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Abstract 

Passive UHF RFID systems have various advantages over other RF based identification 
systems despite the lack of operation range and coverage as other passive systems, 
which is one of the main obstacles of this promising technology. 
 
To increase the operation range and the coverage, in this thesis, phased antenna array 
for passive UHF RFID applications designed, implemented and measured. As a part of 
the phased antenna array design, a feed network, which will sustain the necessary 
amplitude to each radiating element and phase difference between them, is designed. 
This feed network design is composed of the separately design of phase shifter and 
power divider. Also as the radiating element, a microstrip patch antenna element is 
designed and implemented. After calculating the response final array structure with use 
of a phase shifter, power divider and microstrip patch antenna, to obtain beam steering 
between ±30 degrees, the antenna array is implemented on PTFE woven-glass ceramic 
composite substrate with a dielectric constant of 4.5. 
 
From the radiation pattern measurements in the compact test range and experimental 
test results obtained in actual RFID system, it is observed that the operation range and 
coverage are increased. Also, it is acknowledged that compact test range and field tests 
of antenna array are consistent with each other. As a final remark, due to time 
averaging while steering between the main beams, without causing any issue with the 
ETSI regulation limits on ERP (effective radiated power), operation range and 
coverage can be expanded. 
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İletim Hattı Faz Kaydırıcı, Wilkinson Güç Bölücüsü, Mesafe ve Kapsama Arttırımı 

 

Özet 

Pasif UHF RFID sistemleri, operasyon mesafesi ve kapsama alanı bakımından diğer 
aktif RF tabanlı tanımlama sistemlerine göre eksik kalsa da, bu sistemlere göre farklı 
birçok avantajları bulunmaktadır. Operasyon mesafesi ve kapsama alanI limiti bu 
gelecek vadeden teknolojinin en önemli engel noktalarındandır.    
 
Pasif UHF RFID sistemlerin operasyon mesafesini ve kapsama alanını arttırmak için bu 
tezde faz kaydırıcılı dizi anten tasarlanmış, gerçeklendirilmiş ve ölçülmüştür. Faz 
kaydırıcılı dizi anten tasarımının bir parçası olarak, her bir anten elamanına gerekli güç 
dağılımını ve faz farkını sağlayacak olan besleme devresi, tasarlanmıştır. Bu dizi anten 
besleme devresi tasarımı, faz kaydırıcı ve Wilkinson güç bölücülerin ayrı olarak 
tasarımından oluşmaktadır.  Ayrıca, dizi anten içinde ışıma elamanı olarak da 
mikroşerit yama antenler tasarlanmış ve gerçeklendirilmiştir. Güç bölücü, faz kaydırıcı, 
besleme devresi ve mikroşerit yama antenler dizi anteni oluşturarak, ışıma örüntüsünün 
±30 derece kaydırılmasının elde edildiği benzetimlerden sonra, dizi anten dielektrik 
sabiti 4,5 olan PTFE cam ve seramik örülü birleşiğinin üzerine basılmıştır.  
 
Yansımasız odada yapılan ışıma örüntüsü ölçümleri sonucunda ve standart gerçek bir 
RFID sistemin içerisinde yapılan okuma testleri sonuçlarının birbirleriyle uyuştuğu be 
benzetimlerde görülen ışıma örüntüsünün kaydırılmasının elde edildiği ve böylelikle 
operasyon mesafesi ve kapsama alanı arttırılabilindiği ölçülmüştür. Son önemli nokta 
olarak, elde edilmek istenen yönlendirilmiş huzmeler arasında zaman da ortalaması 
alındığında, ETSI tarafından konulan efektif ışıma gücü düzenlemelerine karşı soruna 
neden olmadan operasyon mesafesi ve kapsama alanı arttırılabilinmektedir.   
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1. Introduction 
 

This thesis is aimed to design a microstrip patch antenna array operating at 

867MHz for passive RFID systems. Main motivation behind the antenna array 

systems is to extending the coverage and operation range of the actual RFID 

systems. As part of the phased array system across a microstrip patch antenna 

is designed first as the radiating element. Further, power divider, phase shifter 

and feed network are designed and implemented to sustain essential beam 

steering. 

An RFID system consists of tags, readers and an application host. The readers 

communicate wirelessly with the tags to obtain the information stored on them 

[1]. The data sent by the reader is modulated and backscattered from a number 

of tags. Many publications have studied RFID system design and its 

characteristics [2]. This communication principle is intended to operate in far 

field at UHF (ultra high frequency) range, on which this study is based on, and 

defined by ETSI for region 1 between frequencies 865.7MHz and 867.7MHz. 

RFID applications are various and far reaching. Because there are so many 

numerous applications of RFID systems, there are different RFID systems 

working at different frequencies from KHz, MHz, to GHz range. They can be 

classified based on the power sources as passive, active and semi-active 

systems. In this thesis passive RFID system as defined by ETSI for region 1 

between frequencies 865.7MHz and 867.7MHz is used. Major advantages of 

passive RFID systems are the low cost of the tags, and also, easy 

manufacturability, however, they have limited coverage and operation range. 

Thus, the main objective of the thesis is extending the coverage area and 

operation range of passive UHF RFID systems. The coverage and the 

operation range of a passive system can be increased by increasing the 
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transmitted power; however it is not feasible due to regulations on EIRP 

(effective isotropic radiated power).  

So, by using the same transmit power operation range of the communication 

channel can be increased. In our approach, one of the antennas of the bi-static 

reader will be replaced by the phased antenna array, with a more directive 

beam with higher gain. The operating range of a RFID system is based on tag 

parameters, such as tag antenna gain and radar cross section, distances 

between readers, operating frequency, transmission power from reader to the 

tag, and gain of the reader antenna. Evaluating these parameters different 

approaches to increase the operation range and coverage of a RFID system 

can be obtained. Different ways of increasing the range of UHF passive RFID 

systems have been discussed in the literature. Increasing the sensitivity of 

RFID reader which can work with weaker signals received from tag, reducing 

power consumption, and increasing power efficiency on the tag circuit can be 

one way of increasing the operation range [3]. Other improvement suggestions 

when designing the RFID tag antenna and chip concurrently to decrease turn-

on voltage of the tag chip for increased reading range operation is given in [4]. 

Furthermore, a theory of diversity system that could decrease the required 

power level for the same bit error rate, and therefore increasing operation 

range, is investigated in [5]. In addition, the operation range of the hand-held 

RFID reader for different types of patch antennas has been investigated and, 

shows that gain of the antenna is a fundamental factor of RFID system range in 

[6]. However, most applicable way of increasing the read range of UHF RFID 

system is increasing the gain of the reader antenna since there is a relaxed 

size limitation, unlike that of the RFID tag.  

The thesis is organized as follows; 

 Chapter 1: This chapter provides the introduction to the thesis, objective 

and scope of work. 
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 Chapter 2: Gives essential background about passive back-scattering 

RFID systems and covers the literature review on microstrip antennas, and final 

design stage of microstrip patch antenna element is investigated 

 

 Chapter 3: Analyzes the elements of feed network of the microstrip 

antenna array, like power dividers and phase shifter.   

 

 Chapter 4: Antenna array analysis and design of feed network is 

analyzed. Also, results obtained from simulations and measurements of 

antenna array are given. Also, test results of the antenna in the actual RFID 

systems are presented. 

 

 Chapter 5: Conclusion and possible future work for this thesis is given.  
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2. Background 
2.1 RFID System 

 

The read range or operation range of a passive tag is limited by its ability to 

provide sufficient voltage and power at the antenna to power the tag’s 

integrated circuit. To extend the range of an UHF passive RFID system, in a 

basic sense, received power should be increased. Based on Friis transmission 

equation (Eqn.2.1), received power is based on the transmitted power, 

wavelength, distance, and gains of the antennas on both TX and RX sides.  

 

rtTR GG
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PP 00

2
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π
λ

                        (2.1) 

 

where (λ / 4πR)2 is called the free space loss factor, wavelength λ and distance  

R are variables within this factor and, are constant for each application. Also, 

max transmitted power TP  is limited according to regulations on UHF RFID 

systems. Other remaining factors are the gains of the antennas of the reader 

and tag. In based on the mono-static approach, two antennas are used on the 

reader side where, one transmits and other receives signals. When the reader 

has two antennas, for receiving and transmitting purposes, respectively                          

, we can conceptualize the unit as a radar system, due to transmission from tag 

to the reader, backward communication link is purely scattering in UHF RFID 

systems. This modal can be represented as in the Figure 2-1, where a passive 

backscatter RFID system model is given. Radar cross section, σ, a measure of 

an object’s ability to reflect electromagnetic waves, is added to illustrate the 

power scattering function of RFID tags.    
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Figure 2-1: Bi-static RFID System 

 

In the light of this model, we can construct a general formula for received 

power, which will mainly affect the operation range of a wireless system. 

Received power at the receiver reader in Figure 2-1, can be written as in 

Eqn.2.2.  
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For the maximum possible operation range, a minimum received signal level is 

specified. In other words, there is a minimum PR for which the system is 

operable. For a fixed PR,Min, to increase the range of RFID operation, R1 and/or 

R2, either receiver and transmitter antenna gains G1 or G2 can be increased.  
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The number of receiving and transmitting antennas is another factor affecting 

the operation range of the system. New approach on the RFID systems is 

multi-static system design due to its significantly better sensitivity to weak tag 

backscatter signals and superior RF coverage area. To demonstrate the 

advantage of this approach, in which two antennas can both receive and 

transmit, radiated power level contours are plotted. For a certain signal level, 

bi-static approach offers larger coverage as shown in Figure 2-2.  As it is seen 

in Figure 2-2 , mono-static system that has one node that receives and 

transmits concurrently has less coverage for a certain level of signal compared 

to a system with multi nodes. By this method, coverage of a passive RFID 

system is increased by using multiple transmit and receive nodes, however, 

operation range can not be increased in terms of the distance of the tag with 

reference to the nearest antenna. 

 

 
Figure 2-2: Mono-Static vs. Bi-static reader coverage 
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2.2 Basic Antenna Parameters 

The performance and evaluation of the antennas are determined by several 

factors as follows; 

2.2.1 Reflection Coefficient (Γ) and Return Loss (RL) 

Transmission lines have a resistance related with it, which is called 

characteristics impedance, Z0. however when the transmission line is 

terminated with an arbitrary load ZL, which is not exactly equal to its 

characteristic impedance, a reflected wave occur. And, reflection coefficient is 

defined to give the ratio between this reflected wave and the incident wave. It is 

derived by Γ=
0

0

ZZ
ZZ

L

L

−
−

. Return loss is the parameter that shows the amount of 

power that is reflected due to the impedance mismatch between the source and 

the load. And it is given by, RL = -20log | Γ| (dB). 

 

2.2.2 Gain and Directivity 

The gain of the antenna is the measure of the concentrating power in a certain 

angular region of space. The directivity of an antenna is defined as the ratio of 

the radiation intensity in a given direction from the antenna to the radiation 

intensity averaged over all directions. And relation between directivity and gain 

is defined by efficiency as G=ηD.  

 

2.2.3 3dB Beamwidth  

After the antenna pattern is plotted, some numerical aspects of the antenna 

pattern properties can be defined. And, half-power or 3dB beamwidth is the 

simply the measure of the angular width of the -3dB points on the antenna 

patter pattern relative to maximum level.  



 8

2.2.4 Bandwidth  

The term bandwidth simply defines the frequency range over which antenna 

meets certain performance criteria. And it is generally defined through the 

return loss of the antenna, for the frequency band in which return loss is less 

than -10dB.  

 

2.3 Microstrip Antennas 

The concept of microstrip antennas was firstly presented by Deschamps as 

early as 1953 [7]. However, the first practical microstrip antenna was designed 

by Howell and Munson in the early 1970's [8], [9]. In particular, two techniques 

of feeding a microstrip patch were developed, the edge-fed patch and probe-

fed patch, which are the ancestors of all other future developments [9]. Since 

then, widespread research has been committed to the study and further 

development of the concept of microstrip antennas. Use of patches in arrays 

was further investigated in the 1980’s and microstrip phase antenna arrays 

were developed and analyzed [10]. The effects of the feed network on large 

arrays and achievable ultimate limitations on the overall size of a microstrip 

patch antenna array were investigated later [11]. Investigations into the 

microstrip patch antenna continued including radiation properties, in terms of 

means of efficiently producing circular polarization and other types of 

polarization [12], [13].  Microstrip antennas have many advantages such as 

light weight, low volume, low profile, low cost and compatibility with integrated 

circuits; hence the advantages of microstrip antennas make them popular in 

many applications that have need of a low profile and light weight antenna. 

Some of these applications are mobile radio, satellite communications, radars, 

biomedical radiators and reflector feeds. They can be made very thin and 

straightforwardly mounted on missiles, rockets and satellites. However, 

microstrip antennas also have some disadvantages compared to conventional 

microwave antennas such as narrow bandwidth, high loss, limitations on the 

maximum gain and lower power handling capability [14]. Microstrip patch 
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antennas come in many different shapes such as rectangular, square, circular 

and ring configuration. The rectangular patch is the most commonly used 

microstrip antenna. It is characterized by its length and width. The far field 

radiation pattern, resonance frequency, input impedance and bandwidth of 

rectangular microstrip patch antennas are well documented and reported in 

[15], [16]. Microstrip patch antenna is a simply kind of open wave guiding 

structure, which consists of a radiating patch on one side of a dielectric 

substrate and a ground plane on the other side [14]. Figure 2-3 shows a 

microstrip antenna in its simplest form. The radiating patch, usually made of 

copper, can have any form, rectangular, square, circular, ring, elliptical, 

triangular or any other shape. 

 

 
 

Figure 2-3: Microstrip Antenna Configuration 

 

2.4 Rectangular Microstrip Patch Antenna  

 

Rectangular shape is the most common patch shape because of its favorable 

radiation characteristics with low cross-polarization and ease of analysis and 

fabrication. The first and probably the most utilized patch conductor geometry 
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are the rectangular and square shapes. Linear and circular polarizations can be 

achieved with either single elements or arrays of rectangular microstrip patch 

antennas [14]. In general, the length of the patch controls the resonant 

frequency and the width of the patch affects the impedance level at resonance 

as well as the bandwidth; the larger the width of the patch, the smaller the input 

impedance of the antenna, and this statement is only valid under certain 

conditions, such as when the thickness of the substrate is greater than 0.03 λ0, 

and in the design as a height of the substrate 0.0045 λ0 is used. These 

relationships are not mutually exclusive and the feeding procedure and location 

can dramatically change all the measures of performance. This chapter covers 

the background theory of rectangular microstrip patch antennas and the 

reasons for chousing microstrip antennas as a part of the designed RFID 

system studied in this thesis. 

 
 

It is fair to say that, for many practical designs, the advantages of microstrip 

antennas far outweigh their disadvantages. Microstrip antennas have been 

used in the frequency range from 100 MHz. to 100 GHz. Microstrip antennas, 

discussed in [14], have the following advantages: 

 

• Light weight, low volume and conformal to surfaces of some vehicles, 

• Low fabrication cost, so these antennas can be manufactured in large 

quantities, 

• Both polarizations are possible 

• Microstrip antennas can be easily integrated with microwave integrated 

circuits (MICs). 

• Microstrip antennas are capable of dual and triple frequency operations. 

• They can be manufactured mechanically robust when mounted on rigid 

surfaces. 
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Beyond these advantages, microstrip antennas have a number of 

disadvantages as compared to conventional antennas. The major 

disadvantages, discussed in [14], are given below: 

 

• Narrow bandwidth (this can be increased by using thicker substrate, 

etc.), 

• Low transmitting power, up to about 100 W. 

• Most of them radiate into the half space, 

• Surface wave excitation decrease the efficiency, 

• Cross polarization 

 

In this section, it is tried to answer why microstrip antennas are so popular in 

many antenna applications. There are vast amount of inexpensive opportunities 

for giving the circuit shape on a substrate material and producing the related 

mechanical mounts. The following work will only be the soldering, mounting 

and testing processes that most of the time one could easily handle by itself.  

Microstrip antennas have some disadvantages as explained before, but they 

will not be very critical when designed with some special techniques and dealt 

with adequate sensitivity. Due to the increasing demand for these antennas, 

many efforts have been made to reduce their disadvantages. To analyze one 

by one of these drawbacks given above, the narrow bandwidth of the microstrip 

antenna is a major obstacle for using it in today's communication systems. The 

operating range of the basic microstrip antenna element on a thin substrate is 

generally limited by its narrow impedance bandwidth. Bandwidth of microstrip 

antenna increases monotonically with thickness, but the problem with using a 

substrate thicker than the above range is that the impedance locus of the 

element becomes increasingly inductive [26], [27], making impedance matching 

increasingly difficult. In the applications that do not need much bandwidth like 

RFID, it turns out to be an advantage, to have narrow bandwidth, because the 

antenna rejects the signals that are out of the band and quality factor 
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increases. Also, for wireless communication systems like RFID there are power 

limits, so, lower transmitter power is not an issue for communication systems. 

Moreover, in the antenna array system natural half-space radiation pattern will 

be much more directive. Furthermore, by use of low loss and thin (h<0.1λg) 

microwave laminates, the effect of surface wave excitation will be decreased.  

2.4 Method of Analysis 

 

All the antenna designs in this thesis are analyzed using the well-known 

electromagnetic analysis method called Method of Moments (MOM). This 

technique transforms the integral equations into a matrix algebraic equation 

that can be easily solved by a computer  In the MOM, the surface currents are 

used to model the conducting microstrip patch elements whereas the effects of 

dielectric layers of infinite-extent are taken into account by using the Green’s 

functions.  For the case of finite size dielectric layers, volume polarization 

currents in the dielectric slab are used to model the fields in the dielectric slab. 

An integral equation is then formulated for the unknown currents on the 

microstrip patches and the corresponding feed lines [17]. The integral 

equations are transformed into algebraic equations that can be easily solved 

using a computer. This method takes into account the fringing fields outside the 

physical boundary of the two-dimensional patch, thus providing a more exact 

solution. For a comprehensive list of references on this method, please refer to 

[18]. This thesis makes extensive use of commercially available software code 

ADS Momentum 2.5 D electromagnetic simulation tools [19] based on MOM to 

design and analyze all the configurations addressed herein. 

2.5 Microstrip Antenna Feeding Techniques 

 

Microstrip patch antennas can be fed by a variety of methods. These methods 

can be classified into two categories- contacting and non-contacting. In the 

contacting method, the RF power is fed directly to the radiating patch using a 
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connecting element such as a microstrip line. In the non-contacting scheme, 

electromagnetic field coupling is done to transfer power between the microstrip 

line and the radiating patch.  

 
 

      
Figure 2-4: Feed configurations for microstrip antennas [21] 

 

The coaxial feed tends to have a narrow bandwidth and is difficult to model 

analytically. The aperture-coupled feed isolates the feed mechanism from the 

radiating element through the use of a ground plane. Energy from the feed line 

is coupled to the element patch through the aperture slot.  Unfortunately, the 

ground plane makes this feed configuration quite difficult to manufacture.  

Finally, the proximity-coupled feed removes the ground plane so it is easier to 

manufacture than the aperture-coupled feed [21]. Inset microstrip line feeding is 
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used for each microstrip patch antenna element as the most effective 

reasonable way to construct the antenna array, due to its planar structure and, 

it eases the task of matching since inset depth controls the input impedance of 

the antenna. Additionally, this configuration is simple to fabricate and lends 

itself well to analytical modeling.  

 

2.6 Microstrip Patch Antenna Design 

 

Various analysis techniques exist for modeling microstrip antennas [20] and the 

three most popular techniques used are the transmission-line, cavity and full-

wave models [21]. The transmission-line model is the simplest to implement, 

and cavity model, which has better accuracy but increased complexity, are 

empirical models that utilize assumptions to simplify the computation. The full-

wave model entails an exact analysis of Maxwell’s equations, which is 

computationally expensive, and potentially provides the best precision as it 

considers boundary-conditions on the dielectric-air periphery. Both the cavity 

and transmission-line models have the added advantage of providing the 

designer with a good physical perception and are computationally efficient. 

Equations based on the transmission line model, which models each edge of 

the rectangular patch as a thin radiating aperture [21], [22], are used as a guide 

in the initial phase of designing a patch antenna. CAD optimization is then 

usually used to tweak the antenna design to the desired performance or when 

evaluating various antenna substrates and dimensions. 

2.6.1 Microstrip Patch Antenna Formulations 

 

Microstrip patch antennas have been examined using assorted techniques. The 

transmission-line model is the simplest compared to cavity model and full wave 

numerical models, however, it is the least accurate. In designing a rectangular 
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patch microstrip antenna, the formulas that were derived are used as an outline 

in design procedures. 

In the transmission-line model the radiation from microstrip patch antennas can 

be calculated from the equivalent magnetic current distributions around the 

edges of radiating patch. The magnetic current values can be obtained from the 

edge voltage (with respect to the ground plane) distributions. Thus, the problem 

of microstrip antenna analysis reduces to that of finding the edge voltage 

distributions, for a given excitation and for a specified mode of the resonance of 

the patch.  

 

 

 

Figure 2-5: Transmission-line model of microstrip antenna 
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The microstrip antenna is modeled as two radiating slots that are separated by 

a distance effL . Referring to Figure 2-5, we can see the physical meaning of effL . 

It is essentially the length of the patch, L, plus an additional distance, 2 LΔ , to 

account for the fact that electric field of an open microstrip line does not end 

suddenly and, the patch looks electrically larger than its physical dimensions 

due to the fringing fields. It can be either introducing a capacitance or 

equivalent length extension, and Balanis [21] compensated by the following 

formula for this additional length 
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In the above equation, reffε is the effective dielectric constant of a microstrip 

transmission line given by [15] whose value is determined by evaluating the 

capacitance of the whole fringing field. The value of reffε  is slightly less than 

rε because the fringing fields around the periphery of the patch are not 

confined in the dielectric substrate but also spread in the air as shown in Figure 

2-5.  
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In order to operate in the fundamental 10TM  mode, the length of the patch must 

be slightly less than λg/2 where λg is the wavelength in the dielectric medium 
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mode implies that the field varies one λ/2 cycle along the length, and there is 

no variation along the width of the patch.  For microstrip antennas the choice of 

the width of the patch, W, radiator is very important. Small values of W result in 

low antenna efficiencies while large W values lead to higher order modes [23]. 

Also, for efficient radiation the width W is given by Bahl and Bhartia [14] as; 

 

2
)1(2 0

+
××

=
rf

cW
ε                                    (2.5) 

An expression for input impedance for microstrip patch antenna is given in [25] 

by using Cavity model analysis as   
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Where p is the proportion of patch antenna and Hertzian dipole in terms of 

radiated power,  

p = 1 + a2/20 (kW)2 + a4(3/560)(kW)4 + b2(1/10)(kL)2 

 

And where a2 = −0.16605, a4 = 0.00761 and b2 = −0.09142. 

Also, c1 in the Eqn. 2.6 is given as  

c1 = 1 − 1/n2 + 0.4/n4 

Where n is the refractive index and equals rrn με= . Also xf is the probe 

position in the x-direction. Approximation holds for thin substrates and more 

accurate for substrates with low dielectric constant [25] 

 

Inset fed can be approximated through experimental investigation [14]  as, for 

inset fed length x0  shown in the Figure 2-5, to match input impedance of the 

antenna Rin , necessary x0  value can be obtained through eqn.2.6; 
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The  rectangular  microstrip  patch  antenna  can  be  operated  in  several  

different modes. However, the most common modes of operation for the 

antenna are the TM10 and  TM01  modes  (Lo,  at  al,  1979) [15],  Since  they  

produce  principal  plane  radiation patterns with maxima in the broadside 

direction. Higher order modes tend to produce maxima off broadside.  If  W  is  

too  large,  then  the  higher  order  modes  could  get  excited. The  radiation  

pattern  of  rectangular  microstrip  antenna  for  the  TM10  mode  could  be  

calculated  by  combining  the  radiation  pattern  of  the  two  slots  of   length 

W and width  ∆L  on  the  infinite ground plane, which  are  spaced  at  a  

distance  L + ∆L .  Simple expressions exist which approximate the radiation 

patterns for the rectangular patch antenna and are given by [24] 
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Where first part of the Eqn. 2.9 is the pattern factor for a uniform line source 

with length W, and second part is corresponding to the array factor for two 

equally excited elements with spacing L.  Further simplifications can be made 

to write the principal plane patterns as [24]  
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Where θ is angle measured from the broadside as shown in Figure 2-5. 

Explicitly in Figure 2-6 where E-planes and H-planes of the microstrip patch 

antenna with designated start point for pattern measurement is plotted. 

 

 
Figure 2-6: MPA (E-H plane) 

 

2.6.2 Simulation  

 

Upon completion of design and feeding method, in order to verify further the 

theoretical calculations, simulation is done using ADS Momentum software. 

ADS Momentum software is a full-wave electromagnetic simulator based on the 

method of moments (MOM) and is used to simulate the structure of the 

antenna. The antenna is drawn in the layout based on the designed 

dimensions. Layout is composed of two layers, one is patch layer and other 

one is ground layer. Feeding of patch layer is obtained through internal port 

and ground reference port to the internal port is defined at the ground layer. 
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Figure 2-7: Design Methodology 

 

Fabrication consists of three main stages. The stages are, UV exposure, 

developing and etching process. UV exposure is used to transfer the image of 

the circuit pattern with a film in a UV exposure machine onto to the photo resist 

laminated board. This process will usually take 2 minutes. To transfer the 

antenna on a film, Linkcad software is used. By using this software, the actual 

structure without any compression of the layout sizes of the simulated antenna 

can be transferred easily. In developing process, water added Sodium 

Hydroxide mixture removes away the exposed resist so that the pattern will be 

fully developed. In the final etching process, unwanted copper area on the PCB 

is removed by Ferric Chloride. After soldering the SMA connector to microstrip 
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antenna, it is available for measuring S-parameters in HP Agilent 8270ES 

50MHz-20GHz S-Parameter Network Analyzer.  

 

 
  

Figure 2-8: Layout model of the microstrip patch antenna 

 

For parameters h=1.6mm and rε =4.5 using the theoretical initial values S-

parameter simulations done in ADS Momentum. Geometrical values of for 

length of the antenna as L = 82.6mm, for width as W = 105.2mm and with a 

inset fed length x0 = 29.6 mm. Return loss of the simulated microstrip patch 

antenna is plotted Figure 2-9.  Antenna radiates at 867MHz with a return loss of 

-40dB.   
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Figure 2-9: Simulation Results 

 

To design a microstrip patch antenna which has very narrow bandwidth, design 

methodology explained in Figure 2-7 should be applied. 

 
Figure 2-10: Design Methodology Example 
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 To explain the steps while designing the microstrip antenna, Figure 2-10 is 

plotted. In this plot yellow line corresponds to the simulation result given in 

Figure 2-9, which has been derived by various simulations over the first initial 

geometry values obtained by formulas that are arise from transmission line 

model of microstrip antenna. Along with, black line shows the return loss of the 

measurement of the printed microstrip antenna with the given simulation in 

Figure 2-10, with design variables of Length=83mm and inset feed depth of 

30mm. It is clear that there is apparent difference in terms of return loss and 

frequency between the simulated and actual measured antenna. Due to these 

differences between the measurement and simulation results additional 

microstrip antenna fabrication is needed. This process can be called tuning 

step. Fine tuning of the microstrip patch antenna is based on input impedance 

and resonance frequency. Fine tuning of the matching of the antenna is done 

through varying inset-fed length x0 and this change in x0 mainly does not affect 

the resonance frequency. To obtain necessity resonance frequency fine tuning 

can be done by changing the length of the rectangular patch, which is also will 

not affect the matching of the microstrip patch antenna. After various fabrication 

and measurements final version of the microstrip patch antenna is realized, and 

return loss of this antenna is plotted as blue dotted line. Explicitly, all the s-

parameter measurements done on the Agilent 8270ES S-parameter Network 

Analyzer, shown as phase and magnitude of return loss in Figure 2-12 and 

Figure 2-13. Realized microstrip patch antenna is can be seen in Figure 2-11. 

Final design parameters of antenna are as Width=106.7mm, Length=83.8mm 

and inset fed length of x0 = 11mm. From the s-parameter measurements it is 

ascertained that antenna is radiating at 867MHz and by easily looking at the 

phase of return loss, and at this frequency magnitude of the return loss of the 

antenna is -23dB which means 99.5% of power is transmitted. Also, it is seen 

that 10dB return loss bandwidth of the antenna is 16MHz, between 860MHz – 

875MHz, which is fairly sufficient for RFID applications.  

 



 24

 
 

Figure 2-11: Microstrip Patch Antenna 

 

2.7 Microstrip patch antenna measurements 

 

 
Figure 2-12: S11 (magnitude) 
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                   Figure 2-13: S11 (phase) 
 

After completing S-parameter measurements, and understanding that 

microstrip patch antenna radiates at 867MHz, to understand the radiation 

characteristics of the antenna, it is measured in the compact test range facilities 

of the TUBITAK UEKAE labs. In the Figure 2-14 radiation pattern of co- polar 

and cross-polar of H-plane is plotted measured -3dB beamwidth in H-plane is 

70.60 degree, and better than 15dB of co and cross polar difference is obtained 

at 867MHz. In the Figure 2-15 corresponding radiation pattern of E-plane for 

both co-polar and cross-polar is plotted. -3dB beamwidth of 80.78 degree is 

measured for E-plane and with a better than 15 of co and cross polar difference 

is measured. In the Figure 2-16, planar plot of the radiation patterns of E-plane 

and H-plane is given to ease understanding general structure of the patterns 

corresponding to cross-polar levels and angles with the help of the microstrip 

patch antenna Figure 2-6. 

 

Becxause it is a planar antenna and has a major main lobe with minor lobes, to 

calculate the directivity of antenna, simpler equations such as Eqn.2.9 can be 

used. Using Eqn.2.9 approximated directivity is calculated as 7.22. If the 
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directivity of the antenna is calculated from Eqn.2.10 ratio of maximum and 

average radiation intensity, directivity is given as 7.66. 

    

   22.74
≈≈

hphp

D
φθ
π

       (2.9) 

 

  66.7*4 max ≈≈
radP
UD π

    (2.10) 

 

 

 
Figure 2-14: Measured co-cross polarization (H-plane) radiation pattern 
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Figure 2-15: Measured co- cross-polarization (E-plane) radiation pattern 

 
Figure 2-16: Radiation Pattern (Planar) 
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If you look at to the polar radiation pattern of the microstrip antenna, H-plane is 

more symmetrical and E-plane is not, which is caused by asymmetry due to 

feed structure, and inequality of width and length of the rectangular patch. At 

the boresight there is clear difference of co-cross polarization signal levels of 

this linearly polarized microstrip antenna. In the back lobe co cross polarization 

signal levels are much more close, and even for degrees cross polarization 

surpasses co polarization signal levels, due to refracted signals from the 

substrate mainly construct back lobe.  

 

2.8 Radiation Pattern Measurement System 

 

Compact test range measurements are done in the anechoic chamber of 

TUBITAK-UAKAE. The wall of the chamber is entirely enclosed with pyramidal 

microwave absorbers as shown as in the Figure 2-17. In the chamber, horn 

antenna must be replaced more far away 2D2/λ than AUT (antenna under test) 

to be in the far field of the antenna, where D is the largest dimension of the 

antenna. Also, sweep time of the turn table to round 360° was set to 35sec. 

And in the Figure 2-18 microstrip patch antenna as an AUT is shown the 

compact test range. 
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Figure 2-17: Compact Test Range 

 

 
Figure 2-18: MPA in Compact Test Range



 30

 

3. Microstrip Antenna Array Feeding 

Elements 
 

 

In this chapter, phase shifter and power divider which form the antenna feeding 

elements will be explained in detail.  

 

3.1 Phase Shifter 

 

Phase shifters are used to vary the transmission phase angle of a feed 

network. Ideally, from phase shifters low insertion loss and equal amplitude in 

all phase states are expected. While, in various microwave applications they 

are used, in this thesis it will be used in phased array antenna system. General 

topology of transmission line phase shifter is given in Figure 3-1 . 

 

 
 

Figure 3-1: General Phase Shifter 
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Required phase shift can be provided by satisfying the equation )( 12 ll −=Δ βφ  

using the difference between the delay arm and reference arm, where 

β=2π/λg. Phase shifter is printed on FR4 with dielectric constant εr=4.5. Also, 

because it is designed to be used in UHF RFID Antenna Array, electrical length 

is calculated according at f0 = 867 MHz. For switching on two side of the phase 

shifter M/A-COM’s single pole double throw (SPDT) switch with, 0.4dB insertion 

loss, is used.  

 

 
Figure 3-2: Phase Shifter 

 

For the antenna array application, phase shifter with electrical length of λ/6 on 

reference arm and λ/2 on the delay arm was desired with difference of λ/3 to 

have ideal radiation pattern, so in the equation ∆φ=120/360*2π. According to 

these, phase shifter is realized by PCB etching method as shown in Figure 3-2. 

Measurements are done with network analyzer with two ports. Measurements 

are divided in two; S-parameters of reference arm and delay arm are 

investigated.  
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Figure 3.3: S12 (dB) 

 
               Figure 3.4: S11 (dB) 

RFIN RFOUT Delay Arm 
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Figure 3.5: S12 (dB) 

 
Figure 3.6: S11 (dB) 

Reference Arm 
RFIN RFOUT 
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Results shows that phase shifter has low transmission loss both on delay and 

reference arm, which have a return loss of -1 dB and -1.2 dB respectively, and 

also has low reflection both on delay and reference arm that are -55.2 dB and -

48.7 dB correspondingly.  

Phases 
Reference Arm 

 
Figure 3.7: S12 (phase) 

Delay Arm 

 
                   Figure 3.8: S12 (phase)  
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İn Fig.3.7 and Fig.3.8 phases of reference and delay arm are given. At 867 

MHz, S12 phase of reference arm is 88.5°and S12 phase of delay arm is -

149.6°, with phase difference of -119.1°.  

  

3.2 Power Divider 

 

Power dividers or combiners are used in various RF applications and antenna 

arrays are one field of the application of them. Design of feed array networks 

are one of the most fundamental part of array antenna design which will be 

investigated in the next chapter. In this antenna array feeding networks power 

should be divided as desired to the each antenna element while matching each 

antenna element to the input impedance and, this mechanism of dividing the 

power and matching the elements is achieved through power dividers.  

 

Due to antenna array structure antenna array requires equal power at all 

radiating elements, for this purpose equal Wilkinson power divider is 

implemented. Equal power dividers, divides the power equally between the 

output ports with minimum possible isolation between them. General structure 

of Wilkinson power divider can be seen in Figure 3.9 

 

 
  Figure 3.9: Wilkinson Equal Power Divider 
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Wilkinson power divider consists of four main parts, input port, quarter-wave 

transformers, isolation resistor and output ports. Input port of each antenna 

element is desired to match 50Ω , so, input impedance is also set to Zo=50Ω . 

Quarter-wave transformer is designed with substrate parameters h=1.6mm and 

rε =4.5, for electrical length of λ/4 and resistance of 7.70502 =× Ω . If the 

isolation level is not adequate or there is low isolation between the output ports, 

power will not be divided equally. By using the isolation resistance, isolation 

between the 50Ω  outputs ports will be achieved, whereas, an isolation 

resistance 100502 =× Ω  is used, which is added between the output ports.  

 

 
Figure 3.10: Realized Wilkinson Equal Power Divider 

 

 

Implemented Wilkinson power divider can be seen in Figure 3.10. As an 

isolation resistance SMD resistance is used. By the use of network analyzer, 

two ports, measurements are done, and showed in the below Figures 3.11 – 

3.15 where port names 1, 2 and 3 are assigned as in the Figure 3.9  
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Figure 3.11: S12 (dB) 

 
Figure 3.12: S13 (dB) 
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From the measurement results, it is seen that between the input and output 

ports power is divided equally at 867MHz. In figure 3.11 and 3.12 at 867 MHz 

dBSS 2.31312 −== is measured, with an insertion loss of 0.2dB at each port 

divided power is transmitted equally to the output ports.  
 

 
Figure 3.13: S22 (dB) 

 
Figure 3.14: S33 (dB) 
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In the same way, return loss for the output ports are very low at 867MHz. 

Finally, to see the isolation between the output ports, s-parameter analyses 

between the port 2 and 3 is done. In the Figure 3.13 and 3.14 S-parameters 

can be observed as dBSS 403322 −≈≈  for output port 2 and 3. And in the figure 

3.14 measurement of return loss of the input port is given and at 870MHz S11 ≈ 

-48dB is measured.  

 

 
Figure 3.14: S11 (dB) 
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Figure 3.15: S23 (dB) 
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4. Microstrip Antenna Array 
 

4.1 Why phased antenna array? 

 

The coverage and the operation range of a passive system can be increased 

by increase in transmit power; however it is not applicable due to regulations. 

However, by using more directive antenna more far away points can be 

reached, as it is seen in the Figure 4-5.  

 

 
*Using the same transmit power level 

Figure 4-1: Use of directive antennas 
 

By using the same transmit power operation range of the communication 

channel can be increased. In our approach, one of the antennas of the bi-static 
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reader will be replaced by the phased antenna array, with a more directive 

beam with higher gain. Diagram of proposed phased array antenna can be 

seen in the Figure 4-2, which consists of four (2x2) patch antenna elements, 

Wilkinson power dividers, phase shifters enabled by SPDT switches.  

 

 
Figure 4-2: Proposed phased array antenna diagram 

 

Increased antenna gain will increase the radial range; however, due to the 

narrower beamwidth the angular coverage will be decreased. In our technique, 

by using transmission line phase shifter, the main beam of the phased array 

can be steered to two main different directions, as shown in the Figure 4-3 as 

State1 and State2, so that the angular coverage is not affected; instead, it will 

be extended.  A typical radiation pattern of a microstrip patch antenna is shown 

in Figure 4-3 as radiating into the half space, also shown in the Figure 4-3, a 

more directive beam of a phased antenna array with two different pointing 

directions. One might argue that ERP (effective radiated power) will be 

increased by using high gain antenna; however, if the time average power is 

calculated, it will be the same as fixed beam less directive antenna because the 
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beam will be steered back and forth between these two states and decrease 

the average power. In normal operation, the beam will be shifting between the 

two states for a predetermined amount of time. 

 
Figure 4-3: Extending coverage and range of operation 

 

 

4.2 Microstrip Antenna Array  

 

Microstrip antenna arrays comprised of printed patches and printed lines for the 

feed network represent the goal of much research development activities. The 

design of microstrip antenna arrays is fundamentally the same as the design of 

other types of arrays, so ultimately performance is dependent upon achieving 

the desired amplitude and phase distribution of currents on the elements of the 

array for all frequencies and scan angles of interest. The effects of mutual 

coupling can be more significant in microstrip arrays than in some other arrays, 

leading to scan blindness in severe cases [28], [29]. However, arrays with a 
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broadside beam are often required in practice, and these arrays frequently can 

be designed without considering mutual coupling effects [33]. 

 

4.3 Array Analysis  

 

Main objective of the design was as denoted before, steering the beam with 

desired phases to ensure that increasing the coverage and operation range of 

possible RFID application. The  overall  antenna  pattern  of  a  microstrip  

patch  array  is  formed  with  the  contribution  of  each  patch  element.  The 

antenna pattern of the array could be obtained by multiplying the single 

antenna pattern with a parameter called Array Factor. Array factor varies with 

angle differences and it shapes the single antenna pattern to form the overall 

array pattern.  The array factor depends on distances between patch elements,  

total  number  of  the  patch  elements,  the  phase  and  amplitude  differences  

of  the  currents  between  adjacent  patch  elements  and  the  frequency of the 

field. For this purpose, to steer the beam as preferred, all this variables should 

be handled together. In the direction of demands, operation frequency is 

defined by the application as 867MHz and for 2x2 antenna array (with total four 

elements), power is determined to be delivered equally. Also, the spacing 

between adjacent antenna elements of an array should not exceed one 

wavelength  for  any  frequencies  within  the  frequency  bandwidth  in  order  

to  eliminate the  spurious  grating  lobe  occurrence [30]. And to obtain 

maximum gain, minimum coupling and with minimum area criterion element 

spacing between the microstrip antennas are selected 0.3 λ0 in x-direction and 

0.4 λ0 in y-direction. As, it is stated in [31], [32], cross-polarization generated by 

higher order modes of a patch antenna can be cancelled by proper use of 

symmetry, elements placed symmetrically with given element spacing in x and 

y coordination.  
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4.3.1 Array Factor 

 
To briefly introduce to the array factor calculations done on the Matlab some 

array factor analysis will be given with regard to our design of 2x2 antenna 

array.  For M elements in x-axis with element spacing dx with and N elements in 

y-axis with element spacing of dy. Also for phase shift of βx between the 

elements in x-axis and phase shift of βy between the elements in y-axis is 

defined. Moreover, element excitation are given as Im in the x-axis and In in the 

y axis. Than array factor of the planar antenna array can be written as in 

Eqn.4.1 [21].  
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After choosing two parameters of the phased array antenna, as a last 

parameter, to calculate the array factor phase difference between the antenna 

branches for beam steering is needed to be calculated. Array factor 

calculations are done in Matlab and it is determined that to obtain the beam 

steered at ±30° degrees, phase difference of ±120° degree is needed between 

the branches in x-direction.   

 

        
 

Figure 4-4: Array factor calculations  
 

 

In the Figure 4-4 array factor pattern for both ±120° degrees is plotted for states 

1 and 2 as related with phase differences in the above plot. As it is mentioned, 

array factor is shifted between ±30° degrees for state 1 and 2 as desired.  

o120=Xβ
o120−=Xβ
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However, this will not give final radiation pattern of the antenna array, but 

implies about it, because, overall antenna array radiation pattern is 

characterized by multiplying of radiation pattern of single microstrip patch 

antenna and the array factor. So, we can suggest that, overall radiation pattern 

will be also shifted between ±30° degrees but beamwidth will be broaden with 

the effects of microstrip patch antenna, also, side lobes can become larger on 

the overall antenna array radiation pattern. If we again come back to the 

examination of antenna array in schematic environment, to analyze the feed 

network, microstrip antennas are replaced by 50Ω  output ports. Also, without 

adding the phase shifter to the feed network layout, the essential phase 

simulations could be done, due to transmission line phase shifter will be added 

to the feed network without adding any enlargement in terms of length of lines.  

 

4.3 Schematic Analysis 

 

Design, simulations and measurements of microstrip patch antenna, 

transmission line phase shifter and Wilkinson equal power divider is given 

individually. In this chapter antenna array structure and array feed network will 

be investigated. At first circuit schematic of antenna array is designed and 

simulated.  
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Figure 4-5: Schematic view of Antenna Array 
 

Powers delivered to the antennas are all equal, except the phase shifter which 

is needed for beam forming, all the elements of the antenna array circuit is 

simulated in the schematic (Figure 4-5). In terms of antennas, 50Ω  ports are 

defined, for this schematic simulation s-parameter analyses completed as 

shown in Figure 4-6 to Figure 4-8.  
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       Figure 4-6: S12, S13, S14, S15 dB                   Figure 4-7: S11 dB 
 

In Figure 4-6, power delivered to output ports, which corresponds to each 

microstrip antenna elements, from the input port, is plotted. For the correct 

values of electrical length of λ/4 at 867MHz of Wilkinson power divider, power 

is divided to four in two steps with an insertion loss of 0.6dB. In Figure 4-6, 

return loss of input port is plotted, at 867MHz return loss measured -30dB 

which means 99.9% of power is transmitted.  

 
               Figure 4-8: S24, S35 dB       Figure 4-9: S23, S45 dB 
 

After the input power is divided and delivered equally to the output ports is 

ascertained, isolation between the output ports are investigated between the 
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inner and the outer branches. In the Figure 4-8 isolation between the outer 

branch ports are plotted, ex: Antenna 1 vs. Antenna 4 and Antenna 2 vs. 

Antenna 3.  In the Figure 4-8, isolation between the inner branch ports are 

plotted, ex: Antenna 1 vs. Antenna2 and Antenna 3 vs. Antenna 4. With these 

two stages of feed array network, and with use of three Wilkinson power 

dividers, power divided equally with very low insertion loss and high isolation 

between the outputs ports, this point also verified in the actual power divider 

measurements in the chapter 3. In the schematic, previously measured 50Ω  

and 70Ω  transmission lines in the power divider section, are used. 

Measurements and more detailed results of power divider are given in that 

section. Transmission line phase shifter is not added to the antenna array feed 

network schematic model. Structure of the transmission line phase shifter will 

not add any differentiation in terms of schematic analysis. After completing the 

schematic simulations of the antenna array feed network layout in ADS 

Momentum is drawn and analyzed.  

 

4.4 Layout Analysis 

 

After schematic simulations, it is seen that power is delivered equally to the 

microstrip antenna ports, layout simulations of whole antenna array is analyzed 

to ensure that necessary phase shift is obtained between the antenna branches 

to able to steer the beam ±30° degrees and with a minimum insertion loss on 

the feed network.  
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Figure 4-10: Antenna array feed network layout 

 

 

Because the phase shifter will obtain ±120° 

degree phase difference, between the antenna 

branches in x-direction ±240° phase difference 

is needed. Thus, feed point of the antenna 

array is shifted λ/3 in x-direction which will 

supply the 2λ/3 phase difference. As shown in 

the plot at right side, with this feed network 

scheme and with the use of phase shifter, 

phase will be steered for desired beam states.  

 

 
Figure 4-11: S12 – S13 phase 

120° 

-120° 

State 2 

State 1 
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Firstly, in the Figure 4-10 phase of the network is analyzed and the simulations 

of the phase difference between the input port and output ports 2 and 3 are 

given in Figure 4-11. For this feed network scheme return loss of input port of -

32dB is measured at 867MHz in Figure 4-12 which are very close to the 

schematic simulations.  

 
Figure 4-12: Return loss of input port  

 

 

After completing the ADS schematic simulations of the antenna array feed, and 

understanding both that input port has low return loss and input power is 

delivered equally to the antenna output ports. In the layout simulations of 

antenna array feed network, after it is confirmed that, right and left branches 

have necessary phase difference to obtain necessary array factor, complete 

antenna array layout analysis is performed. In the antenna array layout 

analysis, switch is not included to the layout, because in the ADS layout 

environment active devices like switches can not be included in the analysis, 

only if it is desired, it can be just added to the S-parameter analysis, but not to 

the full wave EM simulations. The antenna array with phase shifter can be seen 
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from Figure 4-13, however in the analysis switch is not used. Instead physical 

connections are made for the simulations of the switch. 

 

 
Figure 4-13: Layout of antenna array 

4.5 S-Parameter Analysis 

 

After completing the whole layout design of antenna array with necessary 

phase differences between branches and element spacing, S-parameters are 

obtained. In the Figure 4-14 and Figure 4-15 return loss of input port for two 

states of the antenna is given.  
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Figure 4-14: S11 (State 1) 

 
Figure 4-15: S11 (State 2) 

 

Return loss of around -25dB, -27dB for state1 and -22dB for state2, are 

obtained for both at the 867MHz. Also, around 867MHz, more than necessary 

bandwidth for the RFID application which is 2MHz is achieved. Additional out of 

band loss can be observed compared to the return loss of single microstrip 

patch antenna, due to the additional long feeding network transmission lines.  
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4.6 Radiation Pattern Simulations  

 
After the S-parameter analysis, to investigate the main beam radiation direction 

far fields of the array calculated for two different position of the switch that 

antenna array radiates for two states of the antenna in 867MHz, radiation 

pattern is calculated. Radiation plot results for H-plane for the two states of the 

antenna are given in Figure 4-16 and Figure 4-19. 

 

 
Figure 4-16: H-plane polar radiation plot (State 1) 

 

When the switches pass the signal from reference arm of the phase shifter 

which corresponds to the state 1, H-plane radiation pattern is obtained in 

Figure 4-16. Main beam is obtained at 30° degree and side lobe is appeared at 

-50° degree. And 2D plot of the H-plane radiation pattern with cross polarization 

is plotted in Figure 4-17. Between the main beam and the side lobe more than 

10dB difference is obtained with a co-cross pol difference of better than 30dB in 

the main lobe. Furthermore, 3D view of the far field radiation pattern for the 

state 1 of the antenna array is given in Figure 4-18.  
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Figure 4-17: Co-Cross Pol H-plane radiation pattern (State 1) 

 

 
Figure 4-18: 3D far field radiation plot (state 1) 
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Figure 4-19: H-plane polar radiation plot (State 2) 

 

 

For the state 2, switches at the phase shifter are open for the reference arm, H-

plane is plotted in Figure 4-19, it is observed that main beam is steered to -30° 

degree and side lobe is obtained at -50° degree.  

Because it is desired to steer the beam in H-plane and array factor is steered 

just in elevation pattern, there is no difference between both states of the 

antenna array in the E-plane as plotted in Figure 4-20. 2D and 3D plots for 

state 2 is not plotted. Figure 4-20 represents e-plane radiation for both of the 

states. 
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Figure 4-20: E-plane polar radiation plot 

 

4.7 Measurements  

 

After seeing that array antenna radiates at 867MHz in two states, and beam is 

shifted between ±30 degrees, antenna array is printed on low loss PTFE 

woven-glass ceramic composite Nelco NH9450 substrate with dielectric 

constant of 4.5, height of 1.52mm and tangent loss of 0.002. Both side of the 

substrate is coated with 35µ thickness electro-deposited(ED) copper.  
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Figure 4-21: Return loss of antenna for (State 1 and 2) 

 

S-parameters of the antenna array are measured in network analyzer, and 

return loss of input port for the two states of antenna array is plotted in the 

Figure 4-21. It is seen that for two states of the antenna array radiates in 

867MHz, and except the out of band losses simulation and measurement s-

parameter results are matched. Difference in terms of losses can be accounted 

to the conductor and dielectric losses which are not examined adequately 

enough with the ADS Momentum that can cause to the surface waves above 

the substrate. Dielectric losses is mainly based on the tangent loss of the 

substrates which is evaluated by ADS Momentum, however conductor losses is 

based on skin effect and surface roughness, which could be increased during 

manufacturing process. After the S-parameter measurements, and understood 

that antenna array radiates at 867MHz in the two states, to characterize 
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radiation properties, radiation pattern analysis of antenna array is done in the 

compact test range facilities of TUBITAK UEKAE. First two plots are plotted for 

H-plane of the antenna, which is the main concern from the starting point to 

increase the coverage and the operation range. Without even looking in detail it 

can be seen that in radiation on azimuth angle is steered as expected from the 

simulations. Last plot is given for the elevation pattern of the radiation which is 

both same for the two states.  

 

 
Figure 4-22: Measured co- and cross-polarization (H-plane) for State 1 



 61

 
Figure 4-23: Measured co- and cross-polarization (H-plane) for State 2 

 
Figure 4-24: Measured co- and cross-polarization (E-plane) for both states  
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The measured radiation patterns of H-plane of the array for two different states 

of switches are shown in Figure 4-22 and Figure 4-23, and measured radiation 

patterns of E-plane is plotted for both of the states together in Figure 4-24, 

because they have the same characteristics in E-plane. 3dB beamwidth of H-

plane for state 1 is 46°, and for state 2, beamwidth is 48°. For E-plane, when 

upper switches of phase shifter are open, half power beamwidth is 69.3° (State 

2), and otherwise, beamwidth is 73.6° (State 1). In accordance with simulation 

results, directivity of 12.1dB and 20dB difference of co and cross polar level at 

boresight is obtained at 867 MHz from the measurements. The measured 

results show that antenna beam can be steered ±30° degrees.  
 

4.8 Experimental results 

 

A test bench to assess the performance of a phased array antenna in an actual 

RFID system and to confirm the radiation pattern measurements, which shows 

that  antenna beam can be steered ±30° degrees completed in the compact 

range, has been established. For testing purposes, Alien bi-static ALR-8800 

model reader and passive UHF ALN-9554 tags have been used [34]. The array 

antenna was employed in the receiver port of RFID reader and a standard 

patch is employed for the transmission port as shown as in the Figure 4-25.  

Also, to get more accurate results floor of the room is marked densely to easily 

spot the locations. For different positions of receiver antennas, the standard 

patch antenna and antenna array in two different states, measurement results 

affirm the extended coverage and gain of antenna array as compared to those 

of the patch antenna, as it is plotted in Figure 4-26. Due to the limited area for 

measurements transmitted power level decreased by 6dB to 0.5watts from the 

max power level obtainable from RFID reader (2watts), in order to minimize the 

coverage, and so, increasing reliability of the measurement. Also, for 

affirmation purposes this read rate test is done for the two different localization 

of receive antenna. For different positions of the tag in the room it is checked 
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whether it is read or not read by the reader, and according to the receiver 

antenna it is noted with different symbols. To represent the two states of the 

phased array antenna and the standard patch three different symbols are used, 

which are circle, triangle, and cross. In the Figure 4-26, circles and triangles 

represent location information when antenna array is used. For the first figure 

circles represent the state 1 and triangles represent the state 2 of the antenna 

array, vice versa for the second graph. And, crosses represent the location 

information that is read by the standard patch antenna. In the first plot reader 

and transmitter antennas replaced in the opposite sides of the room and in the 

second plot two antennas placed in the near two side of the room. And, in the 

both of the plots receiver and transmitter antennas showed as RX and TX. 

 

 
Figure 4-25: Test bed with RFID reader 
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Figure 4-26: Readable location information of UHF passive tags  
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5. Conclusion 
 

 

Everyday a new application of Passive RFID system are emerging due to its 

various advantages like low cost, easy manufacturability and very small size of 

the tags, besides, able to implement together with the sensor devices which will 

power up the simple identification devices, with some additional sensor 

features. So, this field of the technology is very open to the new ideas, and 

limited by our imagination. However, among other adversary technologies low 

operation range and the coverage is one of the most important disadvantages 

of UHF RFID systems. 

 

In this thesis, phased antenna array for passive UHF RFID is designed, 

implemented, measured and tested. To design phased antenna array, feed 

network is designed first, which will maintain necessary amplitude to each 

radiating element and phase difference between them. Feed network design 

includes also, the separate investigation of phase shifter and power divider, 

which are designed, implemented and measured one by one. Also as a last 

substructure radiating element microstrip patch antenna element is designed 

and implemented. After calculating for maximum gain and minimum coupling 

and space with use of full-wave electromagnetic simulator ADS Momentum 

final array structure with use of phase shifter, power divider and microstrip 

patch antenna, to obtain beam steering between ±30 degrees, the antenna 

array is implemented on PTFE woven-glass ceramic composite substrate with 

dielectric constant of 4.5. All the measurements of the antenna array is done, it 

seen that simulations and the measurements agree with each other. S-

parameter measurements are done using S-parameter network analyzer in our 
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labs. From the radiation pattern measurements which are accomplished in the 

compact test range facilities of the TUBITAK and experimental test results 

which is obtained in through use of antenna array in an actual RFID system 

read rate measurement of the passive RFID tags are completed , it is observed 

that operation range and coverage is increased. It is seen that compact test 

range and field tests of antenna array, are consistent with each other. As a 

another important point, one can ask  due to time averaging while steering 

between the main beams, without causing any issue with the ETSI regulation 

limits on ERP (effective radiated power) operation range and coverage can be 

expanded. 

 

As a future work, the increase the number of the antenna element can be one 

possible way of improvement. However, this will increase the gain and so the 

operation range, however, size of the antenna array becomes immensely large 

in the UHF band. Also, with much more element, scanning the area to increase 

the coverage could be more problematic due to much more steering angle 

points will need be added to cover the area and it might not be feasible to 

implement phase shifting for all of this angles and scan them in a certain 

amount of time, which could decrease the read rates of the RFID tags. Except 

RFID application perspective, this thesis could be base for other antenna array 

projects maybe in the higher frequencies where much more antenna elements 

can be added, and large arrays can be implemented. Because there was no 

bandwidth requirement for RFID application, bandwidth was not concerned so 

much in this antenna array design; even the bandwidth of the high Q single 

layer microstrip patch antenna was enough for the bandwidth requirements. 

However, for high bandwidth applications, to design an antenna array, other 

design techniques should be used to increase the bandwidth of the single 

antenna element and so the whole antenna array. Because there could be 

different applications which need more bandwidth or gain, more complex 

structures than simple microstrip antenna, which could be implemented as a 

radiating element to be in an antenna array. That is to say, for more gain and 
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bandwidth requiring applications as an antenna element more superior in terms 

of gain and bandwidth performance can be developed. To epitomize, multi 

layer EBG (electromagnetic band gab) structures using meta-materials [36], or  

by using materials with very high permittivity [38], or stacked structures with 

use of parasitic elements [37], or using AMC (artificial electromagnetic 

conductor) surfaces [39], or even combining microstrip antenna and PVC horn 

[40], are examples that will develop in terms of gain, bandwidth or both with a 

cost of design and implementation complexity and cost increment. However by 

this way the number of array antenna for the same gain can reduced and array 

antenna can be miniaturized.  
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