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Abstract. One of the methods used to evaluate the performance of en-
semble classi�ers is bias and variance analysis. In this paper, we analyse
bagging and ECOC ensembles using bias-variance domain of James [1]
and make a comparison with single classi�ers, when using Neural Net-
works (NNs) as base classi�ers. As the performance of the ensembles
depends on the individual base classi�ers, it is important to understand
the overall trends when the parameters of the base classi�ers, nodes and
epochs for NNs, are changed. We show experimentally on 5 arti�cial and
4 UCI MLR datasets that there are some clear trends in the analysis that
should be taken into consideration while designing NN classi�er systems.

1 Introduction

Within machine learning research, many techniques have been proposed in order
to understand and analyse the success of ensemble classi�cation methods over
single-classi�er classi�cations. One of the main approaches considers tightening
the generalization error bounds by using the margin concept [6]. Though theo-
retically interesting, bounds are not usually tight enough to be used in practical
design issues. Bias and variance analysis is another method used to show why
ensembles work well. In this paper, we try to analyse the success of bagging
[22] and Error Correcting Output Coding (ECOC) [4] as ensemble classi�cation
techniques, by using Neural Networks (NNs) as the base classi�ers within the
bias and variance framework of James [1]. As the characteristics of the ensem-
ble depend on the speci�cations of the base classi�ers, having a detailed look
at the parameters of the base classi�ers within the bias-variance analysis is of
importance. Similar work for bagged Support Vector Machines (SVMs) within
Domingos' bias-variance framework [7] can be found in [19].

ECOC is an ensemble technique [4], in which multiple base classi�ers are
trained according to a preset binary code matrix. Consider an ECOC matrix C,
where a particular element Cij ε (+1,−1) indicates the desired label for class
i, to be used in training the base classi�er j. The base classi�ers are the di-
chotomizers which carry out the two-class classi�cation tasks for each column
of the matrix, according to the input labelling. Each row, called a codeword,
indicates the desired output for the whole set of base classi�ers for the class it is



indicating. During decoding, a given test sample is classi�ed by computing the
similarity between the output (hard or soft decisions) of each base classi�er and
the codeword for each class by using a distance metric, such as the Hamming or
the Euclidean distance. The class with the minimum distance is then chosen as
the estimated class label. The method can handle incorrect base classi�cation
results up to a certain degree. Speci�cally, if the minimum Hamming distance
(HD) between any pair of codewords is d, then up to b(d− 1)/2c single bit errors
can be corrected.

As for bias and variance analysis, after the initial work of Geman [8] on the
regression setting using squared-error loss, others like Breiman [20], Kohavi and
Wolpert [10], Dietterich and Kong [9], Friedman [11], Wolpert [23], Heskes [12],
Tibshirani [13], Domingos [7] and James [1] have tried to extend the analysis for
the classi�cation setting. One of the problems with the above de�nitions of bias
and variance is that most of them are given for speci�c loss functions such as the
zero-one loss, and it is hard to generalize them for all the other loss functions.
Usually, new de�nitions are driven for each loss function. Even if the de�nitions
are proposed to be general, they may fail to satisfy the additive decomposition
of the prediction error de�ned in [8]. The de�nition of James has advantages
over the others as it proposes to construct a scheme which is generalizable to
any symmetric loss function. Furthermore, it proposes two more concepts called
�systematic e�ect� and �variance e�ect� which help assure the additive prediction
error decomposition for general loss functions and realize the e�ects of bias and
variance on the prediction error.

Some characteristics of the other de�nitions which make James' more prefer-
able for us are as follows: 1) Dietterich allows a negative variance and it is possi-
ble for the Bayes classi�er to have positive bias. 2) Experimentally, the trends of
Breiman's bias and variance closely follow James' systematic e�ect and variance
e�ect ones respectively. However, for each test input pattern, Breiman separates
base classi�ers into two sets, as biased and unbiased; and considers each test
pattern only to have either bias or variance accordingly. 3) Kohavi and Wolpert
also assign a nonzero bias to the Bayes classi�er but the Bayes error is absorbed
within the bias term. Although it helps avoid the need to calculate the Bayes
error in real datasets through making unwarranted assumptions, it is not prefer-
able since the bias term becomes too high. 4) The de�nitions of Tibshirani,
Heskes and Breiman are di�cult to generalize and extend for the loss functions
other than the ones for which they were de�ned. 5) Friedman proposes that bias
and variance do not always need to be additive.

In addition to all these di�erences, it should also be noted that the character-
istics of bias and variance of Domingos' de�nition are actually close to James',
although the decomposition can be considered as being multiplicative [1].

In the literature, attempts have also been made to explore the bias-variance
characteristics of ECOC and bagging ensembles. Examples can be found in [1] [9]
[20][14][15]. In this paper, a detailed bias-variance analysis of ECOC and bagging
ensembles using NNs as base classi�ers is given while systematically changing
parameters, namely nodes and epochs, based on James' de�nition.



2 Bias and Variance Analysis of James

James [1] extends the prediction error decomposition, which is initially proposed
by Geman et al [8] for squared error under regression setting, for all symmetric
loss functions. Therefore, his de�nition also covers zero-one loss under classi�ca-
tion setting, which we use in the experiments.

In his decomposition, the terms �systematic e�ect� and �variance e�ect� sat-
isfy the additive decomposition for all symmetric loss functions, and for both
real valued and categorical predictors. They actually indicate the e�ect of bias
and variance on the prediction error. For example, a negative variance e�ect
would mean that variance actually helps reduce the prediction error. On the
other hand, the �bias� and �variance� terms are de�ned to show the natural
characteristics of the variability and the average distance between the response
and the predictor respectively. Therefore, both the meanings and the additive
characteristics of the bias and variance concepts of the original setup have been
preserved. Following is a summary of the bias-variance derivations of James:

For any symmetric loss function L, where L(a, b) = L(b, a):

EY,Ỹ [L(Y, Ỹ )] = EY [L(Y, SY )] + EY [L(Y, SỸ )− L(Y, SY )]

+EY,Ỹ [L(Y, Ỹ )− L(Y, SỸ )]

prediction error = V ar(Y ) + SE(Ỹ , Y ) + V E(Ỹ , Y )

where L(a, b) is the loss when b is used in predicting a , Y is the response, Ỹ
is the predictor, SE is the systemmatic e�ect and V E is the variance e�ect.
SY = argminµEY [L(Y, µ)] and SỸ = argminµEY [L(Ỹ , µ)]. We see here that
prediction error is composed of the variance of the response (irreducible noise),
systematic e�ect and variance e�ect.

Using the same terminology, the bias and variance for the predictor are de-
�ned as follows:

Bias(Ỹ ) = L(SY, SỸ )

V ar(Ỹ ) = EỸ [L(Ỹ , SỸ )]

When the speci�c case of classi�cation problems with zero-one loss function
is considered, we end up with the following formulations:

L(a, b) = I(a 6= b), Y ε {1, 2, 3..N} for an N class problem, PYi = PY (Y = i),
P Ỹi = PỸ (Ỹ = i), ST = argminiEY [I(Y 6= i)] = argmaxiP

Y
i

Therefore,

V ar(Y ) = PY (Y 6= SY ) = 1−maxiPYi
V ar(Ỹ ) = PỸ (Ỹ 6= SỸ ) = 1−maxiP Ỹi
Bias(Ỹ ) = I(SỸ 6= SY )



V E(Ỹ , Y ) = P (Y 6= Ỹ )− PY (Y 6= SỸ ) = PY
SỸ
−

∑
i

PYi P
Ỹ
i

SE(Ỹ , Y ) = PY (Y 6= SỸ )− PY (Y 6= SY ) = PYSY − PYSỸ

where I(q) is 1 if q is a true argument and 0 otherwise.

3 Experiments

3.1 Experimental Setup

Experiments have been carried out on 5 arti�cial and 4 UCI MLR [21] datasets.
3 of the arti�cial datasets are created according to Breiman's description in [20].
Detailed information about the sets can be found in Table 1. The optimization
method used in NNs is the Levenberg-Marquart (LM) technique; the level of
training (epochs) varies between 2 and 15; and the number of nodes between 2
and 16.

The ECOC matrices are created by randomly assigning binary values to each
matrix cell and Hamming Distance is used as the metric in the decoding stage. In
the experiments, 3 classi�cation methods are analysed: Single classi�er, bagging,
and ECOC. In each case, 50 base classi�ers are created for bias-variance analysis.
Each base classi�er is either a single classi�er, or an ensemble consisting of 50
bagged classi�ers or ECOC matrices of 50 columns.

Experiments have been repeated 10 times for the arti�cial datasets by us-
ing di�erent training & test data,as well as di�erent ECOC matrices in each
run; and the results are averaged1. The number of training patterns per base
classi�er is equal to 300; and the number of test patterns is 18000. For the
UCI datasets having separate test sets, the analysis has been done just once for
the single classi�er and bagging settings, and 10 times with di�erent matrices
for the ECOC setting. Here, bootstrapping is applied while creating the base
classi�ers, as it is expected to be a close enough approximation to random &
independent data generation from a known underlying distribution [20]. As for
the UCI datasets without separate test sets, the ssCV cross-validation method
of Webb and Conilione [16], which allows the usage of the whole dataset both
in training and test stages, has been implemented. In ssCV, the shortcomings of
the hold-out approach like the usage of small training and test sets; and the lack
of inter-training variability control between the successive training sets has been
overcome. In our experiments, we set the inter-training variability constant δ to
1/2.

The Bayes error is analytically calculated for the arti�cial datasets, as the un-
derlying likelihood probability distributions are known. As for the real datasets,
the motivation is to �nd the best optimal classi�er parameters giving the lowest
error rate possible, through cross-fold validation (CV); and then to use these

1 On the two class problems, ECOC has not been used, as it would be nothing di�erent
than applying bagging. The e�ect of bootstrapping of bagging would be satis�ed by
the random initial weights of LM.



Table 1. Summary of the datasets used

Type # Training # Test # Attributes # Classes Bayes
Samples Samples Error (%)

TwoNorm [20] Arti�cial 300* 18000* 20 2 2.28

ThreeNorm [20] Arti�cial 300 * 18000* 20 2 10.83

RingNorm [20] Arti�cial 300 * 18000* 20 2 1.51

Arti�calMulti1 Arti�cial 300* 18000* 2 5 21.76

Arti�calMulti2 Arti�cial 300 * 18000* 3 9 14.33

Glass Identi�cation UCI 214 - 10 6 38.66

Dermatology UCI 358 - 33 6 9.68

Segmentation UCI 210 2100 19 7 4.21

Yeast UCI 1484 - 8 10 43.39

*: The training and test samples for the arti�cial datasets change per each base classi�er
and per each run respectively.

parameters to construct a classi�er which is expected to be close enough to the
Bayes classi�er. This classi�er is then used to calculate the output probabilities
per pattern in the dataset. For this, we �rst �nd an optimal set of parameters for
RBF SVMs by applying 10 fold CV; and then, obtain the underlying probabil-
ities by utilizing the leave-one-out approach. Using the leave-one-out approach
instead of training and testing the whole dataset with the found CV parameters
helps us avoid over�tting. It is assumed that the underlying distribution stays
almost constant for each fold of the leave-one-out procedure.

3.2 Results

In this section, some clear trends found in the analysis are discussed. Although
the observations are made using 9 datasets, for brevity reasons we only present
a number of representative graphs.

Prediction errors obtained by using bagging and ECOC ensembles are always
lower than those of the single classi�er; and the reduction in the error is almost
always a result of reductions both in variance e�ect (VE) and in systematic
e�ect (SE). This observation means that the contributions of bias and variance
to the prediction error are smaller when ensembles are used (Fig 1, Fig 2). Note
that, reductions in VE have greater magnitude, and in two-class problems, the
reduction in SE is almost zero (Fig 3). In [20] and [9], bagging and ECOC are
also stated to have low variance in the additive error decomposition, and Kong-
Dietterich framework [9] also acknowledges that ECOC reduces variance.

The convergence of single classi�ers to the optimal prediction error are usu-
ally achieved at higher number of epochs than those of bagging; and ECOC
ensemble convergence is mostly at even lower epochs than bagging. The predic-
tion errors also turn out in the same descending order: single classi�er, bagging
and ECOC. The only exceptions to these happen when high number of nodes
and epochs are used. Under these circumstances, the VE, SE, and therefore the
prediction errors of both ECOC and bagging are similar. However, it should also



be noted that ECOC outperforms bagging in sense of speed due to the fact that
it divides multi-class classi�cation problems into binary classi�cation ones.

It is also almost always the case that the prediction error of ECOC converges
to its optimum in 2 nodes, whereas a single classi�er requires a higher number
of nodes. Moreover, for ECOC, the number of epochs at the optimum is also
lower than or equal to that of the single classi�er. In other words, compared
to a single classi�er trained with high number of epochs and nodes, an ECOC
can yield better results with fewer nodes and epochs. The trend is similar when
bagging is considered. It usually stands between the single classi�er and ECOC,
in sense of accuracy and convergence points.

When the single classi�er case is taken into account; we see that VE does not
necessarily follow the trend of variance. It happens especially when the number of
nodes and epochs is small, that is when the network is relatively weak (Fig 2). In
this scenario, the variance decreases while the VE increases. This is actually an
expected observation as one would expect having high variance to help hitting the
right target class, when the network is relatively less decisive. Ensemble methods
do not show this property as much as the single classi�er. A possible explanation
might be that each base ensemble classi�er already makes use of variance coming
from the base classi�ers it is composed of; and this compensates for the decrease
in VE of single classi�ers with high variance, in weak networks.

Therefore, having more variance among base ensemble classi�ers does not
necessarily help having less VE. However, an example of bagging creating nega-
tive VE, which clearly states that having variance reduces prediction error; and
then going back to positive when variance increases, can be observed on Arti-
�cialMulti2 data when it is processed with 4 node NNs. A similar observation
is that although the variance has high values in networks with small number of
nodes and epochs, the magnitude of its e�ect is relatively smaller (Fig 1, Fig 2).

In the above mentioned scenario of VE showing an opposite trend of variance,
the bias-variance trade-o� can be observed. At the points where the VE increases,
SE decreases to reveal an overall decrease in the prediction error. However, these
points are not necessarily the optimal points in terms of the prediction error; the
optima are mostly where there is both VE and SE reduction (Fig 2). Apart from
this case, bias and variance are mostly correlated with SE and VE respectively.
This is also pointed out in [1] (Fig 2, Fig 3).

4 Discussion

By analysing bagging, ECOC and single classi�ers consisting of NNs through
the bias-variance de�nition of James, we have found some clear trends and rela-
tionships that o�er hints to be used in classi�er design. For multi-class classi�ca-
tion problems, the increase in the overall prediction performance obtained with
ECOC makes it preferable over the single classi�ers. The fact that it converges
to the optimum by using smaller number of nodes and epochs is yet another
advantage. It also outperforms bagging mostly, while in other cases gives similar
results. As for the two-class classi�cation problems, bagging always outperforms



Fig. 1. Bias Variance Analysis for Arti�calMulti2 data. First Row: Overall prediction error. Second

Row: Variance. Third Row: Variance e�ect. First Column: For 2 Nodes. Second Column: For 4 Nodes.

Third Column: For 16 Nodes. Black lines indicate the results for single classi�er, red for ECOC and

green for bagging

the single classi�er; and the optimum number of nodes and epochs is relatively
smaller.

The increase in the performance of bagging and ECOC is a result of the
decrease in both variance e�ect and systematic e�ect, although the reductions
in the magnitude of the variance e�ect are bigger. Also, when the NNs are
weak, that is when they have been trained with few nodes and epochs, we see
that the trends of variance and variance e�ect might be in opposite directions
in the single classi�er case. This implies that having high variance might help
improve the classi�cation performance in weak networks when single classi�ers
are used. However, they are still outperformed by ensembles, which have even
lower variance e�ects.

As for further possible advantages of ensembles, the fact that they are ex-
pected to avoid over�tting might be shown by using more powerful NNs with
higher number of nodes, or other classi�ers such as SVMs that are more prone
to over�tting. Future work is also aimed at understanding and analysing the



Fig. 2. Bias Variance Analysis for Dermatology data. First Row: Overall prediction error. Second

Row: Variance. Third Row: Variance e�ect. Fourth Row: Systematic e�ect. First Column: For 2

Nodes. Second Column: For 4 Nodes. Third Column: For 16 Nodes. Black lines indicate the results

for single classi�er, red for ECOC and green for bagging



Fig. 3. Bias Variance Analysis for ThreeNorm data. First Row: Overall prediction error. Second

Row: Variance e�ect. Third Row: Systematic e�ect and Bias. First Column: For 2 Nodes. Second

Column: For 4 Nodes. Third Column: For 16 Nodes. Black & blue lines indicate the results for single

classi�er (bias and systematic e�ect) and green & magenta for bagging

bias-variance domain within some mathematical frameworks such as [17] [18]
and using the information in the design of ECOC matrices.
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