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ABSTRACT

SERIAL DISTRIBUTED DETECTION STRATEGIES
FOR WIRELESS SENSOR NETWORKS

The interest in wireless sensor networks (WSNs) has been significantly increased over
the past years due to their promising future in wide range of application areas like
health, military and home. Various technical issues of WSNs have been investigated
recently such as topology management, efficient routing protocols and collaborative
signal processing. This thesis considers serial distributed detection in WSNs. Unlike
traditional distributed detection algorithms where error-free transmissions of local
decisions to the fusion center are assumed, lossless communication is not applicable in
WSNs since wireless transmission channels are subjected to fading and interference.
Suggested distributed detection algorithms in WSNs should deal with the channel
uncertainty due to fading and noisy effects of non-ideal channel under low power

transmission.

In this thesis, we first propose suboptimal fusion rules to the optimal fusion rule for
serial distributed detection. In particular, we derive the low and high SNR
approximations of the optimal rule in order to relieve some requirements of the optimal
fusion rule. Then, we investigate effects of node failure to the serial distributed
detection performance and we suggest more robust decision fusion rules under node
failure. Lastly, we analyze effects of decision feedback at serial network topology. In
order to improve serial distributed detection performance we propose feedback

strategies and derive appropriate decision fusion rules for suggested strategies.
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OZET

TELSIiZ DUYARGA AGLARDA
DAGITIK SERi SEZIMLEME STRATEJILERI

Saglik, askeri ve ev gibi ¢ok degisik uygulama alanlarinda gelecek vaadeden telsiz
duyarga aglarina ilgi son yillarda 6nemli 6l¢iide artt1. Telsiz duyarga aglarinda topoloji
yonetimi, etkili yol saptama protokolleri, ortak sinyal isleme ve buna benzer ¢esitli
teknik sorunlar incelenmeye baglandi. Bu tezde, telsiz duyarga aglarda dagitik seri
sezimleme algoritmalar1 incelenecektir. Geleneksel duyarga aglarinda lokal duyarga
kararlarinin hatasiz olarak tiimlestirme merkezine iletildigi farzedilmektedir. Geleneksel
duyarga aglarinin aksine, kablosuz iletim kanali soniimlemeye ve girisime maruz
kaldig icin telsiz duyarga aglarda kayipsiz haberlesme Ongoriilemez. Telsiz duyarga
aglart icin Onerilen dagitik sezimleme algoritmalarinda, diisiik gii¢ iletiminde kanalin

soniimleme ve giiriiltii etkilerini de hesaba katmalidir.

Bu tezde, ilk olarak dagitik seri sezimleme igin en iyi kaynasim kuralina alt kaynagim
kurallar1  Onerilmektedir. Daha da o6zel olarak, en 1iyi kaynasim kuralinin
gereksinimlerini azaltmak i¢in diisiik ve yiiksek isaret-giiriiltii oranlarinda (SNR) en iyi
kaynagim kuralina yaklagimlar elde ettik. Daha sonra, duyargalarin kullanim dis1 oldugu
durumlarda dagitik seri sezimleme performansinin nasil etkilendigini inceledik ve
duyargalarin kullanim dis1 oldugu durumlarda daha giirbiiz ¢alisan karar kaynasim
kurallar1 6nerdik. Son olarak, karar geribeslemelerinin dagitik seri sezimlemeyi nasil
etkiledigini inceledik. Dagitik seri sezimleme basarimini arttirmak i¢in geribesleme

yontemleri 6nerdik ve bu yontemlere uygun karar kaynasim kurallar tiirettik.
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1. INTRODUCTION

The interest in wireless sensor networks (WSNs) has been significantly increased over
the past years due to their promising future in wide range of application areas like
health, military and home. Various technical issues of WSNs have been investigated
recently such as topology management, efficient routing protocols and collaborative
signal processing. In this thesis, we consider serial distributed detection in WSNs.
Distributed detection in traditional sensor applications like sonar and radar networks
had gained a great research interest in the 90s. In traditional sensor applications, error
free transmission of local sensor decisions to the fusion center assumption is made.
Error free transmission can be realized with transmitting decisions at high power, using
powerful error correction coding and very complex signal processing algorithms which
consume considerable power of each node. However, power consumption is one of the
primary challenges in WSNs. For that reason, assumption of error free transmission is
not applicable in WSNs. Non ideal transmissions in WSNs require considering the
distributed detection process together with transmission process. Suggested distributed
detection algorithms in WSNs should deal with the channel uncertainty due to fading
and noisy effects of non-ideal channel under low power transmission. There are
different topologies for distributed detection applications like parallel, serial and tree
configurations. In this thesis, we consider serial network topology. Importance of serial
network topology comes from that, in large scale WSNs, it enables multi hop
transmission which is more energy efficient compared to single hop transmission as in
the case of parallel network topology. In literature, optimum decision fusion rule for
serial distributed detection in WNS was analyzed. However, as for as our knowledge,
there is no more detailed study about serial distributed detection in WSN. In this thesis,

we aim to extend studies about serial distributed detection in WSNSs.



1.1. Thesis Contributions

This thesis has 3 main contributions: suboptimal fusion rules have derived for serial
distributed detection to relieve some requirements of optimal fusion rule and decrease
computational complexity, more robust decision fusion rules have proposed under node
failure case and decision feedback strategies for serial distributed detection have

suggested which improve detection performance considerably.

In more detail, firstly we propose suboptimal fusion rules for serial distributed detection
in WSNs. Optimal decision fusion rule for serial distributed detection requires
performance indices of previous sensor node and the channel state information (CSI).
We propose the low and high SNR approximation to the optimal decision fusion rule
which relieve some requirements of the optimal decision fusion rule and decrease
computational complexity. We observe that simplified decision fusion rules approach to

the performance of the optimal fusion rule at high and low channel SNR respectively.

We investigate methods of handling node failure in serial distributed detection. Firstly,
we propose the optimal decision fusion rule in case of node failure for existent serial
network topology. Then we suggest using more than one previous sensor node decisions
and we derive new decision fusion rule for this strategy. Lastly, we combine these two
propositions and derive new decision fusion rule which is more complex compared to
previous decision fusion rules but which also gives best detection performance in case

of node failure.

We also investigate effects of decision feedback to the performance of serial distributed
detection. We propose three decision feedback strategies and derive decision fusion
rules for these strategies. We observe that, we can increase detection performance of

serial distributed detection considerably with decision feedback.



1.2. Thesis Organization

This thesis organized as follows:

In chapter 2, we start by giving a brief introduction to WSNs together with stressing
main requirements and challenges of it. After that, we explain difference between
distributed detection and centralized detection. At the end of chapter 2, we specifically

talk about key aspects of distributed detection in WSNss.

In chapter 3, we firstly give the system model of serial network topology and we give
the optimal decision fusion rule for serial distributed detection. Then, we propose
simplified decision fusion rules to the optimal decision fusion rule under low and high
channel SNR values. We simulate proposed simplifications and compare performance

with the optimal decision fusion rule.

In chapter 4, firstly, we investigate reasons of node failure in WSNs and explain how
failed nodes can decrease the performance of serial distributed detection. Subsequently,
we propose three new decision fusion rules in order to overcome negative affects of

node failure to the performance serial distributed detection.

In chapter 5, we present decision feedback strategies for serial distributed detection in
WSNs. We investigate effects of decision feedback to the performance of serial
distributed detection. Then, we propose three new feedback strategies and derive

appropriate decision fusion rules.

And finally, in chapter 6 we conclude our studies and give possible directions for future

works.



2. BACKGROUND

2.1. Wireless Sensor Networks

The interest in automatic sensing technologies has been significantly increased over the
past years both in academic and industrial research because of their promising future. In
fact, the idea of intelligent objects which react and adapt to the environment is not a
new subject to research world. However, recent advances in wireless communication
and electronics have stimulated development of new low-cost, low-power,
multifunctional sensor nodes that are small in size and has communication components
which leads the idea of sensor networking [1]. Wireless networking capability of new
sensor nodes have gained much more interest compared to classical sensor applications.
Although large macro sensors are more sensitive, they are much more expensive
compared to new developing sensor nodes. Beside that, tiny sensor nodes can easily be
deployed in application area and wireless sensor networks (WSNs) have fault tolerant

characteristic. On the contrary, when one macro sensor is broken entire system can fail.

Depending on the requirements of application, size of sensor nodes can vary from the
size of a shoebox to the size of grain of dust [2]. Various sizes of sensor nodes that are
produced until now is shown in Figure 2.1 where each of them are compared with a coin
to visualize their size. Although coin size sensor nodes are currently present in
commercial industry, costs of these little sensor nodes make it hard to enable them in
wide range of applications. With development in micro-electronics, size of sensor nodes
will continue to decrease and their prices will reduce which will facilitate spreading of

current applications.



Figure 2.1 Various sizes of sensor nodes depicted in [4]-[7]

Sensor nodes are composed of four main components: sensor device, signal processing
unit, communication module and power component [3]. Depending on the requirements
of application new module can be added to nodes which increase both size and cost of
each node. Main components of a sensor node are depicted in Figure 2.2. Main data
flow between each component is illustrated with arrows. Advances in micro electronics
technology made available small size and relatively cheap sensors that can collect data
of various physical phenomenon like temperature, humidity, pressure, acoustic, photo,
moisture and smoke. A sensor node can contain more than one of these sensors together
in its hardware which increase usage area of the node. However, it should be kept in
mind that adding lots of sensors to a node increase the size of the node and the cost of

production.



Figure 2.2 Main components of a sensor node

Large numbers of densely deployed sensor nodes in an application region constitute a
wireless sensor network which is depicted in Figure 2.3. All sensor nodes in the region
collect data about required application and forward their data to a special node referred
as the base station or the sink. The base station sends all received and preprocessed data
to the user side of application which can be seen as a gateway between wireless sensor
networks and application manager side. WSNs have great deal of advantages compared
to classical sensor applications due to characteristics of system as investigated in [1].
The positions of these sensor nodes need not to be predetermined in application area
which enables random deployment of nodes in unreachable environment. However, this
random deployment feature requires self organizing capability of network. Wireless
sensor networks are also fault-tolerant since large numbers of sensor nodes are densely
deployed and broken sensor nodes do not affect general system performance. The signal
processing component of sensor nodes enable processing capability the observed data
from the environment and transmit preprocessed data to the required destination which
decrease the data traffic on the network. Explained features of WSNs until now ensure a

great deal of applications which are described in the remaining of this section.
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Figure 2.3 Wireless sensor network architecture

Although wireless sensor networks promise unlimited applications, it still has many
challenges to be resolved. One of the main challenges is the requirement of long-lived
operation for great deal of applications [8]. In unreachable territory, once nodes are
randomly deployed, it is not feasible to recharge or change batteries of sensor nodes.
For that reason, while realizing wireless sensor network applications limited capacity of
batteries should always be considered as one of the most important issues. Energy
efficiency of all operations in sensor nodes has been a goal of most studies about
hardware and software design as stated in [8]. In [9], a few more research challenges are
stated beside energy constrain like security and privacy issues, lack of programming
abstraction and real-time requirements of applications. Current security algorithms are
not easily applicable for wireless sensor networks applications since these applications

have different requirements than traditional network applications. In [9], it is proposed



that one of the key issues for development of wireless sensor network applications is
programming abstraction for software developers. Lack of this abstraction forces
software developers to deal more with low level details which slows down their speed.
Real time requirement is also a very important issue that should be dealt properly for

some applications like security monitoring or monitoring of forest fires, etc.

Capability of wireless sensor network which combines sensing, processing and
communication in their hardware, ensure a wide range of applications. In [10], the
author classified applications into three main categories: environmental data collection,
security monitoring and sensor node tracking. Majority of wireless sensor network
applications can be categorized under these three main classes. Environmental data
collection applications requires collecting data from special area at regular intervals,
analyzing the data and finally reaching a conclusion about long term trends in that
specified area. These kinds of applications require long system lifetime, precise
synchronization, low data rates and relatively static topologies [10]. The aim of the
second kind of applications is detecting an anomaly in the area and warning the system
before the damage happened. Rather than collecting data at regular intervals, each node
regularly checks out the environment and only transmits data when there is a security
violation. The primary system requirement is immediate and reliable communication
[10]. The last category of applications is tracking an object through a region that is
monitored by sensor nodes. The object can be tagged which facilitates tracking or it can
be untagged like unwanted object in the specified area. These applications can be
realized in great range of areas like health, military, commercial and environmental
issues due to characteristics of wireless sensor networks like rapid deployment, self

organization and fault tolerance [1].

Many aspects of wireless sensor networks including specified challenges have being
investigated both in academy and industry. In this thesis, we examine distributed
detection task at wireless sensor networks for serial network topology. In the next
section, we investigate distributed detection in classical sensor applications and then we
specify the special cases that should be taken account in wireless sensor network

applications.



2.2. Distributed Detection in Classical Sensor Applications

In distributed detection, all local sensors that are spread over the region carry out some
processing for their observation data and then transmit their condensed information to a
special node, known as the fusion center, where combination of these local information
is performed according to some predetermined fusion rules. On the contrary, in
centralized detection, local sensors do not change their observations and they forward

exactly the same observation data to the central processing unit.

Centralized Detection

Fusion

Event l
1
\

exact observation data are forwarded

Distributed Detection

Fusion

pre-processed data are transmitted

Figure 2.4 Centralized and distributed detection



There is in illustration of difference between distributed detection and centralized
detection for binary hypotheses testing, the absence or presence of target, in Figure 2.4.
In distributed detection, all local sensors give a decision, 1 or 0 depending on their own
observation and transmit their decisions to the fusion center. On the contrary, in
centralized detection local sensors are simply data collectors which do not perform any
data processing on their observation. Performing some preprocessing on the collected
data and transmitting that condensed information to the fusion center reduces
communication bandwidth which is an advantage of distributed detection over
centralized detection [11]. On the contrary, since fusion center has only partial
information about observed data of local sensors, there is a performance loss in
distributed detection. This performance loss can be minimized with proper processing of

observed data at local sensors and fusion center [12].

Distributed detection in classical sensor applications, where assumption of error free
transmissions of local sensor decisions to the fusion center is made, had gained a great
research interest in the 90s. Decision rules for local sensors and fusion center under
conditional independence assumption of observations were derived in [11], [13] and
[14] for both Bayesian and Neyman-Pearson framework and their optimality are proved.
Correlated (dependent) observation case which is more intractable compared to
conditional independent case was investigated in [15]-[17]. Decision fusion under some
communication constraint where optimal bit selection for decision or number of optimal
sensor selection for given conditions were considered in [18]-[21]. Distributed detection
under non-ideal channel and networking delay consideration was examined by
Thomopoulos and Zhang in [22]. In [23], Duman and Salehi looked into transmissions
of local sensor decisions to the fusion center over multi-access channel and effect of this
multi access channel usage to distributed detection performance. Decision fusion rule
under global decision feedback of the fusion center to the all local sensors case and
performance improvement under this condition were studied in [24]-[26]. Optimizing
local sensors thresholds with person by person optimization (PBPO) under Bayesian
approach was suggested in [27]. In the next section, we investigate distributed detection

in WSNs where assumption of error free transmission is invalid.
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2.3. Distributed Detection in WSNs

Error-free transmissions of decisions can be assumed in traditional sensor applications.
However, lossless communication is not applicable in WSNs since power consumption
is one of the primary challenges. Error free transmission can be realized with
transmitting decisions with high power, using powerful error correction coding and very
complex signal processing algorithms which consume undesired energy of nodes [28].
Since additional energy consumption is not wanted in wireless sensor network
applications, we have to use low transmission power without using any complex error
correction coding. In classical distributed detection applications, there is only the source
uncertainty due to noise. Beside the source uncertainty, the distributed detection
algorithms in WSNs should also have to deal with the channel uncertainty due to fading
and noisy effects of non-ideal channel under low power transmission [29]. These

uncertainties of WSNs for distributed detection are depicted in Figure 2.5.

Fusion
Center

Source
Uncertainty

Uncertainty

Figure 2.5 Uncertainties in wireless sensor networks

Including channel non-idealities to the decision fusion rule in WSNs have started to
being investigated since the beginning of 2000s. In [28], [30] , the authors incorporated
the effects of channel non-ideality to the decision process in the fusion center for
parallel network structure and they suggested some approximation to the optimal fusion
rule which reduce the requirements of the fusion rule. Optimality of decisions rule for
serial and parallel network structures were proved in [31], [32] and they derived
analytical expressions of false alarm and detection probabilities for fusion nodes. Multi-

bit local decisions case was also studied in these proposals. Forwarding local decisions

11



to the fusion center over multi-hop transmission were investigated in [33], [34]. Local
optimal decision rules for parallel network structure were studied in [35]. In [36], [37],
for large number of sensor nodes more practical decision fusion rule was suggested
which simply uses total number of detections received from local sensors. A security

mechanism for distributed detection in WSNs was proposed in [38].

12



3. DISTRIBUTED BINARY DETECTION FOR SERIAL TOPOLOGY

In this chapter, we investigate problem of binary serial distributed detection in WSNs
under fading and noisy effects of non-ideal transmission channel. In large scale wireless
sensor networks, serial network topology enables multi hop transmission which is more
energy efficient compared to single hop transmission as in the case of parallel network
topology. Serial network topology can also be used in a part of clustered sensor
networks where local sensor nodes need multi hop transmission to reach cluster head
node. In the first section, we give the system model of serial network structure in WSNs
and state the optimal decision fusion rule under serial network structure which was
analyzed in [31]. In the second section, we propose two approximations to the optimal
decision fusion rule of serial network topology in the high and low channel SNR values,
parallel to the suboptimum fusion rules for parallel distributed detection as proposed in

[30].

3.1. Serial Distributed Detection

3.1.1. System Model

In serial network structure, sensor nodes (SN) are connected in a way that at each stage
sensor node transmits its decision to the next stage over non-ideal channel as shown in

Figure 3.1 We assume that sensor nodes in each stage are separated equally.

13



Figure 3.1 Serial fusion network structure in WSNs

We consider detection of a binary event: target-present under the hypothesis H; or
target-absent under hypothesis H,,. All sensors acquire observations to detect a DC level

signal in real additive white Gaussian noise (AWGN) as follows

m+v; H, )1
Yi= v, H, 2.1)

where y;is observation of jth sensor about event, m is the DC level signal which is

assumed to be one when target is present and zero when target is absent. v; is

observation noise which is assumed to be real AWGN with zero mean and variance of

one denoted by N (0,1).

Binary decision at jth stage, u ;€ {0,1}, is based on own observation, y s and received
signal, r;_;, over which decision of SN;_; is propagated. Assuming coherent detection,

received signal model for SN ; in serial network structure is given as

T = \/;gj—lsj—l T 2.2)

14



where g;_; is the real valued Rayleigh fading channel coefficient between node SN;_,
andSN;, p is transmit power gain which is assumed to be same for all nodes, s, ; is
binary phase-shift keying (BPSK) modulated decision of SN, ; which can be either 1
when u; =1 or -1 when u; =0 and lastly n; ; is receiver electronics noise at each

sensor which is assumed to be real AWGN with zero mean and variance of one at SN Iz

We assumed phase coherent reception in the receiver node that is why real valued
fading envelope and real valued AWGN information are enough for our system model.

After SN; produces a single-bit decision, one level quantization about phenomenon, it
forwards its current decision to next stage, SN, over fading and noisy channel.

Global decision of system is assumed to be made at last SN in the network which will be

referred as the global fusion center.
3.1.2. The Optimal Decision Fusion Rule

In previous subsection, it is explained that decision at a stage is based on both current
observation of a node and received signal corresponding to the previous node decision.

On the Neyman-Pearson (N-P) decision lemma [39], the goal is to maximize detection

probability of a sensor, P j=Pr(u j=1|H1) for given false alarm probability,

Pr ;= Pr(u ;=1 HO). Under N-P lemma for binary detection problem, it is shown in

[31] that if y;and r;_; at each stage are conditionally independent for each hypothesis,

the optimal decision fusion rule at jth stage is appropriate likelihood ratio (LR), given in

the following equation

p(yj»rjfl |H1)
C(y.,r )=
(yj 7"] 1) p(yj,l”j_1|H0)
(2.3)
_ P(J’j |H1) p(rj—l |H1)
p(; | Ho) p(rji | Ho)

Aly;) Y(ri-1)

15



where I'(y;,7;_;) denotes decision fusion rule based on y; and r;_;. It is assumed that
channel state information (CSI), g;;, is known to each SN. A(y;) is the own
observation component and Y(r;_;) is the received signal component of decision fusion

rule. Since we try to detect a DC level signal, m, under real AWGN with zero mean and

variance of one at SN ;, explicit form of A(y;) becomes as follows.

I 5
A(yj):p(y,-ml):m _ o
p(v;1Hy) i
e

Received signal component, Y(r;_;) , depends on previous node decision. We can obtain

LR of received signal component by summing it over possible values of previous sensor

decision under real AWGN with zero mean and variance of one as follows

ZP(’”j—la“j—l |H1)

p(rj—l |H1) 4j-1
Y(rj—l) = =
P(’”j—l | Ho) > P(”j—la”j—l |H0)
Uy
(2.5)
7(rj7\/;gj—l)2 7(”1‘ +\/;gj—l )2
Pp e 2 +(1—PDjj71)e 2
7(rj7\/;gj—l)2 7(rj+\/;gj—l)2
Pp i€ 2 +(1—PF7j71)e 2
Then, LR test (LRT) at the jth stage is given by
Hy
F(J’j,”j—l) = A()’j )Y(’”j—l) § 5 (2.6)
H,
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where ¢; denotes a threshold value to be determined for jth stage. After LR is calculated
according to equations given in (2.4) and (2.5) it is compared with a predetermined
threshold value. If LR metric is bigger then predetermined threshold value, existing

hypothesis will be decided as /| and vice verse if LR metric is smaller than threshold

value. In the logarithmic domain, log-likelihood ratio test (LLRT) becomes

Hy
D (yvjpri) =M (y)+Y (r) § L 2.7)
H,

where T (y;,r, ) =logl(y;,r;,), A'(y))=logA(y;),Y (r, )=logY(r; ;) and
t;k- =log?;. It is clear that for the first stage we have Y (r;-1) =0, since first sensor

node makes decision using just its own observation.

3.2. Suboptimal Fusion Rules for Serial Distributed Detection

The optimal fusion rule given in equation (2.3), requires complete knowledge of fading

channel coefficient, g, ;, and performance indices, Pp ;| and Py ;_;, of previous

sensor node. In this section, we investigate suboptimal fusion rules which relieve
requirements of optimal fusion rule and decrease computational complexity of optimal
fusion rule. In [30], the high signal-to-noise ratio (SNR) approximation and low SNR
approximation are proposed as suboptimum fusion rules for parallel distributed
detection in WSNs. They showed that for the high SNR approximation channel gains
are not required for fusion, although it still needs performance indices, detection
probability and false alarm probability, of local sensors. On the contrary, in low SNR
approximation knowledge of channel gains are required while performance knowledge
of local sensor is not needed. In literature, suboptimum fusion rules for serial distributed
detection in WSNs have not been studied, as far as our knowledge. In the following
subsections, we derive suboptimum fusion rules for serial network structure. Following
the same strategy as in [30], we propose two suboptimum fusion rules: the high SNR

approximation and low SNR approximation of optimum fusion rule given in equation
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(2.3). Own observation component of optimum fusion rule does not change in these
suboptimum fusion rules since we approximate received signal component of optimum

fusion rule.
3.2.1. The High SNR Approximation

The optimum fusion rule given in equation (2.3) jointly considers the previous sensor
output and fading channel effect. For the high SNR approximation of parallel
distributed detection, it is suggested to separate this joint process into two stages in [30].
In the first stage, received signal is used to infer about decision of previous stage and
then at the second stage, optimum fusion rule is applied to decision estimate of previous
sensor node. We follow the same procedure to derive the high SNR approximation for

serial distributed detection.

In the first stage, we find maximum likelihood (ML) estimate of previous decision as
Uj = sign(rj_l) (2.8)
where sign is the signum function and defined as follows

1 ,x=0

sign(x) :{ (2.9)

-1 ,x<0

According to that, decision estimate takes two possible values, either 1 or -1. Using the
decision estimate of previous sensor, received signal component of optimum fusion

rule, given in equation (2.5), can be rewritten as

“2prj g
PD i—1 + I_PD i—1 e J J
Y(ryy) =10y ) — U=Po) +

Prj-1 Jr(l—PF,j—l)eiz‘/;r-"*lg"’1 .10
PD,j—

2\prii18j-
P, Jj-1&j-1
F,j-1€

(1-105.0))

+1_PF,_]*1
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where I(r;_;) is an indicator function and it is used to separate received signal

component into two parts according to decision estimate. The indicator function is

defined as
1 ,ﬁjfl =1
I(rjfl): 0 g (2.11)

If decision estimate, #;_; equals to 1, the indicator function becomes 1 which states that

only the first part of the fusion rule in equation (2.10) is used where second part equals

to zero. On the contrary, if decision estimate, = equals to -1, the indicator function

becomes 0 and as a result of that the second part of fusion rule turns out to be effective

while first part equals to zero.

For the high SNR approximation, we fix noise power to a certain level and increase

signal power. We assume that transmit power gain at each node goes to infinity,

2Py

p —> o0, at high SNR. As p >, e — 0 in the first part of the fusion rule

given in (2.10) since r;_; is assumed to be positive. With the same reasoning, we can

2 o . . .
show that e Vpri-ig — 0 in the second part of the fusion rule since r;_;assumed to be

negative. Using these approximations we can rewrite equation (2.10) as

Fp 1-Fp j

L (1-1r))

= Ypign-snr (i) (2.12)
F,j-1 1-Pr iy

lim Y(r;_;)=1(r;
pg}o (ri-)=1(r;y)

and when we take logarithm of both sides we obtain log version of the high SNR

approximation as

Ppj 1=Pp ji
J +(1—1(rj,1))1—f

P

lim log(Y(r,1)) = 1og£1(rj1) = Yigh-sr(rj-1) (2.13)

J-1 SO
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Received signal component of optimal fusion rule given in equation (2.5) requires both
fading channel coefficient and performance indices of previous sensor node. In the high
SNR approximation of optimal fusion rule, expressed in equation (2.13), there is no

need to channel gain knowledge anymore, but performance indices Fp ;_; and Pp ;|

are still required. We relieve channel gain knowledge requirement of the optimum
fusion rule with the high SNR approximation. Beside that, the high SNR approximation
is less complicated in terms of computational complexity compared to the optimum

fusion rule where we have to deal with exponentials.
3.2.2. The Low SNR Approximation

In order to obtain the low SNR approximation of the optimum fusion rule we express

optimum fusion rule, given in equation (2.5), as

*2\/;r>1g -1
PD7171+(1—PD9171)6 J J
)e_z\/;rj—lgj—l

Y(r;y) = (2.14)

PF,j*l +(1_PF,_]*1

2p

By using first order Taylor polynomial approximation, e ~¥V*"77'¥/' terms in equation

(2.14) is simplified to 1— 2\/;7371 g j-1- We obtain approximate LR of equation (2.14) as

lim Y(r;_;) = Pp,ja +(1= ot )(1-2priag )
4 PF,j*1+(1—PF71~71)(1—2\/;rj71gj71)

(2.15)
1_(1_PD,j—1)(2\/;rj—1gj—l)
1_(1_PF,j71)(2\/;rj71gj71)

We assume that transmit power gain at each node goes to zero, p — 0, at low SNR.

The logarithmic version of equation (2.15) can be expressed as
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/l)i_)ﬁh log Y(r; 1) = log(l —(1 —Fp j )(2\/;0718,'71 ))

(2.16)
—log(l_(l‘PF,J—l)(2\/;rf—lgf—1))

We can use the fact that 10g(1+x) can be simplified as x+0(x) for x close to zero

where o(x)denotes a term with lim = o(x)/x=0. Applying this property to equation
x—0

(2.16), we obtain following equation

}Ji_>f110 log Y(r;_y) = _(I_PD,j—l)(z\/;rj—lgj—l)

+(1_PF,j—l)(2\/;rj—1gj—l)

2.17)

This which can be simplified to get low SNR approximation of equation (2.5) as
;l;i_>mo log Y(r; 1) = (PD,j—l —Pr )2\/;rj—1gj—l = Yipsnr (i) (2.18)

It is important to state that, we cannot continue to simplify this equation by scaling it

with P ;= Pp ;) and 2\/; as suggested in [30]. That is because, in complete fusion

rule there is also log version of own observation component as summation term which

does not allow omitting performance indices, Fp ;_; and Py ;_;, of previous sensor

nodes. Hence, the low SNR approximation of optimal fusion rule still requires both of
channel gain knowledge and performance indices of previous sensors. However, in
terms of computational complexity, the low SNR approximation of fusion rule is
simpler compared to the optimum fusion rule since we do not have to deal with

exponentials.
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3.3. Simulation Results

In this section, we give simulation results of new derived suboptimum fusion rules in
previous sections and compare detection performance of them with performance of the
optimum decision fusion rule. We made all our simulations in MATLAB environment.
In these simulations, a DC level signal is tried to be detected by all sensor nodes under
real AWGN as expressed in equation (2.1). The DC-level signal, m, in equation (2.1) is
supposed to be one. Real AWGN is assumed to be independent and identically

distributed (i.i.d.) for all sensor nodes with zero mean and variance of one denoted by

N (0,1). Each sensor nodes modulate its decision with BPSK and forward modulated

decision to the next stage. Sensor node at next stage receive transmitted signal of
previous sensor node which is degraded by noise and fading. Real AWGN with zero
mean and variance of one is assumed for receiver electronics noise. We fixed receiver
electronics noise power and vary transmit power of each sensor node in order to obtain

different SNR values for transmission channel. We assume a Rayleigh fading channel

2
with unit power, E Ug j‘ }=1. The gain of the fading channel is considered as a

constant during the transmission of decision. We define SNR as transmit signal power

over noise power as follows

SNR = signal

noise (o)

(2.19)

P _ E|:‘\/;gj—l‘2}

where o is the standard deviation and o”is the variance of real AWGN. Since we
assume real AWGN with variance of one and fading channel with unit power, SNR

simply reduces to the transmit power gain as

SNR = p (2.20)

Logarithmic decibel scale version of SNR is as follows
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SNR(dB)=10log;, p (2.21)

In our simulations we try to maximize detection probability, Pp y, of the global fusion
center for given false alarm probability, Pry for the global fusion center under N-P
decision criteria. Optimum threshold values, ¢ , j=1,2,..,N for all sensors, provide
maximum detection performance for given false alarm probability. However,
determining optimum threshold values for all sensors requires multidimensional search
for all possible combination of threshold values as stated in [14]. Due to that
computational burden, we assume that threshold values of all sensors to be identical, ¢, =

t, within each simulation separately as in [31].

In Figure 3.2 we compare detection performance of optimum threshold values and
identical threshold values for given false alarm probabilities with N=2. In order to
produce an accurate error rate, we should obtain at least 100 errors. Error type in our
simulations is false alarm rate which can be defined as making decision of 1 under

hypothesis H,. In our graphs, false alarm probability ranges from 10* to 10°.

Therefore, in order to accumulate approximately 100 false alarm error, at least 10°
simulation runs are required under hypothesis Hy. As a consequence, our simulation
outcomes are obtained as a result of 2*10° Monte-Carlo simulations runs under both
hypotheses Hy and hypothesis H;. Limiting number of sensor nodes with 2 simplify our
multidimensional search for finding optimum threshold values. We observe that there is
a slight difference between detection performance of optimum threshold values and
identical threshold values. For some range of false alarm probabilities, optimum
threshold values and identical threshold values give almost the same detection
performance. For that reason, it is reasonable to select threshold values to be identical.
By selecting identical threshold values for all sensor nodes, we decrease computational
complexity of determining threshold values and beside that we do not observe

significant performance loss.
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Figure 3.2 Performance comparison of optimum threshold values vs. identical threshold

=2

values when

Figure 3.3 and Figure 3.4 gives detection probability of system (the global fusion

sensor) as a function of channel SNR for number of sensors 4 and 8 respectively. We

fixed false alarm probability of the global fusion center to 0.1. As seen from the graph,

the optimal LRT outperforms suboptimal fusion rules for all SNR values. Suboptimum

fusion rules that are derived in previous sections approach to the optimum fusion rule

for high and low SNR respectively. System performance of the low SNR approximation

requires a detailed explanation since increasing channel SNR constantly; do not increase

At low SNR values, received signal component of the

detection performance regularly.

low SNR approximation given in equation (2.18), approaches to zero since p — 0. For

this reason, own observation part becomes dominant for low SNR values and system

performance is detection performance of one node system which makes decision

depending on its observation. On the contrary, for high SNR, received signal component

dominates own observation part in all stages except the first stage which just use its own

observation for decision as stated previously. Hence, detection performance of system

again is very close to performance of first node at high SNR values. At moderate SNR

values, both own observation and received signal components contribute similarly to the
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decision fusion rule. Hence, system performance of the low SNR approximation fusion

rule for moderate range of SNR values is better compared to high and low SNR values.
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In Figure 3.5, we obtain the receiver operating characteristics (ROC) curves for

8. We observe that,

optimum and suboptimum fusion rules under SNR=10dB for N

LRT gives best performance over all false alarm probabilities as expected. We made our

simulations in fairly high SNR values in which large SNR approximation fusion rule

gives better performance result compared to low SNR approximation.

=4 low SNR approximation

**| —m= high SNR approximation|

os =0=LRT

07— — -
06F — — -+ —
03— ——+——
10"

uo01123)9( JO AN[IqeqoIg

Probability of False Alarm

Figure 3.5 ROC Curves for SNR = 10dB, N=8
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4. NODE FAILURE HANDLING IN SERIAL DISTRIBUTED DETECTION

One of the main advantages of WSNs over traditional sensor applications is fault
tolerant characteristic. However, sensor nodes in WSNs are vulnerable to failure for
variety of reasons. Hence, fault-tolerant algorithm design is very crucial to provide
robustness to system against failures. Effects of node failure to the distributed detection
performance in WSNs have not been investigated yet in the literature, as far as we
know. All suggested distributed detection algorithms since now, assume that sensor
nodes are completely functional. However, it is obvious that node failure influence the
performance of distributed detection of the system. In this chapter, we study how node
failure affects serial distributed detection performance of serial network and we propose
new decision fusion algorithms which are more robust to node failure than existing

decision fusion rules.

4.1. Node Failure in WSNs

There are varieties of reasons that sensor nodes can fail and can not participate to
distributed detection algorithms. Firstly, as stated in chapter 1 sensor nodes have limited
power source and in most applications it is not feasible to provide additional power
source after sensor nodes are deployed in application region. After limited lifetime of
sensor nodes come to an end due to power insufficiency, sensor nodes fail to contribute
distributed detection algorithms. In order to use limited power efficiently, sensor nodes
do not listen their environment continuously as mentioned in [8]. Sensor nodes go to
passive mode periodically in which sensors do not take any measurements from
environment. At the end of that passive made, nodes wake up and sample their sensors

to detect any anomaly. While sensor nodes can completely operate on their active states,
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they have no contribution to the distributed detection at their passive states in which
sensor nodes may be supposed to be failed. Additional reasons are mentioned in [41],
when sensor nodes could fail. Sensor nodes can also fail due to hardware corruption. In
addition, environmental conditions like electromagnetic noise and physical destructions

can cause nodes to temporarily fail to participate in current networks activities.

It is obvious that node failure decreases distributed detection performance of the serial
network topology. We suggest novel ways to decrease node failure effects to the
distributed detection performance. In the first option, we model node failure probability
with a Markov model and suggest a new decision fusion rule which includes node
failure probability at each stage. In the existent serial distributed detection where each
node uses just 1-previous node information besides its own observation and fuse them
to make decision. As a second option to overcome node failure problem, we suggest to
exploit broadcast nature of wireless channel and use n-previous node decisions during
the fusion. We developed a new decision fusion rule which can combine n-previous
information coming from previous sensor nodes and current observation at each stage.
For the third way to overcome effects of node failure, we can combine first two options
and extend that to a new decision fusion rule which uses n-previous information of

nodes together with own observation and considers node failure probability.

4.2. Optimal Fusion Rule Under Node Failure

The node failure model that we use is illustrated in Figure 4.1 which was presented in
[40]. In that figure, “0” represents “off” state and “1” represents “on” state of sensor

nodes. Stationary probability of a node being in the “off” state is given by

By =241/ (/1 + ,u) where A and w are transition probabilities between “on” and “oft”

states, and vice versa. In the off state, sensor nodes could not able to make any decision
because of the failure and sensor nodes could not contribute distributed detection
algorithm of network. That is to say, sensor nodes could not be able to benefit from

previous sensor node decisions in the fusion process if previous sensor node fails.
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-1 1—p

Figure 4.1 A markov chain model for transition between “on” and “off” states

presented in [40]

Fusion rule in equation (2.3) assumes that all sensor nodes operate perfectly. For that
reason, a new fusion rule which include node failure probability can compensate
decrease of detection performance when nodes are failed. Normally, in the “on” state,
sensor node makes a decision of either “1” or “0”. In the case of failure, sensor node
could not able to make any decision which will be denoted by “x”. Hence, there are 3
possible decision results of previous sensor node for subsequent sensor node: “1”, “0”
and “x”. Own observation component of the optimal fusion rule given in (2.4) is not
affected by node failure. However, we have to change received signal component of
optimal fusion rule presented in equation (2.5) in order to include failure probability of
previous sensor which does not provide any decision in case of failure. We can derive

received signal part of new fusion rule for jth sensor node by summing received signal

over both three possible decision of previous sensor node and state of previous sensor

node.
Z Zp(rj—l’“j—l’q]'—l |H1)
Y (. )= qj-14)-1
100 Z Zp(rj—l’”j—laq]'—lll_[O)
qj-14j-1
3.1
> ZPT(QJA |H1)Pr(uj71 |qj>1=H1)P(”j71 |uj719q/'71’H1)
_ qj1Uj1
Z Z PT(QH |H0)Pr(”j71 | qj'flaHo)P(qu |“jf1aqj>1aH0)
qj-1Uj-1
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where ¢;_; denote state of previous sensor node, which can be either “0”, when a node

fails, or “1”, when node operates perfectly. Decision of previous sensor node is

represented by u; ; which can take values of “1”, “0” and “x”. Explicit form of

equation (3.1) can be expressed as,

Pr(qfl zl)Pr(uj;l =1lq,, :l,Hl)p(rJ;l lu; =14, :1,H1)+

Pr(q; =1)Pr(u; =01q; =1, Hy)p(riy ;0 =0,q, =1L H, )+
1

Pr(qfl zl)lPr(ujfl =x|q,,4 :l,Hl)lp(rJ;l \uj ) =%,q;_ :1,H1)+
2
Pr(qfl :0)Pr(uj71 =1lq,, :0,H1)p(rj71 luj =14, :O,H1)+
3 1
qj1=0 Pr(“jq =0[g, :O’Hl)p(rjfl lu;1=0,q; :0=H1)+
)

Pr(“j—l =x|q;1=0,H, P(”j—l | =%,q; =0aH1)
Pr(ujfl =1lq;4 :laHo)P(ijl lu; =1q; :1=H0)+

Pr(u;y =01, =1,Ho) p(rj [ujo =0,q,4 =1,Hy)+
4

e~
=
Q
~. .
L
Il
—
~  —

Pr(qu zl)lPr(ujfl =x|q;. :1,H0)Ip(rj71 \uj ) =%,q; :l,H0)+
5

Pr(g;-4 =O)Pr(uy 1 =111 =0.Ho) p(ry1 |y =Ly =0ty )+ (3.2)

6

Pr(q; 1 =0)Pr(u; =0]q;; =0,Hy) p(r, 1 |1, =0,q; =0,Hg )+

Pr(qul :0)Pr(uj71 :x|qj71 :0,H0)p(rj,1 |uj,1 =X,q, :0,H0)

where probabilities that are stressed with numbers can be eliminated since they are not
possible to happen. For example, a node makes a decision of either “1” or “0” when it

operates perfectly. Hence, probability of a node to give decision of "x" when it operates

perfectly, Pr(u i =xlg; = l,Hl), is zero. Pr(q = 0) is the probability of being a

node in off state and Pr(q 1= 1) is the probability of being a node in "on" state. After
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eliminating unrealistic probabilities and denoting failure probability of a node with F,;

and "on" state of a node with P,

»n» We can obtain simplified version of equation (3.2) as

7(?/ ~pg; )2 7(?/'*\/;8’ j-1 )2 7(0’ )2
Y () = Lon,j-1Pp, j1€ : + B,y (I_PD,jfl)e : + By jae
n (V_/ *\/;g_/—l )2 (rj+\/;g./'4 )2 @

- 2 2 )
Bon,j1r j1€ + B j1 (I_PF,jfl)e + By j1€

(3.3)

Received signal component of fusion rule given equation (3.3) is the optimal decision
rule for received signal in case of failure probability. Together with own observation

component we can express optimal decision fusion rule under node failure as

Hy

NG = AT ) S 1 G4
H,

4.3. Decision Fusion Rule Using n-Previous Decisions

One of the main features of WSNs is that they are densely deployed inside the
application region as explained in section 2.1. Because of that dense deployment
characteristic of WSNs and broadcast nature of wireless transmission channel, sensor
nodes can use more than one sensor decisions in the fusion process. In this section, we
extend received signal component of decision fusion rule given in (2.3) which uses just
1-previous node decision information in the fusion process. Assuming that 2-previous
sensor node decisions are used in the decision procedure, we can update received signal

model for jth node given in equation (2.2) as follows

2
Wi =aypg 8+ \pg s+ (3.5)
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where second part of the equation is the additional information coming from second
previous sensor node, & is the signal attenuation factor (path-loss coefficient) between
subsequent sensor nodes due to distance which is an addition to the received signal
model given in equation (2.2). In our system model which is explained in subsection

3.1.1, we suppose that sensor nodes are separated equally. For that reason, path loss

coefficient between two subsequent sensor nodes can be expressed with a? as in
second part of equation (3.5). We slightly change our notation for fading channel

coefficient as we can see in - Figure 4.2. Channel gain between nodes SN; and SN;_,

can be denoted as g;_, ;.

SN;.»

)

Figure 4.2 Received signal model for jth sensor node

If we generalize 2-previous sensor information to n-previous sensor information, we can

update received signal model at jth node as

n
Wi = Z(ak\/;gjfk,jsjfk)‘i' njy (3.6)
k=1

However, we use 2-previous sensor information in our analytic derivations and
simulations since information signal coming from more previous sensor nodes degrade
badly due to path-loss effect. Additionally, using more than two previous sensor
information increases computational complexity of new decision fusion rule and

analytical derivations become intractable.
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With new proposed signal model, the decision at the jth stage is based on the

observation, y;, and received signalw; ;. It is assumed that the observations and the

received signals at the sensors are statistically independent conditioned on the

hypothesis. Using LR at each stage, we can express new suggested fusion rule as

p(yj,wj_l |H1)
p(ijwj—l IHo)

FZ(yj,Wj—l):

(3.7)
_ P(J’j |H1) P(Wj—l |H1)
p(v; | Ho) p(w;1 | Hy)

We define two component of the fusion rule as described in subsection 3.1.1. Let
A(yj)zp(yj' |H1)/P(J/j |H0) and YZ(ijl):p(ijl |H1)/P(Wj71 |H0)- Own
observation component, A(y;), is the same with equation (2.4). Therefore, we focus on

received signal component, Y,(w;_;). We can express implicit form of Y, (w;_) as

Zp(wj—l’“j—buj—z |H1)

uj—l

Yy (w; )=
2 > p(Wj—loujfloujfz |H0)

Uj-1

Uj_2

(3.8)
Z Pr(uj_l,uj_z |H1)p(Wj—1 |”j—1’”j—2’H1)

Uu -

Z Pr(ujflauj72 |H0)P(ij1 |uj713uj723H1)

In the sake of simplicity, we define joint probability of two previous decisions as

follows
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Uj-Hj-2 _
P =Prluyu; | Hy

i
(3.9)
Uu; |U;_
jiljjizz = Pr(”jflv”jfz | Ho)
Then we can express explicit form of Y, (w;_;) as follows
2 2
(Wj—l+a\/;gj—l,j+a2\/;gj—2,j) (Wj—l+a\/;gj—l,j_a2\/;gj—2,j)
00 01
Pi7y jae 2 + Py e 2 +
2 2
(W_/—l ‘“\/;g_/—l,_/mzﬁg_/—z,_/) (W_/—l ‘a\/;g_f—l,_f‘azﬁg_/—z,j)
10 11
¥,y = k2 ’ Py jae ’
2\"j-1)— 2 2
(Wj—l+a\/;gj—l,j+a2\/;gj—2,j) (Wj—1+a\/;gj—1,j*a2\/;gj-2,j)
00 01
Oj-1,j2€ : +0j,j2€ g +
2 2
(Wj—l_a\/;gj—l,j"’az\/;gj—Z,j) (Wj—l_a\/;gj—l,j_az\/;gj—Z,j)
10 11
Q1,2 2 +0j1,j2€ ?
(3.10)

Using 2 previous decision in the fusion process as in equation (3.10), increases
computational complexity compared tol previous decision fusion rule. As a trade off,
since we increase diversity about event, we obtain better detection performance. More
importantly, if one of the previous nodes fails, decision of the other sensor node can still
be used in decision process which is not possible if just 1 previous decision was used in
the decision process. There is no additional power cost except calculation of new
decision fusion rule since additional transmission is not required. In order to obtain 2
previous decisions, we exploit broadcast nature of wireless transmission channel. With

same reasoning, we do not increase traffic overhead of the system.
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4.4. Combined Fusion Rule

As a next option, we can combine previously derived fusion rules in a way that fusion
rule contains both 2-previous sensor information and node failure probability.
Combined decision fusion rule is more complicated compared to previously suggested
decision fusion rules. However, we see in simulation section that, combined decision
fusion rule gives best detection probability in case of node failures. We express implicit

form of received signal component of combined decision fusion as

> p(wjflﬁujflﬁujqujfl»quz |H1)

gj-1 4j-1
qj-2Uj2

Z Z p(ijl,uj,puj72vqulﬁquz |H0)

qj-1Uj-1

Y3(w; ) =

qj2U; 2

z Z Pr(Qj—lan—z | Hl)Pr(“j—la”j—z |q]'—17q]'—2’H1)p(Wj—l \”j—la“j—zaq]'—laCIj—zaHl)
qj-1 Uj-1

_ 4242
Z Z Pr(Qj—laq]’—z |H1)Pr(”j—1’”j—2 \ CIj—lan—ZaHo)P(Wj—l \”j—la“j—zaQJ—laClj—ZaHo)

qj-1 Ui

qj-2Uj-2

(3.11)

In sake of simplicity, we do not provide explicit form of received signal component
here. However, explicit form can easily be derived in similar ways as explained

previous sections (see Appendix A).

4.5. Simulation Results

In this section, we give simulation results of new derived fusion rules which are more
robust under node failure cases. We compare detection performance of new fusion rules
with existing fusion rules under ROC curves. We made all our simulations in MATLAB

environment. Our simulation details are almost the same with section 3.3. Additionally,

35



we added path loss component to our received signal as given in equation (3.5). In our

simulations, we assumed 1dB loss at signal power between subsequent sensor nodes due

to distance. We also assigned failure probability, P,z to each node which means a node

can fail with probability P4 at each Monte-Carlo runs.

for failure probability included fusion

In Figure 4.3 and Figure 4.4, simulation results

4 and 8 respectively. In our simulations, we set

rule are provided for number of sensors

failure probability for all sensors to be 0.25 and compare detection performance of new

decision fusion rule with different number of sensor nodes. Performance of the fusion

rule which does not include failure probability in the decision process, given in equation

(2.3), degrades considerably in case of P,;=0.25 in both cases. In the moderate range of

false alarm probability in Figure 4.4, nearly 20% degradation can be observed. Failure

probability included fusion rule, derived in section 4.2, performs better than old fusion

rule. For specific false alarm probabilities, new derived optimal fusion rule, given in

equation (3.4), can increase system performance up to 10%.
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Figure 4.4 Simulations of probability of failure included fusion rule, SNR=10dB, N=8

In Figure 4.5 and Figure 4.6, simulation results of 2-previous decision fusion rule is

shown which is derived in section 4.3 for number of sensors 4 and 8 respectively. The

given in equation (3.9), are

uj_luj_z
j_l’j_z

and

Uj_luj_z
j—l,j—2

joint probability of decisions,

calculated according to our simulation results. As can be observed from the graphs,

-previous decision fusion

2

b

=0

For
decision fusion, given in equation (2.3). The

when nodes are always in active state, in case when

rule performs better than I1-previous

important thing here is that, when nodes fail with a probability, in our example we set

F,p =0.25, 2-previous decision fusion rule gives about 12% better result for specific

false alarm probabilities. We can also state that, when we increase number of nodes

from 4 to 8, improvement in 2-previous decision fusion rule becomes more apparent in

the provided graphs.
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Figure 4.6 Simulations of 2-prevous decision fusion rule, SNR=10dB, N=8
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Probability of failure included decision fusion rule and the fusion rule that uses 2
previous decision perform better than the fusion rule given in given in equation (2.3).
As the third approach, we can combine effects of both failure probability inclusion and
using more previous sensor decision in the fusion rule. Using that idea, we derived new
decision fusion rule in section 4.4. The combined fusion rule is more complex in terms
of computational complexity. However, the combined fusion rule gives better result
than previously suggested decision fusion rules as we can see, in Figure 4.7 and in

0.25,

— 1-prev, P__

=0.25

ff

(0]

0.25

0
0

off

P

—4- 2-prev,

Pt

prev, POff

prev

-o-1-

-2

cihe 2

Figure 4.8. We observe that performance of the combined fusion rule under £,
is very close to performance of the optimal decision fusion rule under F,; =0.
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Figure 4.7 Simulations of combined fusion rule, SNR=10dB, N=4
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Figure 4.8 Simulations of combined fusion rule, SNR=10dB, N=8

In previous simulations, we have obtained ROC curves of suggested decision fusion

rules for a fixed SNR value. In Figure 4.9, we obtain the detection probabilities of the

proposed fusion rules as a function of different SNR values. We set false alarm

probability of the global fusion center to be 0.1 and failure probability of all nodes to

0.25. We observe from figure that combined the decision fusion rule gives best

detection performance in whole SNR range in case of node failure. For high SNR values

we can obtain about 12% performance increase compared to 1-prev decision rule which

is optimal when nodes do not fail but performance degradetion occurs when nodes fail.
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5. FEEDBACK STRATEGIES IN SERIAL DISTRIBUTED DETECTION

In this chapter, we investigate effect of decision feedback on distributed detection
performance of the system. In literature, several feedback mechanisms for distributed
detection are proposed in [24]-[26] for classical sensor applications where error free
transmission of local decisions to the global fusion center is assumed. However, effect
of decision feedback to distributed detection performance in WSNs has not been
investigated yet according to our knowledge. In WSNs, we cannot assume error free
transmission of local decisions to the global fusion center for variety of reasons as
explained in chapter 1. Specifically, we propose feedback strategies for serial
distributed detection in WSNs. We analyze effects of decision feedback at serial
network topology and investigate how detection performance of system changes with

suggested feedback strategies.

5.1. Decision Feedback in Classical Sensor Applications

In literature, there are several approaches about integration of feedback mechanism into
distributed detection system in classical applications where error free transmissions of
local decisions are assumed. In most research, the network structure is usually assumed
to be parallel topology as illustrated in Figure 5.1. In the absence of any feedback

mechanism as depicted in Figure 5.1, all local sensors have observations, y;,V,,..., Vi,
under H, or H;. Each local sensor gives a local decision, u;, about the phenomenon

using just their own observations. Receiving these decisions without any error, fusion

center gives the global decision, u,, about the event using all local decision.
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Fusion
Center

Figure 5.1 Parallel fusion network structure

In [13], Varshney suggests a feedback mechanism, shown in Figure 5.2, where fusion

center sends its global decision at time step, #-1, uf{l , to all local sensors. At time step ¢,
the kth local sensor makes the local decision, u;, based on previous global local
decision, uf)_l, the current observation of its own, y,i, and the previous observations,

y,’{_l, y,’(_z,..., y,lc. Fusion center gives global decision, u, after receiving these entire

local decisions at time step ¢, and feedback this information to all local sensors. Global
center gives decision according to Bayesian detection criteria which tries to minimize
Bayes risk function. In [24]-[25], the same feedback mechanism as in Figure 5.2 is used,
where Neyman-Pearson (N-P) decision criteria is utilized at fusion center that differs
from [13]. Another difference of these studies is that, local sensors do not use their
previous observations but use just their current observations. Reference [25]
additionally suggests new feedback mechanism policy where local sensors use their

own decision in subsequent time step which can be seen as feedback of local decisions
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to local sensors. Feedback of local decisions also investigated in [26], where they use

Bayesian detection criteria at fusion center.

t t-1 1
yl’yl ""’yl

A
|

t t-1 1
y29y2 ""9y2

|

Fusion
Center

t t-1 1
Vio Vi oo Vi

Figure 5.2 Parallel fusion network structure with decision feedback

Distributed detection with decision feedback in WSNs, as far as we know, has never
investigated in literature yet. In remaining of this chapter, we investigate effects of

decision feedback to serial distributed detection in WSNSs.

5.2. Decision Feedback at Serial Topology in WSNs

We want to investigate how decision feedback could affect overall system performance
of serial distributed detection in wireless sensor networks. In serial topology, last sensor
is assumed to be the fusion center which gives global decision about the phenomenon.
Feedback of the global decision to all local sensors, all previous nodes of fusion center,

appears to be unpractical in serial topology. Due to path-loss effect, far distant local
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nodes to the fusion center hardly receive feedback information of global decision.
Additionally, feedback signal is also be corrupted by fading and noise. For that reason,
rather than using feedback of global decision to all local nodes, feedback between
consecutive sensor nodes seems to be more practical. We mainly offer three different
feedback strategies for serial network topology. We derive new decision fusion rule for
each strategy and then investigate whether feedback improve system performance or

not.
5.2.1. Subsequent Sensor Decision Feedback Using The Same Observation

In the first feedback scheme, we use decision of subsequent sensor node as feedback to
update decision for the same observation. Initially, without any feedback information jth
sensor gives decision based on its own observation and received signal of previous
sensor. While j+1th sensor forward its decision to next stage, jth sensor also hears that
decision due to wireless channel feature. Hence, this information can be used as
feedback of next sensor node. With that feedback information jth sensor can update its
decision based on the same observation using the updated received signal of j-1th sensor
node and feedback information of j+1th sensor node. Illustration of this mechanism is

given in Figure 5.3. Superscripts over variable represent the time order for the same
observation. For example, u; is the first decision of jth sensor without subsequent
feedback and uf is the second decision updated with subsequent feedback. As a result,

each node uses decision of subsequent node as feedback information and updates

decision for the same observation.

yj yj+1

Figure 5.3 Subsequent sensor decision feedback using the same observation
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Since nodes transmit their decisions more than once, depending on number of feedback
information used, we should keep total power of the system fixed, in order to compare
performance of feedback with normal case. If we use feedback information one time,
we have to half transmit power of each node, in order to keep total power consumption
of system unchanged. Received signal model at jth sensor node for suggested feedback

strategy can be updated as
2 1
Wiy =\/pgj_1sj_1+«/pgjsj+1+nj_1 4.1)

where s}- +1 18 decision of subsequent sensor node that is used as feedback information

and sjz,l is decision of previous sensor node which is updated with feedback of jth

node. With this new signal model, the decision at the jth stage is based on the

observation, y;, and received signalw;_; which is combination of previous and

subsequent sensor decisions. It is assumed that the observations and the received signal
at the sensors are statistically independent conditioned on the hypothesis. Using
likelihood ratio test at each stage, we can derive received signal component of new

fusion rule with feedback as follows
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In the sake of simplicity, joint probability of j-1th and j+1th sensor node decisions can

be defined as follows,

/1u1+1 2 1
P Pr(uj_l,uj+1|H1)

—1,j+1
(4.3)
1“ 1 2 1
ijljfl Pr(”jflvujﬂ |H0)
Then we can express open form of Y;(w;_;) as follows,
2 2
(W_/—l +pgjatlpgtn ) (W_f—l +pgj—pgtn )
00 01
Pio e : + P e 2 +
2 2
(Wj—l_\/;gj—l +\/;gj +”j—1) (Wj—l _\/;gj—l _\/;gj+”j—1)
plo 11
¥y, )= Pio e 2 + P e 2 (4.4)
2 2 *
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Q 1,]+le 2 +Q 1,J+1e ? *
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Q 1, j41€ 2 +Q “1,j41€ 2

Using subsequent sensor decision as a feedback to update current decision does not
increase total power consumption of the system, since we decrease transmit power by
every decision feedback and keep total power of the system fixed. However, using this
strategy increase traffic overhead of the system. In order to obtain subsequent decision,
we do not require additional transmission since we exploit broadcast nature of wireless
channel. However, after each sensor node update their current decision by using
decision feedback, additional transmissions are required in order to forward updated
decision to the next stage. Computational complexity of decision fusion rule is similar

to 2 previous decision rule that is derived in section 4.3.
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5.2.2. Subsequent Sensor Decision Feedback Using Subsequent Observation

In that feedback scheme, we do not want to half the transmit power of each sensor node
since decreasing transmit power can degrade performance of feedback system.
Performance of previously suggested decision feedback strategy does not depend on
correlation between consecutive phenomenons. However, in a realistic scenario it is
obvious that there are consecutive observations under the same phenomenon. In Figure
5.4, there are 8 sensor nodes in serial network structure deployed in application region.

When target is present, consecutive observations of all sensors are under H,

phenomenon, as it is seen in Figure 5.4 where multiple paths of target are shown. If

there is no target, it is clear that consecutive observations are under /, phenomenon.

I~

v

Figure 5.4 Scenario for correlation between consecutive phenomenons

We can update our feedback scheme using correlation between consecutive

observations. Rather than using feedback information of subsequent sensor to update
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current decision for the same observation, we can use feedback information at
subsequent observation period since there are multiple observations under same
phenomenon. Suggested feedback strategy is illustrated in Figure 5.5. Superscripts of
each variable represent time step for observation periods. All solid lines represent
events in observation period #-1. Decisions given in period #-1 are used as feedback
information by previous sensors in subsequent observation period, ¢, which is

represented by dashed lines in Figure 5.5

Figure 5.5 Subsequent sensor decision feedback using subsequent observation

Because of the fact that feedback information is used with new observations, there is no
need to half the transmit power of sensor nodes as the first suggested feedback strategy.
We can change received signal model at jth sensor node for observation period, ¢, as

follows
-1
Wiy =N PE 81 T PE ST (4.5)

where w;,l is received signal at jth node at observation period, ¢, s;,l decision of

. . . -1 . ..
previous sensor node at observation period, ¢, s;- 41 18 decision of subsequent sensor

node from previous observation period, #-1, which is used as feedback information in
observation period ¢. Using likelihood ratio test at each stage, we can derive received

signal component of new fusion rule with feedback as follows
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If define joint probability of decision as described in equation (4.3), we can express

explicit form of received signal component of fusion rule as

2
(W_t/—l wpg;atlpg;n; )
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(4.7)

Correlation between consecutive phenomenon lead to the idea of using subsequent

sensor decision as a feedback in the next observation period. Since we use decision

feedback in the next observation period with new observation, we do not have to update

our current decision as in the case of previous strategy. For that reason, no additional

transmission is required after using decision feedback which means traffic overhead of

the system is the same.
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5.2.3. Self Decision Feedback Using Subsequent Observation

The scenario that is suggested in previous section enabled all sensor nodes to transmit
their decisions at full power. However, feedback information from subsequent sensor
node is still exposed to effects of non-ideal channel. Assuming the same realistic
scenario of previous subsection, it is possible to overcome effects of non-ideal channel
to decision feedback by allowing all sensor nodes to keep their current decisions for
subsequent observation period and use it as feedback information from previous
observation period. Keeping own decision for next observation period can be considered
as self-feedback of sensors. Since in assumed scenario, there is a correlation between
consecutive phenomenons, self-feedback information is expected to increase
performance of distributed detection system. Self-feedback strategy is illustrated in
Figure 5.6 where solid lines represent events in observation period -1 and dashed lines
represent events in observation period ¢. Self-feedback information from time step #-1 is

used at subsequent observation period .

Figure 5.6 Self decision feedback using subsequent observation

Received signal model at jth node for suggested feedback strategy can be expressed as

wj-,l = \/;gj,ls;,l + \/;sj-_l +n (4.8)
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where we omitted the fading coefficient at the second part of the signal since that is self

-1

; » which is saved from previous observation period. Received signal

decision, s

component of decision fusion rule is very similar to equation given in (4.7). and can be

expressed as

2 2
(W;‘—l +\/;gj—l+\/;+nj—l) (W5—1+\/;gj—l_\/;+nj—l)
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2 2
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Pml e 2 +P111 e 2
Yy(w' ) =—L=1 L (4.9)
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5.3. Simulation Results

In this section, we give simulation results of new derived fusion rules for suggested
decision feedback strategies. Our simulation environment is the same with simulation

environment explained in section 3.3.

In Figure 5.7, the simulation results of first derived fusion rule for subsequent sensor
decision feedback using the same observation is illustrated. We see that, detection
performance of feedback scheme is worse compared to no feedback case. Although
decisions of each local node get better, decrease of transmit power in each stage prevent
increasing of performance at fusion center. That is because, at low transmit power
transmitted signal is exposed to more errors in non-ideal channel due to fading and
noise. Increasing number of decision feedback do not enhance detection performance
since we reduce transmit power of each node for every decision feedback in order to

keep total power of system fixed.
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Figure 5.7 Subsequent sensor decision feedback using the same observation
fusion

In order not to decrease transmit power of each node; we have suggested a realistic
consecutive same observations under the same phenomenon. In that way, feedback

transmit power of each sensor the same. Depending on number of consecutive
that scenario is that, when successive observations occur under different phenomenon,

information can be used at subsequent observation period which enable us to keep
correlated phenomenon, performance of each fusion rule changes. The problem with
feedback scheme can give wrong information about current phenomenon. In order to
prevent negative effects of that case in feedback mechanism, we suggest comparing two
metrics at each stage, with feedback and no-feedback, and using the one which is larger

scenario for rest of feedback schemes in section 5.2.2. We assume that, there are

as follows



where I'(y;,r;_;)is decision fusion rule given in equation (2.3) and I';(y j,w;-_l) is the

new derived fusion rule in section 5.2.2 for subsequent sensor decision feedback using
subsequent observation. We also compare metrics for self decision feedback using

subsequent observation explained in section 5.2.3 as

F()"a”'_ ) ,F(y~,r-_ )>r3(y'awt'—l)
fusion = AN ol 7 @.11)

T3(yj W) ,otherwise

Using this comparison method, we can obtain a detection performance for decision

feedback at least as good as no-feedback case.

Simulation results for last two suggested feedback strategies are provided for different
number of sensor nodes, 4 and 8 respectively, in Figure 5.8, Figure 5.9, Figure 5.10 and
Figure 5.11. In these figures, R represents number of consecutive correlated
phenomenon. As can be observed from figures, detection performance of suggested
feedback scheme improves as number of correlated phenomenon increases. For R=6,
there are considerable performance improvement for both feedback strategies. In Figure
5.11, for R=6, suggested decision feedback gives about 40% better performance result
for Prs=0.06. Comparison of these two feedback strategies is shown in Figure 5.12. Self
decision feedback strategy performs better since decision is not corrupted by fading and

noise.
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It is clear that when we increase number of sensor nodes, performance improvement

with decision feedback becomes clearer. Lastly, we give simulation results for various

8 in Figure 5.13 for subsequent decision feedback and self decision

SNR values with V-

feedback. We fixed the global false alarm probability to 0.1 and number of correlated

phenomenon to 4. We observe that, for low channel SNR values detection performances

of feedback strategies are approaches to non-feedback case. That is because decision

feedback and previous decision are corrupted under bad channel conditions and have no

contributions to decision fusion rules. In the moderate range and high SNR values, both

decision feedback strategies outperform no feedback case. When we compare detection

performance of subsequent decision feedback and self decision feedback, we see for all

SNR values self decision feedback give better result. Especially for moderate range of

SNR values, self decision feedback gives up to 20% better result than subsequent

decision feedback.
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6. CONCLUSIONS AND FUTURE WORK

In this thesis, several aspects of serial distributed detection in WSNs are investigated. In
literature, optimum decision fusion rule for serial distributed detection in WNS was
analyzed. However, as for as our knowledge, there is no more detailed study about
serial distributed detection in WSN where assumption of error free transmission is not
valid as in the case of traditional sensor applications. In large scale wireless sensor
networks, serial network topology enables multi hop transmission which is more energy
efficient compared to single hop transmission as in the case of parallel network
topology. For that reason, in this thesis, we have analyzed serial distributed detection in
more various ways. This thesis has 3 main contributions: suboptimal fusion rules have
derived for serial distributed detection to relieve some requirements of optimal fusion
rule and decrease computational complexity, more robust decision fusion rules have
proposed under node failure case and decision feedback strategies for serial distributed

detection have suggested which improve detection performance considerably.

In chapter 1, we give the optimal decision fusion for serial distributed detection. The
optimal decision rule requires both fading channel coefficient and performance indices
of previous sensor node. We have proposed suboptimal decision fusion rules: the high
SNR approximation and low SNR approximation. Suboptimal fusion rules relieve some
requirement of the optimal decision fusion rule and decrease computational complexity.
At high and low channel SNR values, suboptimal fusion rules approaches to the

performance of optimal decision fusion rule.

In WSNs sensor nodes are vulnerable to failure for variety of reasons such as limited
power source, hardware failure and environmental conditions. We have investigated

how node failure can affect the performance of serial distributed detection. We have
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proposed new decision fusion rules in order to overcome negative effect of node failure

to the detection performance.

Lastly, in order to improve serial distributed detection performance we have suggested
several feedback strategies. We have also derived new decision fusion rules for
suggested feedback mechanisms. We have obtained that some suggested feedback

strategies increase distributed detection performance considerably.

As some suggestions for future work, we have obtained a quite good performance
improvement for decision feedback strategies proposed in chapter 5. Performance
improvement of decision feedback strategies could also be valid under node failure case
which should be investigated. In our complete study, every sensor node makes a single-
bit decision, one level quantization about phenomenon, about binary event. Multi-bit
decision, multi level quantization, can increase distributed detection performance of
serial topology. In chapter 4 and 5, the joint probability of decisions is calculated
according to simulations results. In order to calculate joint probabilities analytically we

should derive distribution of received signal model which is given in equation (3.5).
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APPENDIX A

Explicit form of equation (3.11) is as follows

Z Z p(wj_l,uj_l,uj_z,(]j—laqj'—z |H1)=
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