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Abstract

Segmentation of brain structures from MR images is
crucial in understanding the disease progress, diagno-
sis, and treatment monitoring. Atlases, showing the ex-
pected locations of the structures, are commonly used
to start and guide the segmentation process. In many
cases, the quality of the atlas may have a significant ef-
fect in the final result. In the literature, commonly used
atlases may be obtained from one subject’s data, only
from the healthy, or depict only certain structures that
limit their accuracy. Anatomical variations, patholo-
gies, imaging artifacts all could aggravate the problems
related to application of atlases. In this paper, we pro-
pose to use multiple atlases that are sufficiently differ-
ent from each other as much as possible to handle such
problems. To this effect, we have built a library of at-
lases and computed their similarity values to each other.
Our study showed that the existing atlases have varying
levels of similarity for different structures.

1 Introduction

The large availability of MR acquisition devices
raises new challenges for the scientific community.
While nowadays, MR devices induce strong magnetic
fields, automatic segmentation is still a major conun-
drum. Although the quality of MR images continues
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to improve in accuracy and resolution, segmentation
of structures is still a difficult task, especially in the
presence of pathologies causing large deformations and
large anatomical variations between people.

In this context, we analyze an atlas-based segmen-
tation scheme that is advocated by widely accessible
tools. In atlas-based segmentation, prior information
are obtained from probabilistic maps encoded in the
electronic atlases, such as MNI [4], Thalamus, Harvard-
Oxford [1], Jiilich [2], and Talairach [3]. This prior in-
formation is utilized for collecting tissue statistics and
to start active contours based schemes [6]. The accuracy
of this approach is very much dependent on the qual-
ity of the atlas. Some atlases are obtained from only
one subject’s brain, some model only healthy, and some
are specialized to only certain structures. We envision a
database of atlases from which multiple atlases depend-
ing on the structure of interest and pathology is selected
to be used for segmentation. As the first step of this
scheme, this paper analyzes the quality and the correla-
tion of different atlases. The multiple atlas information
can be integrated in expectation maximization schemes
such as [8], [7].

We performed our comparison by using the atlases
in FMRIB Software Library (FSL) [5]. We rigidly reg-
istered them by using FLIRT of FSL and quantified the
correlation and accuracy values in the context of seg-
mentation of cortical and sub-cortical regions, which
are critical in evaluation of brain disorders such as
Alzheimer’s disease.
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Figure 1. Talairach binary labeling, which is
registered to MNI 152 space. Figures (a) and (b)
show superpositions of structures and sectioning planes
through the volumetric information. (a) - in Talairach,
the structures are clearly separated. While Nucleus
Caudate is depicted in red, Putamen is illustrated in
blue. (b) - in Talairach, the Nucleus Caudate includes
(an optional) tail.

2 An Overview of FSL Atlases

In FSL, all the atlases are registered to the MNI 152
model. The FSL distribution includes the MNI 152
T1 weighted data and we choose one millimeter reso-
Iution. All the atlases provide binary labeled regions,
while the atlases MNI, Thalamus (Thlm), Harvard-
Oxford (HO) , Jiilich (Jii) , and JHU also include prob-
ability maps, where the probability of pixel member-
ship to a certain structure is expressed in percentages.
We regard Tailarach labeling as a binary probability
map. The structures in Tailarach (Tal) are clearly
disjoint (see Figure 1 (a) and (b)) . Note that JHU in-
cludes structure tracts therefore, we do not consider it
in our analysis.

3 Methodology

Consider an arbitrary fixed atlas. In this context, seg-
mentation begins with registering the MNI 152 space to
the subject at analysis. The registration stage produces
a matrix that defines a transformation. We apply this
transformation matrix to the probability map structures
in the atlas. Each transformed structure defines in the
subject’s volumetric space a segmentation result. Of-
ten segmentation techniques strongly rely on registra-
tion and vice versa [6]. In this context, we propose an
accuracy analysis based on correlations.

3.1 Image Registration

Spatial alignment of the atlases to real subject scans
is achieved by the FSL FLIRT affine registration tool
(see Figure 2). Optimum parameter setting is per-
formed by a trial-and-error approach, which resulted
in the following: six, seven, nine, and twelve degrees-
of-freedom (DOF), trilinear neighbor interpolation, and
search over angles in the range of [—g..’r} , around

2
each of z,y, and z axes.

2593

(c.2)

Figure 2. Snapshots from registrations of MNI 152
T1-weighted atlas to the volumetric scans of three sub-
jects: (a) healthy control, (b) mild cognitive impaired,

(c) Alzheimer’s. For each pair, subject image is dis-

played at the top (e.g. a.l), while atlas at the bottom

(e.g. a.2).

For each one of the different DOF we recommend
the same best atlas and pairs of atlases. However, due
to brain anatomy related issues, we believe that the best
choice is seven, i.e. rotation, translation, and global
scale. While six DOF might be too restrictive, nine and
twelve DOF are less natural as compared to seven.

3.2 Correlation Analysis

In order to estimate the degree of match between
two volumetric images we employ the Pearson’s prod-
uct moment correlation coefficient, which is defined by

_ S(XY) — 2(X)2(Y)
P TR - R (X)/S(Y?) - S2(Y)

where X and Y are the two probabilistic maps and X()
is the expected value operator. The resulting correlation
value spans the range of [-1,+1] and indicates the de-
gree of linear dependence or similarity between the two
images. The closer the value to -1 or +1 is, the stronger
the correlation.

4 Experimental Results and Discussion

We have chosen nine elderly subjects, grouped into
three healthy controls (HC), three mild cognitive im-
paired (MCI, a transition stage between healthy controls
and Alzheimer’s) and three Alzheimer’s patients. For
each subject, a T1-weighted MR scan is collected using
a 1.5 T scanner.

Data used in the preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (www.loni.ucla.edu\ADNI).
The ADNI was launched in 2003 as a $60 million dol-
lar, 5-year public-private partnership overseen by the



National Institute on Aging. ADNI is the result of ef-
forts of many co-investigators from a broad range of
academic institutions and private corporations, and sub-
jects have been recruited from over 50 sites across the
US and Canada. The investigators within the ADNI did
not participate in analysis or writing of this report, how-
ever.

Aiming at the highest possible granularity of sim-
ilarity analysis, we computed correlations between
same structure probability maps among all the at-
lases. For example, we computed all the correla-
tions between the Putamen probability maps, as in-
dicated in MNI, Harvard-Oxford, and Talairach. In
addition, we have computed correlations between
same structure probability maps of all the sub-
jects when segmentation was performed using all
the atlases.  For example, consider an ordering
between subjects. We computed correlations be-
tween the Putamen segmentations achieved when us-
ing Harvard — Ox ford and the first subject ver-
sus Talairach and the second subject. Note that we
computed correlations on MNI 152 projections.

On top of these granular correlation tables, we infer
recommendations for using atlases as individuals and
pairs. Moreover, we also differentiate between recom-
mendations per structure as well as multi-structure seg-
mentation approaches.

In this work, the volumetric and 3D visualization
images are captured using our visualization software,
which is implemented over VTK and ITK. In each im-
age, each structure is visualized via an iso-surface. We
have chosen a common iso-constant over all the brain
structures. Establishing different constants as depend-
ing on the volumetric information of each atlas or ana-
lyzed subject is not in the scope of this work.

4.1 Comparing Correlations of Atlases Pairs

Nucleus Caudate is labeled in MNI, Harvard-
Oxford, and Talairach. Putamen is labeled in MNI,
Harvard-Oxford, and Talairach. Amygdala is labeled
in Harvard-Oxford, Jiilich, and Talairach. Thalamus is
labeled in MNI, Thalamus, Harvard-Oxford, and Ta-
lairach. Hippocampus is labeled in Harvard-Oxford,
Jilich, and Talairach. For each one of the structures
Nucleus Caudate, Putamen, Amygdala, Thalamus, and
Hippocampus, we illustrate the relative positions of the
labels in different labeling atlases Figures 3, 4, and 5,
respectively, and provide measurements of correlations
in Table 1. In Table 1, we conclude that most correlated
pairs are (MNI, Harvard-Oxford) for Nucleus Caudate,
Putamen, and Thalamus, and (Harvard-Oxford, Jiilich)
for the Amygdala and Hippocampus.
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Figure 3. A comparison of structures. (a) Cau-
date Nucleus.(b) Putamen. (a) and (b) MNI, Harvard-
Oxford, and Talairach atlases are colored in red, blue,
and green, respectively. (c) Amygdala. Harvard-
Oxford, Jiilich, and Talairach atlases, which are colored
in red, blue, and green, respectively.

Nucleus Caudate Putamen Amygdala | Thalamus__| _Hippocampus

MNI vs. HO 0.885 0.888 0.919

MNI vs. Tal 0.687 0.718 0.854

MNI vs. Thim 0.84

HO vs. Tal 0.624 0.82 0.407

0.662 0.812
- - 0.714

HO vs. Jii 0.681

HO vs. Thim 0.881

Jii vs. Tal

0.529 - 0.271
Tal vs. Thim - 0.82 -

Best Pair MNI vs. HO MNI vs. HO HOvs.Ji | MNIvs. HO [ HOvs.Ji

Table 1. Correlations among all FSL Atlases per
brain structure.
4.2 A Comparison of Atlas-Based Segmenta-
tions

In this section, we provide a recommendation on a
unique atlas. We have chosen MNI, Harvard-Oxford,
and Talairach for comparison over Nucleus Caudate,
Putamen, and Thalamus. We have computed a leave-
one out like test and show the results in Table 2. For ex-
ample, when we want to decide which one of the MNI
and Harvard-Oxford is better, we compare the correla-
tions of MNI and Harvard-Oxford to Talairach. In Ta-
ble 2, we conclude that the best atlas is Harvard-Oxford.
While Harvard-Oxford and Talairach include all struc-
tures we analyze, a natural question is correlation to
ground truths provided with registration and segmen-
tations with subjects. The registrations to subjects do
not change the correlations between the structures com-
puted directly from atlases. We have computed aver-

[ Nucleus Caudate Putamen Thalamus ][ Conclusion ]

HO vs. MNI / Tal 0.662 vs. 0.687 0.812 vs. 0.718 0.820 vs. 0.854 HO > MNI
HO vs. Tal / MNI 0.885 vs. 0.687 0.888 vs. 0.718 0.919 vs. 0.854 HO > Tal
MNI vs. Tal / HO 0.885 vs. 0.662 0.888 vs. 0.812 0.919 vs. 0.820 MNI > Tal

Table 2. Comparison of correlations between atlases.
- Recommendation for one atlas. Each cell compares
correlations of two atlases (e.g. HO vs. MNI) given
a third one as reference (e.g. Tal), while the last col-
umn summarizes the conclusion of atlas comparisons.
These conclusions are inferred summing correlations
on lines.



(a). (b).
(c). (d).
Figure 4. A comparison of Thalamus in MNI, Tha-
lamus, Harvard-Oxford, and Talairach atlases. (a),
(b) , and (c) represent superpositions of MNI, Harvard-
Oxford, and Talairach with the Thalamus (atlas) re-
spectively. While MNI, Harvard-Oxford, and Talairach
are colored in red, the Thalamus is colored in white.
(d) illustrates a superposition of MNI, Harvard-Oxford,

and Talairach atlases, which are colored in red, blue,
and green, respectively.

Figure 5. A comparison of Hippocampus in
Harvard-Oxford, Jiilich, and Talairach atlases. which
are colored in red, blue, and green, respectively.

ages of correlations over all nine subjects as well as on
the three separate groups, i.e. AD, MCI, and HC. We
show the average values for Putamen in Table 3. Re-
gardless of anatomical structure and disease grouping,
we report on correlations that follow atlases based quan-
titative analysis, as presented in Table 1.

4.3 Segmentation Time Requirement

We have run FLIRT, i.e. the registration stage, in
Linux, on top of a virtual machine. The underlying ma-
chine is a Core2Duo, with 3 GHz processors and 2 GB
main memory. Usually, it takes less than half a minute
for a registration between a study case and the MNI 152

[ Putamen | Entirctestset |  Alzheimer's | MCI | Healthy controls |
MNI vs. HO 0.9 + 0.00279 0.9 + 0.00007 0.89 + 0.00314 0.90 + 0.00011
MNI vs. Tal 0.77 £ 0.0139 0.78 £ 0.00021 0.76 &+ 0.0158 0.78 £ 0.00019
HO vs. Tal 0.87 £ 0.014 0.88 + 0.00023 0.85 + 0.0156 0.88 + 0.00025

Table 3. Correlations among segmentations for Puta-
men over all the subjects. We consider all subjects to-
gether as well as different disease groups.

space. The application of the registration transforma-
tions on the atlas probability maps takes less than ten
seconds, in the same framework.

S Conclusion

We have analyzed the accuracy of an automatic vol-
umetric segmentation scheme that employs atlases and
registration. We provide recommendations for atlases
(individually) and pairs of atlases, aiming fast initial-
ization of active contours based segmentation schemes
as well as improving the accuracy in expectation max-
imization methods. While we recommend Harvard-
Oxford to be the best individual atlas, this one does
not necessarily assure separation of the included struc-
tures. When the target is to separate the structures, the
best atlas is Talairach. These two atlases include all
the structures we have analyzed. When pairs of atlases
are of interest, the best correlations are achieved among
MNI and Harvard-Oxford for Nucleus Caudate, Puta-
men, and Thalamus structures. Harvard-Oxford and
Jiilich present the best correlations for Amygdala and
Hippocampus. Future work will deal with extending
the experiments on larger data sets.
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