. This
variance in crowd formation adaptively modifies agents’ responses and they start
behaving aggressive.

5 Conclusion

In this paper, we presented a novel analytical behavioral model which automat-
ically builds behavior maps to control agents’ behavior adaptively with agent-
crowd interaction formulations. Probabilistic methods incorporating information
theory quantities have been used to produce these behavior maps.

We did a comparative analyses of the presented behavior model with measured
crowd data and two agent-based crowd simulators. We also run several well-
known test scenarios to demonstrate the performance of our model.



Fig. 6. Agent diversity and complexity of crowd behavior can be adjusted with our
model (left to right: uniform, 20% calm 80% aggressive, diverse agents)

Fig. 7. A screenshot from our test environment

The presented behavioral model can be integrated into existing agent-based
crowd simulators and improve the complexity of resulting crowd behavior. In
most of the crowd simulators, low-level scripts are developed to drive complex
agent behaviors. The analytical maps produced in our model are utilized to
control these behaviors automatically. An important advantage of the proposed
model lies in reducing the time spent on creating agents displaying diverse be-
haviors.



As a future work, we will expand the scope of behavior map construction
methods with different quantities from information theory and related fields.
These maps can broaden our model with new interpretations and results. In
this paper, we only integrated our model into agent-based simulators and used
behavior maps to control individual agents. We will try integrate our model into
simulators which solve crowd simulations with global approaches [1]. We believe
that our analytical maps will also provide information to control crowds globally.
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