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a b s t r a c t

We present an approach to compute a smooth, interpolating skin of an ordered set of 3D balls. By
construction, the skin is constrained to be C1 continuous, and for each ball, it is tangent to the ball along
a circle of contact. Using an energy formulation, we derive differential equations that are designed to
minimize the skin’s surface area, mean curvature, or convex combination of both. Given an initial skin,
we update the skin’s parametric representation using the differential equations until convergence occurs.
We demonstrate the method’s usefulness in generating interpolating skins of balls of different sizes and
in various configurations.
1. Introduction

In this paper, we consider the geometric problem of ball
skinning, which we define to be the computation of a continuous
interpolation of a discrete set of balls; an example appears in
Fig. 1. This problem arises in numerous applications, including
character skinning,molecular surfacemodel generation, and in our
primary application, the modeling of tubular structures. The balls
are ordered, can have different radii, can be configured in different
positions, and may or may not overlap. In our formulation of the
problem, we require that the skin contacts each ball along a circle,
and is tangent to the ball along this circle of contact. The skin then
rests on and interpolates the underlying balls.
For a given configuration of balls, there exist an infinite number

of possible solutions to this problem as expressed above. To
formulate the problem so that it is well-posed, we seek the skin
that has minimal surface area, mean curvature, or combination
of both. We achieve this by deriving, and solving, differential
equations that minimize an energy, composed of surface area
and mean curvature terms, based on this variational problem.
By minimizing this energy, the method provides an optimal
constrained interpolation of the balls.

1.1. Related work

The problem of skinning appears in various contexts. In
computer animation, often an articulated object or character is
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constructed using a layered representation consisting of a skeletal
structure and a corresponding geometric skin [1]. The skeleton has
fewer degrees of freedom and is simpler to adjust by an animator.
Given a new skeletal pose, the skinning algorithm is responsible
for deforming the geometric skin to respond to the motion of the
underlying skeleton. The skinning problem is a special case of the
problem of computing the envelopes of families of quadrics, which
have been investigated by Peternell [2] via the use of cyclographic
maps. Rossignac and Schaefer [3] present J-splines, which produce
smooth curves from a set of ordered points using a subdivision
framework.
The problem of ball skinning appears frequently in the

context of computational chemistry and molecular biology, when
generating surface meshes for molecular models [4–6]. Several
algorithms exist to skin a molecular model to produce a C1
continuous surface that is tangent smooth and has high mesh
quality. These methods are typically either based on Delaunay
triangulation [4] or by finding the isosurface of an implicit
function [6]. The work of [6] derives a special subset of skins
that is piece-wise quadratic. When dealing with a continuous
family of balls, the skin may be computed as the envelope of the
infinite union of the circles of intersection of two consecutive balls
of infinitely close center. While the surfaces generated by these
methods are tangent to the balls and have smoothness at the point
of tangency, none of these existing methods provides an optimally
smooth skin, unlike the method we present here.
In our application, we are interested in modeling the geometry

of a blood vessel that has been identified using Pearling [7], a ball
packing algorithm that places numerous balls of different radii so
that they fit snugly inside an imagedblood vessel. Given these balls,
wewould like to find a C1 skin that smoothly interpolates the balls.
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Fig. 1. An example ball skinning. Given an ordered sequence of balls (a), we produce a skin that optimally interpolates the balls (b). This skin is a surface that consists of
splines (rendered in blue) and is computed using differential equations.
This surface can then be used for visualization of the blood vessel,
simulation of blood flows using computational fluid dynamics, as
well as measurements such as volume or surface area. We note
that the problem of 2D ball skinningwas addressed in our previous
work [8]; in this paper, we extend themethodology to skinning 3D
balls. In this case, the problemhas a similar conceptual formulation
based on differential equations; however, the geometry is notably
different: instead of minimizing the arc length and curvature of
a curve, we minimize the surface area and mean curvature of a
surface. Furthermore, the geometry of contact between the skin
and the balls, as well as the differential geometry of the skin is
significantly different in the 3D case.
Our approach produces a surface that minimizes a convex

combination of surface area and squared mean curvature terms.
Such surfaces are loosely referred to as minimal surfaces in the
literature. It has been shown in the surface evolution literature
that, for unconstrained surfaces, these terms result in curvature
and Willmore flows [9,10], respectively. By adding the additional
constraint that the skin must pass through a circle of intersection
with each ball, we significantly reduce the dimensionality of the
optimization.

1.2. Our contribution

We model the skin as a C1 surface, which, by construction,
must touch each ball along a circle that is tangent to the ball.
We then provide two novel derivations, one for deforming this
constrained surface to minimize its surface area; and a second
derivation for minimizing its squared mean curvature. The result
of these derivations are differential equations, whichwe then solve
to update a given surface to its optimal position. We then show
experimental examples of how these differential equations are
used to perform optimally smooth skinning of balls.

2. Methodology

2.1. Representation

We require the skin to pass through a circle on the ith ball Bi,
as depicted in Fig. 2 (a). This circle resides in a plane with normal
Ni = [cos θ i sinφi, sin θ i sinφi, cosφi]T that passes through the
ball center ci and intersects Bi.
Letq(u)be a point on the unit circle in the z = 0plane, as shown

in Fig. 2(b). We can parameterize q(u) as

q(u) = x̂ cos u+ ŷ sin u, (1)

where u is a parametrization angle. We can then express pi(u), a
point on the circle of Bi as

pi(u) = ci + aiRiq(u), (2)
where r i is the radius of the ith ball, and Ri is a rotation matrix
specified by Ni as

Ri = R(θ i, φi) =

cos θ i cosφi − sin θ i cos θ i sinφi

sin θ i cosφi cos θ i sin θ i sinφi

− sinφi 0 cosφi

 (3)

pi(u) provides a way to parameterize the circle on each ball. We
would like to form a parametric skin S(u, v) that satisfies several
geometric criteria:

(1) The skin should be modeled by a circle that contacts each ball.
(2) The skin should be tangent to each ball along the circle of
contact.

(3) The skin should optimize an energy functional composed of
surface area and mean curvature terms.

We compose the skin S(u, v) as a set of segments Si(u, v) for
i = 1 . . .N − 1, where N is the total number of balls, as depicted
in Fig. 3. To form the segment Si(u, v), we would like to generate
a spline-based surface that connects the circles on adjacent balls.
Various spline representations (such as Catmull-Rom, 4-point, etc.)
are possible for modeling segments using a set of splines. Each
spline starts at point pi(u) in directionNi, and ends at point pi+1(u)
in direction Ni+1, with

Si(u, v) = Ai(u)v3 + Bi(u)v2 + Ci(u)v + Di(u), (4)

since the four constraints require four degrees of freedom. For
the ith segment, Ai(u), Bi(u), Ci(u), and Di(u) are coefficients, and
v ∈ [0, 1] is a parametrization variable.
Each segment Si(u, v) of the skin is defined by the Hermite in-

terpolation of the boundary conditions, specifically, Si(u, v)|v=0 =
pi(u), ∂S

i(u,v)
∂v
|v=0 = t iNi, Si(u, v)|v=1 = pi+1(u), and ∂Si(u,v)

∂v
|v=1 =

t i+1Ni+1, where, for each i, t i is a stiffness coefficient that controls
the influence of the normal Ni. Each t i is fixed to be half the
distance between the next and previous ball centers (for the first
and last balls, it is the distance between the ball center and its
neighbor ball center) for all examples in this paper. Such a stiffness
encourages smoothness of the connecting segments at a circle, and
is based on the central difference approximation of the first deriva-
tive computed using ball centers. We note however that straighter
segments can be achieved by scaling the stiffness by a coefficient
less than one.
With these constraints, and the derivative of the segment,

∂Si(u, v)
∂v

= 3Ai(u)v2 + 2Bi(u)v + Ci(u), (5)

we obtain a system of four equations for the four coefficients:
Di(u) = pi(u), Ci(u) = t iNi,Ai(u)+Bi(u)+Ci(u)+Di(u) = pi+1(u),



Fig. 2. Representation of the circle of contact. We show how point q(u) on the unit circle is mapped to point pi(u), which is a point on the circle of contact where the skin
is tangent to the ball.
Fig. 3. Segments and spline.
and 3Ai(u) + 2Bi(u) + Ci(u) = t i+1Ni+1, which is easily solved,
yielding

Ai(u) = −2pi+1(u)+ 2pi(u)+ t iNi + t i+1Ni+1

Bi(u) = 3pi+1(u)− 3pi(u)− 2t iNi − t i+1Ni+1

Ci(u) = t iNi

Di(u) = pi(u).

(6)

Thus, we have a way of describing the skin S(u, v) as a collection
of N − 1C1 continuous segments Si(u, v). Segment Si(u, v) in
turn is specified by the coefficients Ai(u), Bi(u), Ci(u), Di(u), and
these coefficients are functions of the circles pi(u), pi+1(u), and the
normals Ni and Ni+1. Finally, the circles and normals are, in turn,
functions of the angles φi, φi+1, θ i, θ i+1.

3. Surface area minimization

In this section, we derive differential equations to evolve the
parameters of the skin to minimize the skin’s surface area.
From differential geometry, it is well known that the surface

area is given by

Ja =
∫∫ √

EG− F 2dudv, (7)

where
E = Su · Su (8)
F = Su · Sv (9)
G = Sv · Sv (10)
are coefficients of the first fundamental form.
Since S(u, v) is expressed as a sum of N − 1 segments, this is

equivalent to

Ja =
N−1∑
i=1

∫∫ √
E iGi − (F i)2dudv. (11)
We would like to take the derivative of Eq. (11) with respect
to the parameter wk, where wk ∈ [θ i, φi]∀i. This will give us a
gradient direction that we can use in a numerical gradient descent
procedure to find the angles that minimize the surface area of the
skin. Since θ i and φi affect only the ith and i − 1st segments, we
can replace the summation with two surface integrals,
∂ Ja

∂wk
=

∂

∂wk

∫∫ √
E iGi − (F i)2dudv

+
∂

∂wk

∫∫ √
E i−1Gi−1 − (F i−1)2dudv. (12)

Propagating the derivative through the integrals gives

∂ Ja

∂wk
=
1
2

∫∫ ∂Ei

∂wk
Gi + E i ∂G

i

∂wk
− 2F i ∂F

i

∂wk[
E iGi − (F i)2

] 1
2

dudv

+
1
2

∫∫ ∂Ei−1

∂wk
Gi−1 + E i−1 ∂G

i−1

∂wk
− 2F i−1 ∂F

i−1

∂wk[
E i−1Gi−1 − (F i−1)2

] 1
2

dudv. (13)

In Appendix A, derivations for the derivatives of the coefficients of
the first fundamental form with respect towk are given.

4. Curvature minimization

We would additionally like to derive differential equations
for updating the skin to minimize its curvature. In 3D there are
several potential curvatures one could employ, includingmean and
Gaussian curvatures. In this paperwe focus on themean curvature,
which is closely related to the first variation of surface area. The
mean curvature is given by

H =
eG− 2fF + gE
2(EG− F 2)

, (14)

where E, F , and G are given in the previous section, and e, f , and g



v

∂ Jc

∂wk
=

∫∫
2H i

 ∂ei

∂wk
Gi + ei ∂G

i

∂wk
− 2 ∂ f

i

∂wk
F i − 2f i ∂F

i

∂wk
+

∂g i

∂wk
E i + g i ∂E

i

∂wk

2(E iGi − (F i)2)
−
(eiGi − 2f iF i + g iE i) · ( ∂E

i

∂wk
Gi + E i ∂G

i

∂wk
− 2 ∂F

i

∂wk
F i)

2(E iGi − (F i)2)2

 dud
+

∫∫
2H i−1

 ∂ei−1

∂wk
Gi−1 + ei−1 ∂G

i−1

∂wk
− 2 ∂ f

i−1

∂wk
F i−1 − 2f i−1 ∂F

i−1

∂wk
+

∂g i−1

∂wk
E i−1 + g i−1 ∂E

i−1

∂wk

2(E i−1Gi−1 − (F i−1)2)

−
(ei−1Gi−1 − 2f i−1F i−1 + g i−1E i−1) · ( ∂E

i−1

∂wk
Gi−1 + E i−1 ∂G

i−1

∂wk
− 2 ∂F

i−1

∂wk
F i−1)

2(E i−1Gi−1 − (F i−1)2)2

]
dudv.

Box I.
come from the second fundamental form,

e = M · Suu (15)
f = M · Suv (16)
g = M · Svv (17)

where M is the surface normal (not to be confused with N, which
is the normal of the plane that intersects a ball).
Our energy is

Jc =
∫∫

H2dudv. (18)

Since S(u, v) is expressed as a sum of N − 1 segments, this is
equivalent to

Jc =
N−1∑
i=1

∫∫
(H i)2dudv. (19)

As before, we would like to take the derivative of Eq. (19) with
respect to the parameter wk, where wk ∈ [θ i, φi]∀i. This will give
us a gradient direction which we can use in a numerical gradient
descent procedure to find the angles that minimize the curvature
of the skin. Since θ i and φi affect only the ith and i− 1st segments,
we can replace the summation with two surface integrals,

∂ Jc

∂wk
=

∂

∂wk

∫∫ [
eiGi − 2f iF i + g iE i

2(E iGi − (F i)2)

]2
dudv

+
∂

∂wk

∫∫ [
ei−1Gi−1 − 2f i−1F i−1 + g i−1E i−1

2(E i−1Gi−1 − (F i−1)2)

]2
dudv. (20)

Propagating the derivative through the integrals gives where the
derivatives of the coefficients from the first fundamental form
(i.e., E, F , and G) are given in Appendix A and the derivatives of
the coefficients from the second fundamental form (i.e., e, f , and g)
are analytically derived in Appendix B.

5. Implementation

We combine the energies Ja and Jc together, as

J = (1− k)Ja + kJc, (21)

where k is a constant used to weight the surface areaminimization
relative to the curvature minimization. Convex combinations of
the two can be selected using k ∈ [0, 1]. Therefore, the combined
energy minimization is given by

∂ J
∂wk
= (1− k)

∂ Ja

∂wk
+ k

∂ Jc

∂wk
, (22)

where ∂ Ja

∂wk
is given in Eq. (13) and ∂ Jc

∂wk
is provided in Box I. In all

of the experiments in this paper, we fix k = 0.9, to encourage
smoother solutions.
These equations are a set of differential equations that can
be used in a gradient descent procedure to optimize the skin by
manipulating the parameterswi = [θ i, φi]T of each ball i. Letwi(n)
be the ith ball’s parameters at iteration n. We can then update the
parameters bymoving them in the negative gradient direction, i.e.,

wi(n+ 1) = wi(n)−∆t∇Jwi(n),∀i, (23)

where∆t is a time step.
The computational complexity of the algorithm depends on the

number of balls N and the number of points on the surface where
the points and derivatives are evaluated. The number of points is
given by LM , where L is the number of sampling points on each
spline, and M is the number of splines on a segment. For each
iteration of the gradient descent procedure, the computational
complexity is O(NLM). The number of iterations required depends
on the time step ∆t as well as how close the initial skin is to the
final solution.

6. Experimental results

A simple example is provided in Fig. 4. Here, four balls of
radius 3, 2, 2, and 3 units, respectively were set in the xz-plane,
at points c1 = [0, 0, 0]T, c2 = [5, 0, 5]T, c3 = [10, 0, 0]T and
c4 = [17, 0,−5]T. The initial parameters for this experiment were
w1 = [0, 0]T, w2 = [0, π/4]T, w3 = [0, π/2]T, and w4 =
[0, π/4]T respectively; the initial skin is shown in part (a) of the
figure. The parameters were iteratively updated using Eq. (23),
with L = 50 and M = 20 (these values for L and M are used for
all experiments in this paper). An intermediate solution after 20
iterations in shown in (b); at this stage, the skin is considerably
smoother while still satisfying the constraints of the problem. We
show the result after 40 iterations in (c), at which point the energy
has reached a minimum and the parameters have converged. The
solution (all 40 iterations) is computed in 4.3 s using C++ code on
a machine with a 2.0 GHz processor. We render the surface as a
collection of splines in blue, and additionally show the circle of
intersection on each ball in green. The energy of the surface, as
measured using Eq. (21), drops from 7.36× 109 in (a) to 670 in (c).
Fig. 5 shows a slightly more complicated example for which

some balls overlap and others do not. The initial skin is shown in
(a), an intermediate result after 25 iterations in (b), and the final
result upon convergence after 50 iterations in (c). The solution (all
50 iterations) is computed in 10.4 s. The energy of the surface, as
measured using Eq. (21), drops from1.86×1010 in (a) to 1400 in (c).
Fig. 6 shows another example for a symmetric configuration of

balls, but asymmetric initial conditions. The initial skin is shown
in (a), an intermediate result after 30 iterations in (b), and the
final result upon convergence after 60 iterations in (c). The solution
(all 60 iterations) is computed in 8.3 s. The energy of the surface,
as measured using Eq. (21), drops from 2.79 × 107 in (a) to 1287
in (c). Note that due to the symmetry of the balls, the skin itself is
symmetric upon convergence.



Fig. 4. Simple example demonstrating ball skinning. The initialization is shown in (a), and the result after 20 iterations is shown in (b), and the converged result after 40
iterations is shown in (c). The skin is rendered in a blue color.
Fig. 5. Another ball skinning. The initialization is shown in (a), and the result after
25 iterations is shown in (b), and the converged result after 50 iterations is shown
in (c).

More examples are provided in Figs. 1 and 7. In Fig. 7, the balls
are arranged on a sinewave and have a variable radius. In addition,
some of the balls overlap while others do not. Convergence of
the skinning algorithm, starting from a set of angles far from the
optimal result, takes 11.4 s, and reduces the energy from9.67×105
to 11,471. In Fig. 1, the variable radius balls are arranged in a spiral.
The skin is generated in 15.3 s.
In Fig. 8, we show plot of the energy J of the surface vs.

the iteration number. Note that initially, the energy is high and
successive iterations reduce the energy until convergence occurs
around the 30th iteration. Upon convergence, the energy oscillates
around itsminimal value. This fact can be exploited as an automatic
convergence criterion.

6.1. Comparison

We have implemented the J-splines technique [3] to which we
compare our method. This approach outlines a general subdivision
Fig. 7. Generating a smooth interpolating region between a set of balls.
Initialization (a), intermediate result (b) after 25 iterations, and final result upon
convergence (c) after 50 iterations.

algorithm for producing smooth curves (J-splines) from a set of
ordered points. Iterative applications of the subdivision algorithm
yield a family of limit curves, one ofwhich is a quintic b-spline (C4).
This quintic b-splinewill no longer interpolate the input points, but
can be ‘‘retrofitted’’ as the paper describes. This retrofitting process
iteratively offsets the input control points until the final curve
interpolates the input, thus resulting in an interpolating C4 spline.
As a comparison, we used this subdivision approach to subdivide
the series of balls as a 4D curve (x, y, z+ radius). The cross sections
of the skin are then computed as circles which lie on the surface
of the convex hull of every consecutive pair of balls and are also
orthogonal to the line connecting their centers.
Table 1 presents the results of the comparison. For each skin, we

compute the energy J as described in Eq. (21). While the result for
the spiral and sine wave are slightly lower for the J-spline method,
the difference is not significant (i.e., the difference is less than 1%)
in both cases and the surfaces have an identical appearance. The
PDEmethod demonstrates a significant improvement however for
the other surfaces. The primary reason for this is thatwith J-splines,
a self-intersection occurs that results in high local curvatures and
a fatter object in general, as demonstrated in Fig. 9 below. The
PDE method will penalize such local self-intersections and deform
the spline surface so that the individual splines are smooth upon
convergence.
Fig. 6. An example for a symmetric configuration of balls. The initialization is shown in (a), and the result after 30 iterations is shown in (b), and the converged result after
60 iterations is shown in (c).



Fig. 8. Convergence plot for the sine wave example from Fig. 7.

6.2. Discussion

We note that our gradient descent approach only guarantees
a locally optimal solution; the particular solution depends on the
Table 1
Comparison of the energy for our PDE method and that of J-splines.

Data set Energt (PDE method) Energy (J-splines)

Spiral (Fig. 1) 12387 12281
Four balls (Fig. 4) 670 12386
Mixed overlap (Fig. 5) 1400 3008
M shape (Fig. 6) 1287 34200
Sine wave (Fig. 8) 11447 11441

convexity of the energy functional aswell as the initial condition. In
the examples shown in this paper, the initial skins are chosen to be
far from the final solution to demonstrate the effect and robustness
of the differential equations. Fig. 10, part (a) and a zoom in view
(b), show an example with a very poor initialization that has a
strong self-intersection. Despite the undesirable initialization, the
algorithm is able to untangle the self-intersection and produce a
smooth interpolation of the balls, shown in (c). In (d) and and a
zoom-in view (e) of the same figure, we show an example of a
severe self-intersection where the surface has completely folded
in on itself. This initialization is not in the basin of attraction of the
desired solution, so the skin upon convergence, shown in (f), is not
the desired solution. In practice, it is typically easy to determine a
good initialization by choosing an initialization for each ball such
that the normal of the intersection plane points along the vector
that connects adjacent ball centroids.
Fig. 9. PDE method produces smoother results. On the left, is the J-spline skin for the example of 6. The are two self-intersections; one is shown in a zoomed view of (c),
with the green circle of contact removed for clarity. In (a) we show the wireframe model of the splines, and in (c) a texture-mapped view. On the right, is the result of the
PDE method, which does not have a self-intersection.



Fig. 10. Convergence to desired and undesiredminima based on poor and severely poor initializations. The PDE approach is able to untangle the difficult case in (a), resulting
in (c). However, the completely folded initialization of (d) results in the skin (f), which is not in the basin of attraction of the desired solution.
Fig. 11. Skin may pass through a ball. Initialization (a) and final result (b).
Note that the skin our method generates may pass through a
ball (shown in Fig. 11(b)) since it is only constrained to be tangent
to the ball at the circle of intersection. For points not in the circle’s
plane, the skin may be larger or smaller than the ball. Thus, the
skin does not provide an exact envelope of the balls, but rather,
an approximating envelope. In our application of modeling blood
vessels, this is an acceptable solution since ball itself is a geometric
proxy of the local vessel geometry.

7. Conclusion

In this paper, we presented a method for optimally skinning an
ordered set of 3D balls. Our formulation of the problem requires
that the skin be modeled by a circle of contact with each ball,
and be tangent to the ball along this circle. We have presented
novel derivations resulting in differential equations that minimize
a convex combination of the surface area and mean curvature of a
third order polynomial spline surface subject to these constraints.
Starting with an initial skin, we evolve the skin’s parameters until
convergence. Experimental results demonstrate the viability of the
method.
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Appendix A. I: Derivatives of the Coefficients of the First
Fundamental Form

The derivatives for the jth ball’s (j ∈ [i−1, i]) coefficients of the
first fundamental form with respect to wk ∈ wi = [θ i, φi, di]T are
given by

∂E j

∂wk
= 2Sju ·

∂Sju
∂wk

(A.1)

∂F j

∂wk
= Sju ·

∂Sjv
∂wk
+ Sjv ·

∂Sju
∂wk

(A.2)

∂Gj

∂wk
= 2Sjv ·

∂Sjv
∂wk

(A.3)

where

Sju = Ajuv
3
+ Bjuv

2
+ Cjuv + Dju (A.4)

∂Sju
∂wk
=
∂Aju
∂wk

v3 +
∂Bju
∂wk

v2 +
∂Cju
∂wk

v +
∂Dju
∂wk

(A.5)

Sjv = 3A
jv2 + 2Bjv + Cj (A.6)

∂Sjv
∂wk
= 3

∂Aj

∂wk
v2 + 2

∂Bj

∂wk
v +

∂Cj

∂wk
(A.7)

and

∂Aj

∂wk
=


2
∂pj

∂wk
+ t j

∂Nj

∂wk
, j = i

−2
∂pj+1

∂wk
+ t j+1

∂Nj+1

∂wk
, j = i− 1

(A.8)

∂Bj

∂wk
=


−3

∂pj

∂wk
− 2t j

∂Nj

∂wk
, j = i

3
∂pj+1

∂wk
− t j+1

∂Nj+1

∂wk
, j = i− 1

(A.9)

∂Cj

∂wk
=

t j ∂N
j

∂wk
, j = i

0, j = i− 1
(A.10)



∂Dj

∂wk
=

 ∂pj

∂wk
, j = i

0, j = i− 1
(A.11)

Aju = −2p
j+1
u + 2p

j
u (A.12)

Bju = 3p
j+1
u − 3p

j
u (A.13)

Cju = 0 (A.14)

Dju = pju (A.15)

∂Aju
∂wk
=


2
∂pju
∂wk

, j = i

−2
∂pj+1u
∂wk

, j = i− 1
(A.16)

∂Bju
∂wk
=


−3

∂pju
∂wk

, j = i

3
∂pj+1u
∂wk

, j = i− 1

(A.17)

∂Cju
∂wk
= 0 (A.18)

∂Dju
∂wk
=

 ∂p
j
u

∂wk
, j = i

0, j = i− 1
(A.19)

∂pi

∂θ i
= ai

∂Ri

∂θ i
(x cos u+ y sin u) (A.20)

∂pi

∂φi
= ai

∂Ri

∂φi
(x cos u+ y sin u) (A.21)

piu = a
iRi(−x sin u+ y cos u) (A.22)

∂piu
∂θ i
= ai

∂Ri

∂θ i
(−x sin u+ y cos u) (A.23)

∂piu
∂φi
= ai

∂Ri

∂φi
(−x sin u+ y cos u) (A.24)

and

∂Ri

∂θ i
=

− sin θ i cosφi − cos θ i − sin θ i sinφicos θ i cosφi − sin θ i cos θ i sinφi

0 0 0

 (A.25)

∂Ri

∂φi
=

− cos θ i sinφi 0 cos θ i cosφi

− sin θ i sinφi 0 sin θ i cosφi

− cosφi 0 − sinφj

 (A.26)

and

∂Ni

∂θ i
= [− sin θ i sinφi, cos θ i sinφi, 0]T (A.27)

∂Ni

∂φi
= [cos θ i cosφi, sin θ i cosφi,− sinφi]T. (A.28)

Appendix B. II: Derivatives of the coefficients of the second
fundamental form

The derivatives for the jth ball’s (j ∈ [i−1, i]) coefficients of the
second fundamental form with respect to wk ∈ wi = [θ i, φi, di]T
are given by

∂ej

∂wk
=
∂Mj

∂wk
· Sjuu +Mj ·

∂Sjuu
∂wk

(B.1)
∂ f j

∂wk
=
∂Mj

∂wk
· Sjuv +Mj ·

∂Sjuv
∂wk

(B.2)

∂g j

∂wk
=
∂Mj

∂wk
· Sjvv +Mj ·

∂Sjvv
∂wk

(B.3)

where

Mj =
Sju × Sjv∣∣∣∣Sju × Sjv

∣∣∣∣ (B.4)

∂Mj

∂wk
=

∂Sju
∂wk
× Sjv∣∣∣∣Sju × Sjv

∣∣∣∣ + Sju ×
∂Sjv
∂wk∣∣∣∣Sju × Sjv
∣∣∣∣

−

[(
Sju × Sjv

)
·

(
∂Sju
∂wk
× Sjv + Sju ×

∂Sjv
∂wk

)]
Sju × Sjv∣∣∣∣Sju × Sjv

∣∣∣∣3 (B.5)

where Sju, S
j
v ,

∂Sju
∂wk
, and ∂Sjv

∂wk
are given in Appendix A, and

Sjuu = Ajuuv
3
+ Bjuuv

2
+ Cjuuv + Djuu (B.6)

Sjuv = 3A
j
uv
2
+ 2Bjuv + Cju (B.7)

Sjvv = 6A
jv + 2Bj (B.8)

∂Sjuu
∂wk
=
∂Ajuu
∂wk

v3 +
∂Bjuu
∂wk

v2 +
∂Cjuu
∂wk

v +
∂Djuu
∂wk

(B.9)

∂Sjuv
∂wk
= 3

∂Aju
∂wk

v2 + 2
∂Bju
∂wk

v +
∂Cju
∂wk

(B.10)

∂Sjvv
∂wk
= 6

∂Aj

∂wk
v + 2

∂Bj

∂wk
(B.11)

and

∂Ajuu
∂wk
=


2
∂pjuu
∂wk

, j = i

−2
∂pj+1uu
∂wk

, j = i− 1
(B.12)

∂Bjuu
∂wk
=


−3
∂pjuu
∂wk

, j = i

3
∂pj+1uu
∂wk

, j = i− 1

(B.13)

∂Cjuu
∂wk
= 0 (B.14)

∂Djuu
∂wk

=

∂p
j
uu

∂wk
, j = i

0, j = i− 1
(B.15)

where

piuu = a
iRi(−x cos u− y sin u) (B.16)

∂piuu
∂θ i
= ai

∂Ri

∂θ i
(−x cos u− y sin u) (B.17)

∂piuu
∂φi
= ai

∂Ri

∂φi
(−x cos u− y sin u). (B.18)
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