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Abstract—Virtual histology intravascular ultrasound (VH-IVUS) is a clinically available technique for atheroscle-
rosis plaque characterization. It, however, suffers from a poor longitudinal resolution due to electrocardiogram
(ECG)-gated acquisition. This article presents an effective algorithm for IVUS image-based histology to overcome
this limitation. After plaque area extraction within an input IVUS image, a textural analysis procedure consisting of
feature extraction and classification steps is proposed. The pixels of the extracted plaque area excluding the shadow
region were classified into one of the three plaque components of fibro-fatty (FF), calcification (CA) or necrotic core
(NC) tissues. The average classification accuracy for pixel and region based validations is 75% and 87% respec-
tively. Sensitivities (specificities) were 79% (85%) for CA, 81% (90%) for FF and 52% (82%) for NC. The kappa
(k) 5 0.61 and p value 5 0.02 indicate good agreement of the proposed method with VH images. Finally, the enhance-
ment in the longitudinal resolution was evaluated by reconstructing the IVUS images between the two sequential
IVUS-VH images. (E-mail: taki@cs.tum.edu) � 2010 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Gray-scale intravascular ultrasound (IVUS) enables real-

time and high-resolution tomographic visualization of

the coronary arteries. Both lumen and vessel dimensions

and the distribution of plaques can be analyzed by IVUS

data. Additionally, plaque rupture and intraluminal

thrombus presence might be detected by gray-scale

IVUS (Virmani et al. 2003). Each plaque component,

consisting of fibrous, calcification, necrotic core and lipid

reflect the radio-frequency (RF) signal back in a different

way. This affects the resulting IVUS image in a way that

an expert might be able to distinguish the different

echogenicity of the plaque component.

This, however, is not a simple task even for an expert

to characterize an IVUS image. Soft plaques, which are

mostly related to lipid, are known by dark intensities.

On the other hand, hard plaques consisting of fibrous

and calcium components generate intermediate to high

intensities. Limitations of IVUS in the plaque character-

ization arise from the fact that the observable characteris-

tics and relations among atherosclerotic plaque

constituents and their presentation in a cross-sectional

IVUS image do not follow a simple pattern. For instance,

fibrous plaques usually have an intermediate intensity but

sometimes very dense fibrous plaques can also resemble

calcified regions (Böse et al. 2007; Gonzalo et al. 2008;

Mintz et al. 2001) or while acoustic shadowing has been

considered as a calcification characteristic, necrotic

tissue can also cause shadowing (Bruining et al. 2007;

Gonzalo et al. 2008). Moreover, manual analysis of the

cross- sectional images is both time consuming and

prone to interobserver and intraobserver variability.

These limitations in the manual IVUS plaque assessment

have led to development of automatic quantitative

techniques for analyzing plaque components. In general,

the procedures of analyzing gray-scale IVUS images can

be divided into two aspects: (1) detecting the vessel
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borders and (2) characterizing the atherosclerosis plaque

composition.

The lumen-intima and the media adventitia borders

detection can be carried out by using an appropriate

segmentation algorithm such as the parametric or the

geometric deformable models (Taki et al. 2008) and/or

the shape driven methods (Unal et al. 2008). In addition,

several techniques have been developed for plaque charac-

terization such as virtual histology (VH) (Nair et al. 2002,

2007), which is clinically available for in vivo plaque

assessment. VH, which is carried out by ultrasound RF

data analysis of the backscattered ultrasound signal, is

able to differentiate four plaque components of fibrous,

fibro-lipidic, calcified and necrotic tissues with a high

sensitivity and specificity (Nair et al. 2002). However,

one of the limitations of VH relates to its electrocardio-

gram (ECG)-gated acquisition. Indeed, owing to RF atten-

uation and shifting due to the presence of blood in coronary

arteries and the high amount of data, VH algorithm resorts

to use an ECG-gating procedure. Using the ECG-gated

acquisition, in one cardiac cycle, the RF spectrum from

only one IVUS frame which is synchronized with the

R-wave is acquired and analyzed while gray-scale IVUS

images are produced at a rate of 30 frames/s (O’Malley

et al. 2007). Therefore, comparing to the rate of the gray-

scale IVUS images, the longitudinal resolution for VH is

reduced to one image out of 30 frames/s (Fig. 1).

In addition to the ECG-gated acquisition limitation

of VH, there are other limitations such as imprecisions

in plaque composition analysis caused by the inaccurate

border detection used in VH methodology (Frutkin et al.

2007) or the inability of this method in identifying vulner-

able and thin cap fibro-atheroma (TCFA) plaque type

(Sangiorgi et al. 2007; Sawada et al. 2008). The former

is especially important when studying thrombus-laden

arteries where inaccurate detection of the borders might

introduce large measurement errors of plaque composi-

tion. In this case, the proportionality of fibrous plaque

may misleadingly increase since the thrombus regions

can be labeled as fibrous (Frutkin et al. 2007).

There are also other signal based atherosclerosis pla-

que characterization methods such as the integrated back-

scatter IVUS (IB-IVUS) (Okubo et al. 2008; Kawasaki

et al. 2005). IB-IVUS can classify plaque components in

the IVUS images into five categories of calcification: (1)

mixed lesion, (2) fibrous tissue, (3) lipid core or (4) intimal

hyperplasia and (5) thrombus, by introducing various

thresholds on the IB values (Okubo et al. 2008;

Kawasaki et al. 2005). This promising method, currently

implemented in a Japanese system (YD Co. Ltd.,

Tokyo. Japan), uses the IVUS catheter from Boston

Scientific (Fremont, CA, USA) based on a 40 MHz

single rotating crystal. Although, the IB-IVUS is reported

to be more accurate than IVUS-VH in (Okubo et al. 2008)

for IB-IVUS, it is not clinically as popular as IVUS-VH.

Katouzian et al. (2008a) studied the challenges in athero-

sclerotic plaque characterization with IVUS backscatters

(from data collection to classification) and they developed

a texture-based algorithm for plaque characterization in

(Katouzian et al. 2008a). They believed that their method

Fig. 1. Illustration of the longitudinal resolution of gray-scale intravascular ultrasound (IVUS) and virtual histology (VH).
Gray-scale IVUS images are produced at a rate of 30 frames/s. Considering a heart rate of 60 beats/min and pullback speed
of 1 mm/s, radio-frequency (RF) analysis is performed for only one frame/mm (1 frame/s). Therefore, VH has a much lower

longitudinal resolution than gray-scale IVUS.
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would also resolve one of the main current limitations of

IVUS, which is the discrimination between fibrotic and

lipidic tissues. All these methods, however, suffer from

the ECG-gated acquisition. Since valuable data in the

ECG-gated acquisition procedure would be lost, devel-

oping an image based characterization technique for com-

plementing the signal- based approach in VH might be of

great value. Moreover, by offering an automatic character-

ization for gray-scale IVUS images between two VH

frames, one would be able to increase the longitudinal

resolution for plaque composition analysis.

In this article, a new technique is proposed to provide

a color-coded characterization of the atherosclerotic pla-

que component derived from gray-scale IVUS images.

Clinically used VH images are considered as validation

of the proposed algorithms.

METHODS

The block diagram of the proposed IVUS image

based histology (IBH) algorithm is demonstrated in

Figure 2. The IVUS images are first transformed into polar

coordinates. Then, the automatic border detection method

proposed in (Unal et al. 2008) is applied to identify the

vessel lumen and media-adventitial borders. The region

between the two boundaries is extracted as the plaque
area. Some IVUS images contain calcified regions

causing lateral shadowing; it might be erroneous to clas-

sify the plaques contained in the shadow region. There-

fore, in the proposed algorithm, the shadow region is

detected by means of a thresholding procedure and classi-

fied as unknown region called shadow region. Next, with

the use of a textural analysis technique, the pixels of the

defined plaque area excluding the shadow region are clas-

sified into one of the three plaque components: fibro-fatty

(FF), calcification (CA) or necrotic core (NC) tissues. We

choose to combine the fibrous and fibro-fatty tissue

classes, since their distinction is of minor clinical impor-

tance and technically challenging, using only the informa-

tion from gray-scale IVUS (Hiro et al. 1997). The overlap

between the histogram of these two plaque regions in our

data set is highlighted in Figure 3. Finally, by applying

a postprocessing technique based on the histogram anal-

ysis of the entire data set, the decision of the classifier is

corrected.

Image acquisition and RF data analysis
In this work, both IVUS gray-scale and correspond-

ing VH images were acquired from patients with known

coronary artery disease. The evaluation of our algorithm

is performed over a data set that includes 500 gray-scale

IVUS examination performed on 10 patients with known

or suspected coronary artery disease during cardiac cath-

eterization resulting in a total number of 12 vessels.

Written informed consent was obtained from each

patient and the present study was approved by the local

Fig. 2. Scheme of the work flow in the image based histology (IBH) system. First, an IVUS image is loaded. Then, the
vessel’s borders are detected using automatic border detection. Next, the textural features are extracted from the plaque
area and then, support vector machine (SVM) classifier is applied to classify the pixels of the plaque area to generate

the color-coded image representing the different plaque components.

Improving coronary plaque component analysis on IVUS images d A. TAKI et al. 1247
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medical ethics committee. The catheter and guidewire

were introduced over the femoral approach using stan-

dard techniques and the right or left coronary artery

ostium was cannulated. After placement of the guide-

wire, the IVUS imaging catheter (Eagle Eye Gold,

Volcano Inc., Rancho Cordova, CA, USA) was intro-

duced and placed at the distal part of the artery under

fluoroscopic guidance.

The main features of the Eagle Eye Gold catheter are

as follows: frequency, 20 MHz, scanner diameter, 3.5F,

compatible with 0.014-inch guidewire and field of view,

16 mm. With the help of a s5i-system (Volcano Inc.,

Rancho Cordova, CA, USA), data for gray-scale IVUS

and RF analysis was acquired, during automatic pullback

at a speed of 0.5 mm/s using a dedicated pullback device

(Track Back II; Volcano Inc., Rancho Cordova, CA,

USA) up to the ostium of the coronary. For offline anal-

ysis, the data was stored on a DVD. The RF data was

analyzed with the VH image analysis software (Volcano

Inc.) after automatic border detection and manual correc-

tion of the borders. The corresponding gray-scale IVUS

frames were stored in the JPG-format for further analysis.

Plaque area detection
The inner and outer walls of the coronary arteries

were extracted from each IVUS image before the plaque

characterization. We utilized the method presented by

Unal et al. (Unal et al. 2008) for segmentation of the lumen

and media-adventitia borders of the coronary arteries that

have been extensively described elsewhere (Unal et al.

2008). Briefly, this approach entails representing the

luminal and media-adventitial borders in the polar image

with a reduced number of contour weights, which are ob-

tained from a constructed statistical shape space. The two

arterial wall borders presented by this segmentation

method (i.e. the lumen and media-adventitia contours)

are passed as plaque area to the next stage for plaque char-

acterization.

Plaque characterization
The main purpose of the current research is to

propose a plaque characterization method consisting of

feature extraction and classification steps. Each pixel of

the IVUS image will be assigned to one of the three

predefined tissue classes. Note that in this section, for

a matching comparison and validation of our characteriza-

tion algorithm, against ECG-triggered VH-IVUS cross-

sectional areas, the detected plaque area in VH images

surrounded by gray colored region is directly used. An

important fact, which is ignored in characterizing athero-

sclerosis plaques via features extracted from IVUS

images, is to detect the acoustic shadowing behind CA

regions and treat them differently. These shadow regions,

which exist in the plaque area of some IVUS image

scenarios, appear as echo-soft. Therefore, when treated

within other parts of plaque area, they are classified as

the lipid or fibro-fatty classes whereas they normally

should be classified into CA and NC plaques (Bruining

et al. 2007; Mintz et al. 2001).

Shadow detection
Shadow areas displayed in the IVUS gray-scale

images usually do not represent any useful information

for plaque component analysis. Nevertheless, VH-IVUS

extracts information in shadow area from frequency of

ultrasound backscatter signals. However, VH-IVUS

results may differ in shadow area from the histology inter-

pretations of pathologists with varying interpretive meth-

odologies as shown in Figure 4 (König et al. 2008). By

defining a specific plaque region as shadow region, we

aimed at reducing the above-mentioned errors that are

caused by the nature of ultrasound imaging. For detecting

Fig. 3. Histogram of fibro-fatty (white color) and fibrous (black color) plaques extracted from virtual histology (VH)
images. The histogram of fibro-fatty class is completely covered by the histogram of the fibrous class.
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this region, our proposal is to use a preprocessing step con-

sisting of two thresholding parts; one for detecting the high

intensity regions, which might belong to CA and the other

is to identify the existence of the low intensity regions

behind the regions detected in the previous step and assign

them to the shadow region (see Fig. 4).

Feature extraction methods
To characterize the rest of plaque area to the three pre-

defined plaque components, two feature extraction methods

are examined and compared. To achieve this purpose, local

binary pattern (LBP) (Ojala et al. 2002) and co-occurrence

(Haralick et al. 1973) feature extraction methods are studied

in (Caballero et al., 2006) and are reported to out perform

other feature extraction methods. Moreover, it is reported

in (Vince et al., 2000) that the run-length method

(Tang 1998) is not an appropriate feature extraction method

for characterizing IVUS images plaque area. In Escalera

et al. (2008), both signal and image-based features are

extracted. The co-occurrence, LBP and Gabor filtering

feature extraction methods are used for texture-based

feature extraction. Their results are compared with manual

characterization of IVUS images by two experts and 90%

accuracy is achieved. However, the manual characteriza-

tion of IVUS images suffer from both interobserver and

intraobserver variability and especially uncertainty in char-

acterizing soft plaques from each other, e.g., distinguishing

between the FF and the NC tissues.

Here, the performance of the features extracted from

the run-length matrix is compared with those extracted

from the LBP method in both accuracy and time efficiency

aspects. The co-occurrence feature extraction method is

not included in this study since our previous studies reveal

that despite good performance of this method in athero-

sclerotic plaque characterization, its heavy computational

burden leads to poor time efficiency (Taki et al., 2009).

IVUS imaging provides circular cross-section areas

of the blood vessel and it uses 256 scan lines, therefore,

the lateral resolution is 360/256 5 1.41 degrees and the

axial resolution is about 40 microns. Since IVUS images

are circular cross-sectional areas of coronary arteries, the

plaque area of the input images are converted into polar

coordinates so that rectangular sweeping windows used

for feature extraction are applicable. Throughout this

article, the image refers to the converted image. The polar

transformed image is then swept by a sweeping window.

The size of the sweeping window for both feature extrac-

tion techniques was empirically chosen as 9 3 9 pixels

(pixel 5 0.025 mm).

Local binary pattern. Local binary pattern (LBP) is

a structure-related measure in which a binary number is

allocated to the circularly symmetric neighborhoods of

the center pixel of the window being processed and the

histogram of the resulting binary patterns can be used as

a discriminative feature for texture analysis (Caballero

et al., 2006; Escalera et al., 2008; Ojala et al., 2002;

Vince et al., 2000). Actually, in this method neighbors of

the center pixel on a circle of radius R with coordinates

ð2R sin pn
N ;R cos pn

N Þðn 5 0;.;N21Þ are processed.

As these coordinates do not match the coordinates of the

processing window, their corresponding gray levels are

estimated by interpolation. Let gc corresponds to the gray

value of the central pixel and gn corresponds to the gray

values of the n neighbor pixels. A binary digit is then

allocated to each neighbor based on the following function:

sðgn2gcÞ 5 { 1; gn 2 gc $0
0; gn 2 gc ,0 (1)

Then, by rotating the neighbor set clockwise, the least

significant resulting binary string is assigned to the pro-

cessing as its binary pattern LR;N 5 {L0
R;N ;.; LN21

R;N }. In

this way, the local binary pattern is rotation-invariant.

Based on the binary pattern LR,N and the gray values of

neighbor pixels gn, three texture features are defined as

follows:

Fig. 4. The shadow region in a typical intravascular ultrasound (IVUS) gray-scale image (A), its plaque constituents in intra-
vascular ultrasound-image based histology (IVUS-IBH) (B) and its corresponding histopathalogy (C) (König et al. 2008).

Improving coronary plaque component analysis on IVUS images d A. TAKI et al. 1249
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f 1
R;N 5

XN21

n50

Ln
R;N 2n (2)

f 2
R;N 5 var{gn} (3)

f 3
R;N 5 { P

N21

n50

Ln
R;N ;UðLR;NÞ # 0

N11; otherwise

ð4Þ

Function U is a transition counter that counts the

transition between 0 and 1 and vice versa in the binary

pattern.

Extended run-length. Run-length transform (Tang

1998) has been extensively used in segmentation and

texture analysis. Let us consider the neighborhood

I(v,w) centered on the pixel (x,y) from image I. Its

run-length matrix is defined in a certain direction as

R(a,b) where a˛[1,Ng] is the gray level, Ng is the high-

est gray level and b the run-length, i.e., the number of

consecutive pixels along a direction having the same

gray level value. In our approach, we characterize each

Table 1. Definition and formulas of features extracted from run-length matrix

Extended run-length features

Definition Rk(a, b) : a ˛ [1,..,P] is the gray level and b is the run-length; k determines
the direction (v means vertical and h means horizontal)

Nr: the total number of runs
Np: the number of pixels in the processing window

Extracted features Short run emphasis (SRE) f k
1 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ
b2

Long run emphasis (LRE)
f k
2 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ$b2

Gray-level nonuniformity (GLN)

f k
3 5

1

Nr

XP

a51

 XR

b51

Rkða; bÞ
!2

Run length nonuniformity (RLN)

f k
4 5

1

Nr

XR

b51

 XP

a51

Rkða; bÞ
!2

Run percentage (RP)
f k
5 5

Nr

Np

Low gray-level run emphasis (LGRE)
f k
6 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ
a2

High gray-level run emphasis (HGRE)
f k
7 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ$a2

Short run low gray-level run emphasis (SRLGE)
f k
8 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ
a2$b2

2

Short run high gray-level run emphasis (SRHGE)
f k
9 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ$a2

b2

Long run low gray-level run emphasis (LRLGE)
f k
10 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ$b2

a2

Long run high gray-level run emphasis (LRHGE)
f k
11 5

1

Nr

XP

a51

XR

b51

Rkða; bÞ$a2$b2

The first five features are called conventional features here. The whole 11 features are named to be extended run-length features.
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neighborhood with two run-length matrices Rv(a, b) and

Rh(a,b) corresponding to vertical and horizontal direc-

tions, respectively.

Table 1 contains the definitions and formulas used

for computing features extracted from the run-length

matrix. Here, the first five features, called conventional

features, have been previously used on IVUS images

although the results were not satisfactory (Vince et al.,

2000). In fact, these features are not appropriate for

describing texture gray-level information and they just

consider the length of runs. However in (Tang 1998),

other textural information are extracted from the run-

length matrix. Since most of the discriminative informa-

tion lies in the homogeneity of specific intensities in

different plaque components, run-length matrix might be

a good choice for feature extraction part. Adding the six

features, shown as f6 to f11 in Table 1, to the five conven-

tional ones enable us to encode the desired information of

run-length matrix. These 11 features are called the

extended run-length features.

Support vector machine classifier
In this study, the extracted features from the plaque

area of IVUS images are classified using support vector

machine (SVM) classifier. SVMs (Burges 1998; Chang

and Lin 2001) use a kernel function to map the input to

a higher dimensional space where a hyper-plane can

separate the data into different classes. The process of

training an SVM classifier is equivalent to finding this

optimal hyper-plane by minimizing their misclassification

error. We consider the worst case of nonseparable tissue

classes and use the Gaussian radial basis function (RBF)

kernel to handle nonlinear relations between feature

vectors and their classes with few parameters. For more

detailed information, please refer to the article by

Burges (1998). All extracted feature vectors were normal-

ized into [0, 1] before applying the classifier. The

Gaussian kernel with the standard deviation of 0.7 was

employed in the SVM classifier. We used the publicly

available C11 implementation of the SVM algorithms

known as LIBSVM (Chang and Lin 2001).

Postprocessing
Studying intensity variety of each plaque component

in VH images of our data set through histogram analysis

reveals that useful information can be extracted via this

simple analysis. Figure 5 illustrates the histogram of

pixels for three different plaque components. As this

gray-scale derived information might be ignored amongst

the many textural features in the classification steps,

another step is added to the algorithm after the classifica-

tion is completed by SVM. In this step, the given label of

a pixel by SVM is confirmed or altered based on some

prior information derived from the histogram of the

IVUS image. Some useful information is pointed out

below that can be inferred from the histograms displayed

in Figure 5.

� The majority of samples belong to the FF class;

however, there are few FF pixels whose intensities

exceed the gray-level 150 (ThFF 5 150).

� Most of the pixels with intensities above the gray-level

200 (ThCA(low) 5 200) belong to the CA class,

Fig. 5. The histogram of pixels belonging to fibro-fatty (FF), calcification (CA) and necrotic core (NC) classes for 400 out
of 500 IVUS images.

Improving coronary plaque component analysis on IVUS images d A. TAKI et al. 1251
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whereas the few pixels with value under 50 (ThCA
(high) 5 50) belong to this class.

� Pixels belonging to the NC are concentrated mostly

between 30 to 200 gray-levels (ThNC(low) 5 30) and

(ThNC(high) 5 200).

Therefore, based on these additional thresholds, the

system will decide on whether to change the decision of

SVM classifier or not. To summarize the postprocessing

section, the label assigned to a sample pixel and its

gray-level are considered in the postprocessing step.

Then, the pixel final labels are decided by this step. For

instance, suppose the classification section assigns a pixel

to the FF class and the gray-level of that pixel is above

150. In this case, based on ThFF, the current label declines

and whether the gray-level is above ThCA(low) 5 200 or

not is determined. It will be assigned to the CA or NC

class, respectively.

Statistical analysis
To assess the performance of our plaque character-

ization technique, the sensitivity, specificity and accuracy

parameters were calculated for the different conditions

(i.e. with or without shadow detection and with or without

postprocessing) and for different feature extraction

methods (i.e. LBP and the extended run-length methods).

To calculate the agreement of our method with VH,

Cohen’s k (Cohen 1960) and p value are used as statistical

measures of concordance. A k value of 0.61 to 0.80 indi-

cates good agreement and 0.81 to 1.0 indicates excellent

agreement (Fleiss 1981). Furthermore, the confidence

interval (CI) is the other statistical measure employed to

evaluate the reliability of our results.

Cross validation classification (CVC)
A five-fold cross validation approach is considered

for validating our proposed algorithms. In this validation

scheme, first, feature vectors extracted from all images

of the data set are joined with each other to form a feature

matrix. Then, this matrix is shuffled so that feature vectors

of different classes are distributed randomly. After

shuffling, this matrix is divided into five equal parts. In

each validation step, four parts are considered as training

data set used to train the classifier. The trained classifier is

then tested with the remaining part. This procedure is

repeated five times, each time with a new part as test

data. Finally, the averages of the results derived from all

steps are reported as the total result of classifier. These

results are known to be more reliable than the other vali-

dation methods when sufficient number data is available

(Duda et al., 2001).

Practical implementation
In this study, the proposed methods for border detec-

tion and plaque characterization were implemented in

Matlab. These Matlab programs with a graphic user inter-

face (GUI) were compiled by C11 compiler in Microsoft

Visual Studio 2005. This GUI is designed as an effective

image processing tool for IBH that enables cardiologists

with complete IVUS image processing from border detec-

tion to plaque characterization.

RESULTS

The data was acquired from 10 patients, including

about 2263 gray-scale IVUS images and their correspond-

ing VH images. A total number of 500 frames from 12

vessels [six left anterior descending (LAD), three right

coronary artery (RCA), three left circumflex (LCX)] of

10 patients were available for VH analysis and comparing

with IBH. In the VH analysis, the total average amount of

fibrous/fibro-fatty, dense calcium and necrotic core were

(1,505,907 pixels) 37647 mm2, (388,073 pixels) 9701

mm2 and (516,711 pixels) 12917 mm2, respectively.

The relative average amounts per cross-section were

63%, 16% and 21%. Considering the shadow region

detection procedure, 8% of plaque area pixels belong to

the shadow region. The characterized IVUS images

were validated by their corresponding VH images. A five-

fold cross validation classification (CVC) scheme was

used to evaluate the algorithm performance. To demon-

strate the influence of applying the preprocessing step

Table 2. Results of pixel-wise plaque characterization of vessels’ plaque area using the LBP method as feature extraction and
SVM classifier

Histogram-based
post-processing

Shadow
detection CA FF NC

Overall
accuracy

Sen. Spec. Sen. Spec. Sen. Spec.
No No 68% 6 6.6 96% 6 3.2 97% 6 3 42% 6 6.6 06% 6 4.6 95% 6 3.2 66% 6 6.1
No Yes 68% 6 6.6 94% 6 3.1 95% 6 3 45% 6 6.6 13% 6 4.5 94% 6 3.2 69% 6 6
Yes No 69% 6 6.4 96% 6 3.2 70% 6 5.8 61% 6 5.2 39% 6 6.1 79% 6 5.7 67% 6 6.1
Yes Yes 69% 6 6.4 95% 6 3.1 75% 6 5.8 81% 6 5.2 42% 6 6.6 76% 6 5.7 69% 6 5.8

The cases of including the pre- and postprocessing steps or not is distinguished using ‘‘Yes’’ and ‘‘No’’ signs in the two left columns. The parameter 6
confidence interval is shown for the sensitivity (Sen.), specificity (Spec), and accuracy parameters.

FF 5 fibro-fatty; NC 5 necrotic core; CA 5 calcification; LBP 5 local binary pattern; SVM 5 support vector machine.
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(i.e., detecting the shadow region and assigning it to

the fourth class) and the postprocessing derived from the

histogram analysis, Table 2 and Table 3 illustrate the

comparative results of the two different feature extraction

methods considering different conditions. Considering

the VH as our validating standard, we computed the k to

be 0.61 for the extended run-length (for both pixel based

and region-based validations). Table 4 illustrates the

p value for the case of applying both shadow detection pre-

processing and histogram-based postprocessing and using

the extended run-length method as a technique for feature

extraction. Figure 6 shows the influence of shadow region

detection preprocessing on the final reconstructed IBH

image. Figure 7 illustrates the influence of postprocessing

derived from histogram analysis on the final reconstructed

IBH image. Finally, Figure 8 shows the final reconstructed

IBH images for two feature extraction methods.

Moreover, in the last row of Table 3, the recon-

structed images generated by using extended RL features

are validated with their corresponding VH images using

a region-based approach. It means that instead of

comparing the result and its corresponding label pixel

by pixel, the validation step is completed done by

comparing regions of windows that contains more than

one pixel. For example, the size of validation regions in

(Nair et al. 2007) is 1/3 mm 3 1/3 mm (i.e. approximately

a window size of 13 3 13 pixels). To handle this, we

define a validation window of size n 3 n pixels, where

n can vary from one pixel-based validation to 13. The

label of a validation window is selected by looking at

labels of its constituent pixels. In fact, it is assigned to

a plaque component that is the majority.

DISCUSSION

In this article, a complete algorithm for the IVUS

image analysis including border detection to plaque

characterization with more emphasis in the latter part is

presented. This comprehensive image-based algorithm

provides cardiologists with not only the vessel’s intima

and media-adventitia borders but also with a color-

coded IBH image in which the location and distribution

of different plaque components of atherosclerotic plaques

are illustrated.

Perhaps, one of the important advantages of our

proposed algorithm is to increase the longitudinal resolu-

tion of plaque composition analysis. The present VH-

derived plaque composition analysis provides only ECG

triggered images. As mentioned above, in an imaging

procedure with the rate of 30 frames/s, only one IVUS

frame out of approximately 30 IVUS frames is considered

to generate the color-coded VH image. It can be

concluded that in a typical VH imaging procedure about

96% of data will be discarded. Considering only VH

images, the variations in area of different plaque compo-

nents and their distribution in 1 mm intervals between

VH images is missed. Tracking these small changes

may reveal more precise information to physicians about

plaque composition in the section of the vessel under

consideration. To clarify this statement, the mentioned

variations are highlighted in the charts shown in

Figure 9. These charts illustrate the number of each plaque

component in an IVUS frame. Here, 10 additional IVUS

images between a pair of sequential VHs are characterized

with the use of our proposed method. Increasing the

Table 3. Results of pixel-wise and region based plaque characterization of vessels’ plaque area using the run-length method as
feature extraction and SVM classifier

Histogram-based
postprocessing Shadow detection

DC FF NC
Overall

accuracySen. Spec. Sen. Spec. Sen. Spec.

No No 79% 6 6.5 93% 6 3.8 87% 6 5.1 38% 5 5. 07% 6 3.3 97% 6 2.5 72% 6 6.3
No Yes 79% 6 6.5 93% 6 3.7 96% 6 3 55% 6 6.6 12% 6 4.2 96% 6 2.7 74% 6 5.8
Yes No 80% 6 6.5 93% 6 3.7 73% 6 6 64% 6 6.5 43% 6 6.6 80% 6 5.3 74% 6 6.4
Yes (pixel based) Yes (pixel based) 79% 6 6.5 85% 6 3.6 81% 6 5.6 90% 6 5.3 52% 6 6.6 82% 6 5.5 75% 6 6.1
Yes (region based:

939 pixels)
Yes (region based:

939 pixels)
71% 6 4 97% 6 1 88% 6 1 87% 6 1 57% 6 4 88% 6 1 85% 6 3

The cases of in chiding the pre- and postprocessing steps or not is distinguished using ‘‘Yes’’ and ‘‘No’’ signs in the two left columns. The parameter 6
confidence interval is shown for the sensitivity (Sen.), specificity (Spec) and accuracy parameters.

FF 5 fibro-fatty; NC 5 necrotic core; CA 5 calcification; SVM 5 support vector machine.

Table 4. The p value shows differences of the case of applying both shadow detection preprocessing and postprocessing and
using the run-length method as a technique for feature extraction against the run-length method without preprocessing and

histogram-based postprocessing

Parameter Sen. CA Sen. FF Sen. NC Spec. DC Spec. FF Spec. NC Accuracy

p value 0.02781 0.01827 0.00497 0.02607 0.00695 0.01397 0.02345

(Sen.) 5 sensitivity; (Spec.) 5 specificity; FF 5 fibro-fatty; NC 5 necrotic core; CA 5 calcification.
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longitudinal resolution becomes more interesting when

one tends to have a 3-dimensional view of both the vessel

and the distribution of different plaque types in the

plaque area.

As shown in Figure 2, our proposed algorithm

contains different sections including plaque area detec-

tion, shadow region detection as a preprocessing, textural

feature extraction, classification by SVM and

Fig. 6. The influence of applying the shadow detection section in the final constructed color-coded image based histology
(IBH) images. The images are from left to right: a typical intravascular ultrasound (IVUS) image, its corresponding virtual
histology (VH) image, IBH images without shadow section and with shadow detection section using the extended run-
length feature extraction method. Note that the illustrated IBH images are after applying the histogram-based postprocess-
ing technique. (The fibro-fatty (FF), NC and CA plaques are shown in green, red and white, respectively. The shadow

region is in blue).

Fig. 7. The influence of applying the histogram-based postprocessing section in the final constructed color-coded image
based histology (IBH) images. The images are from left to right: a typical intravascular ultrasound (IVUS) image, its cor-
responding virtual histology (VH) image, IBH images before applying the histogram-based postprocessing and after that
using the LBP feature extraction method. Note that the illustrated IVUS-IBH images are after applying the shadow detec-
tion technique. The fibro-fatty (FF), necrotic core (NC) and calcification (CA) plaques are shown in green, red and white,

respectively. The shadow region is in blue).
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postprocessing based on the data derived from the histo-

gram analysis. We will discuss each part separately to

present a clear view of the achievements in each part.

The differences in the results of the Tables 2 and 3

and those illustrated in Figure 7 show the influence of

adding the shadow region detection as a preprocessing

section. One of the obvious advantages to add the

shadow region detection is to help algorithm to improve

the detection of all three kinds of atherosclerosis plaque

components. Moreover, this technique provides us with

a more general algorithm that can be more reliable

when studying patients with calcified plaques in which,

a lateral shadow region exists behind the calcified area.

Out of the total number of 191,582 pixels contained in

the shadow region, 63%, 36% and about 1% were char-

acterized into FF, NC and CA plaques by the VH algo-

rithm, respectively. Therefore, Tables 2 and 3 show

that in addition to improving the distinction of three

plaque components, the shadow detection procedure

has a direct influence on the detection of FF and NC.

Differences of relative amounts of CA and NC after

and before shadow detection were calculated to be 5%

and 4%, respectively. One should note that the IVUS-

IBH images in the third and fourth column of Figure 7

show small islands of green within the blue shadow

regions. These islands normally are not expected, as

the RF signal is attenuated due to the shadowing caused

by the calcium. However, multiple reflections between

the catheter and the calcium, known as reverberations,

can lead to appearance of these islands.

By comparing the results of the Table 2 and Table 3,

it can be concluded that the extended run-length feature

extraction method outperforms the LBP in classifying

all plaque components. However, as illustrated in

Figure 8, it is quite clear that the color-coded image recon-

structed with the use of LBP feature extraction method is

more detailed. This may be caused by the multiresolution

characteristic of this method. Perhaps, one future direction

is to combine these two feature extraction methods to

benefit from their both detailed and accurate results.

The computation times of the feature extraction

methods are as follows: for a typical frame, i.e., the plaque

area containing around 5000 pixels out of the total

160,000 IVUS image pixels, the extended run-length

method took approximately 7 to 20 s to extract the features

whereas the LBP took 2 to 5 min. Thus, in terms of time

efficiency, the extended run-length method further outper-

forms the LBP method. However, a more optimized

implementation in C11 will further speed up the algo-

rithms as expected. The influence of the postprocessing

block after classification is highlighted in the differences

in the sensitivity and specificity of the algorithm in charac-

terizing NC and FF plaques, respectively. The extensive

textural similarities between the NC regions and other pla-

que components defined by VH leads to preventing the

classification part of the algorithm from identifying it;

however, by studying the distribution of plaques’ intensi-

ties in the data set, it is concluded that in addition to

textural features, there exists some rules for distinguishing

the plaques in it (Fig. 5).

Fig. 8. The final constructed color-coded intravascular ultrasound-image based histology (IVUS-IBH) images using the
proposed algorithm. From left to right: An IVUS image, its related virtual histology (VH) image and its IVUS-IBH images

using the extended run-length and the LBP feature extraction methods.
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The results of region-based validation approach

(refer to last row of Table 3) show that the result of the

algorithm is sensitive to the approach of validation. Since

in most similar studies region-based approach is consid-

ered for validation and more specifically our labels are

provided by VH, which is also validated by this approach,

superiority of this validation approach to the pixel-based

one was predictable. We validated our reconstructed

images with their corresponding VH images with different

size of validation window. Based on the experiments, ob-

tained results are sensitive to the size of validation

window and the maximum accuracy occurs when n is

set to nine. Since nine is also the size of sweeping window

in feature extraction step, it encourages the idea that the

size of sweeping window might have influence on the

size of validation window. The k number 5 0.61(for

both pixel based and region based validation) clearly

represents that our classification results are in good agree-

ment with VH after detecting and removing shadow

regions. Moreover, the low values of CI and p value

show the reliability and consistency of these results ob-

tained for this data-set. The p values indicated in Table

4 answer the following question: If our method’s perfor-

mance is the same as before with applying shadow detec-

tion and postprocessing, what is the probability of

observing the current result? From a statistical point of

view, the observed difference in our results compared to

the results of our methods before detecting shadow and

applying postprocessing is not accidental.

An interesting point to be mentioned here is that the

presented results suggest that the texture based algorithm

based on IVUS gray-scale images produces similar

images and has a modest co-relation to VH-IVUS, sug-

gesting that most of the information in VH-IVUS tissue

Fig. 9. Illustration of (a) calcium, (b) fibro-fatty and (c) necrotic core changes between virtual histology (VH) slides.
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characterization comes from the intensity of the ultra-

sound signal and less-so on the underlying radio-

frequency data.

In this study, all methods’ sensitivity to detect the

NC was low (maximum value is 57%). The fact that

detection of NC by studying the IVUS images is not

a straightforward procedure has also been previously dis-

cussed in (Gonzalo et al., 2008; Nasu et al., 2006). This

phenomenon was caused by similarities between NC and

CA in gray-level IVUS images. This fact supports the

previous studies, which have shown that plaque areas

adjacent to dense calcium are frequently coded as

necrotic tissue in VH images (Sales et al., 2008). By

considering selected cross-sections that contained plaque

areas with a homogeneous tissue composition as re-

ported in (Gonzalo et al., 2008), the accuracy results

can be increased significantly.

Although the sensitivity of detecting the calcified

region was 79%, the algorithm performance to detect

the focal calcified region in the images was more than

85%, which is another important point about these results.

It derives from the fact that in the VH method, the varia-

tion of pixels intensities assigned to the calcium class is

very high (from 0 to 256) as can be observed in

Figure 5. However, since identifying focal calcified

regions are more important than speckled calcification in

the plaque area, our proposed algorithm shows increased

reliability (Virmani et al., 2003).

Limitations
In general, there are some differences between the

image and signal processing techniques. In signal process-

ing methods, the frequency information of RF signal is

used along with its amplitude, whereas in image process-

ing techniques, decisions are made from the variations in

the distribution of gray-levels produced solely from the

amplitude information of the RF signal. Hence, there is

a possible loss of information in image processing tech-

niques. On the other hand, an advantage of the proposed

algorithm is that it can reliably classify tissues regardless

of the variations in the power spectrum of the transducer

while inconsistency among the spectrum-derived features

within the transducer’s bandwidth still remain a major

challenge (Katouzian et al., 2008a, 2008b). However,

this does not assert that our proposed method is robust

to the changes in the transducer’s center frequency since

the texture of tissue in IVUS images is very different

with different frequencies, different transducer

bandwidths and different transducer geometries. One of

the main limitations of our study is employing the VH

images for training our classifier. Although VH imaging

has an acceptable correlation with histology (Nasu et al.,

2006), is used clinically (König and Klauss 2007) and

has approved performance in many studies (Gonzalo

et al., 2008; Nair et al., 2002, 2007), even a subtle error

of VH can influence the entire procedure. Therefore,

VH-IVUS can be considered as a basis for comparing

similar plaque component characterization algorithm via

IVUS images or signals but it should not be considered

definitive. Therefore, we hope to overcome this limitation

in our future study by employing other types of the con-

structed images, applying other techniques such as the

one introduced in (Katouzian et al., 2008b) and using

the real histology images as our gold standard.

As mentioned above, by combining the fibrous and

the fibro-lipid classes, the number of classes was reduced

from four to three. The similarities of these two classes in

VH images were also reported in (Katouzian et al.,

2008b). They mentioned that these kinds of similarities

come from normalizing the spectrum of IVUS backscat-

tered signal with respect to the catheter and also not ex-

tracting the most discriminative features from the

spectrum of IVUS backscattered signal in the VH method.

The next challenge is to further classify the fibrous and

fibro-lipid regions. As our algorithm’s parameters are

achieved from the training process by the VH images,

we should note that one should consider the variation of

VH images by changing the IVUS catheter. Therefore,

as part of our future work, the number of case studies

with different IVUS transducers will be increased.

Furthermore, identifying thrombus and stent struts are

possible future extensions of this study.

CONCLUSION

In this article, we proposed an efficient algorithm for

automatic IVUS image border detection and particularly

for plaque characterization. Based on this study’s find-

ings, the extended run-length feature extraction method

seems to be superior to the LBP method in terms of

both time efficiency and classification accuracy. More-

over, adding a shadow detection block as a preprocessing

step and a threshold based postprocessing step derived

from the histogram analysis of VH data-set, has positively

affected the whole algorithm performance. In vivo
validation procedures were used where the results showed

the efficiency of the proposed algorithm for vessel

plaque characterization via IVUS images. A graphic

user interface (GUI) is designed as an effective image pro-

cessing tool that enables cardiologists with complete

IVUS image analysis from the border detection to plaque

characterization.
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