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Abstract: Avella et al. (2006) [Avella, P., D’Auria, B., Salerno, S. (2006). A LP-based heuristic for a

time-constrained routing problem. European Journal of Operational Research 173:120-124] investigate a time-

constrained routing (TCR) problem. The core of the proposed solution approach is a large-scale linear program

(LP) that grows both row- and column-wise when new variables are introduced. Thus, a column-and-row gen-

eration algorithm is proposed to solve this LP optimally, and an optimality condition is presented to terminate

the column-and-row generation algorithm. We demonstrate that this optimality condition is incorrect and may

lead to a suboptimal solution at termination. We identify the source of this error and discuss how the generic

column-and-row generation algorithm proposed by Muter et al. (2010) may be applied to this TCR problem in

order to solve the proposed large-scale LP correctly.

Keywords: Time-constrained routing; large-scale optimization; linear programming; column generation; column-
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1. Introduction. Avella et al. (2006) study a time-constrained routing problem motivated by an

application that schedules the visit of a tourist to a given geographical area. The problem is to send the

tourist on one tour during each day in the vacation period by maximizing her total satisfaction while

ensuring that each attraction is visited no more than once. The authors refer to this problem as the

Intelligent Tourist Problem (ITP).

ITP is formulated as a set packing problem with side constraints. The set of sites that may be visited

by a tourist in a vacation period T is denoted by V , and J represents the set of daily tours that originate

from and terminate at the same location. Each tour is a sequence of sites to be visited on the same day,

provided that it satisfies the time-windows restrictions of the tourist and the other feasibility criteria.

The total satisfaction of the tourist from participating in tour j is given by rj , and the binary variable

yj is set to one, if tour j is incorporated into the itinerary of the tourist. If tour j is performed on day t,

the binary variable xjt takes the value one. The overall mathematical model for ITP then becomes

maximize
∑

j∈J

rjyj , (1)

subject to
∑

j∈D(i)

yj ≤ 1, i ∈ V, (2)

yj −
∑

t∈S(j)

xjt = 0, j ∈ J, (3)

∑

j∈F (t)

xjt = 1, t ∈ T, (4)
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yj ∈ {0, 1}, j ∈ J, (5)

xjt ∈ {0, 1}, j ∈ J, T ∈ T, (6)

where D(i) ⊂ J denotes the subset of the tours containing site i, S(j) ⊂ T represents the set of days

on which tour j can be performed, and F (t) ⊂ J denotes the subset of the tours allowed on day t. By

constraints (2), at most one tour in the selected itinerary includes site i. Constraints (3) impose that

a tour to be included in the itinerary is assigned to one of the days in T on which the tour is allowed.

We also require that exactly one tour is selected on each day of the vacation period as prescribed by

constraints (4). Finally, the objective function (1) maximizes the total satisfaction of the tourist over the

vacation period T .

Avella et al. (2006) solve ITP heuristically in two steps. In the first step, the LP relaxation of (1)-(6)

is solved by a column-and-row generation approach due to a potentially huge number of tours. To this

end, a large number of possible tours is enumerated and added to J . A subset J̄ ⊂ J of these tours

is selected to form the restricted master problem (RMP) for the column-and-row generation procedure.

At each iteration, a set of new tours j ∈ L ⊆ (J \ J̄) is introduced to the RMP. For each j ∈ L, this

implies adding xjt, t ∈ S(j), and the associated linking constraint yj −
∑

t∈S(j) xjt = 0 to the RMP.

The column-and-row generation procedure terminates when the condition stated below in Theorem 1.1

is satisfied. Observe that the authors evaluate this condition for each tour in j ∈ (J \ J̄) following each

optimization of the RMP, where J is known explicitly. Furthermore, in the computational experiments

| L |= 1; that is, the tour that violates the condition in Theorem 1.1 to the largest extent is added to the

RMP. In the second step of the proposed solution approach, (1)-(6) is solved by a commercial solver over

the set of tours currently present in the RMP to obtain an integer feasible solution for ITP.

Now, let πi, i ∈ V , γj , j ∈ J , and λt, t ∈ T , denote the dual variables associated with the constraints

(2)-(4), respectively. The following theorem, given in Avella et al. (2006) without a proof, defines the

stopping condition for the column-and-row generation algorithm applied to ITP by the authors.

Theorem 1.1 The solution of the current RMP is optimal for the LP relaxation of (1)-(6) if r̄j =

rj −
∑

i:j∈D(i) πi −
∑

t:j∈F (t) λt ≤ 0, for each j ∈ J .

The statement of the theorem above corrects two typos in the original Theorem 3.1 given by

Avella et al. (2006), where the termination condition appears as r̄j = rj−
∑

i:j∈D(i) πi−
∑

t:j∈F (t) λt ≥ 0,

for each t ∈ T and j ∈ D(t). Next, we demonstrate that the stopping condition in Theorem 1.1 is incor-

rect and may lead to a suboptimal solution when the column-and-row generation algorithm proposed by

Avella et al. (2006) terminates. Then, we discuss how the generic column-and-row generation algorithm

proposed by Muter et al. (2010) may be applied here to solve the proposed large-scale LP correctly.

The following is the dual of the linear programming relaxation of (1)-(6):

minimize
∑

i∈V

πi +
∑

t∈T

λt, (7)

subject to
∑

i:j∈D(i)

πi + γj ≥ rj , j ∈ J, (8)

− γj + λt ≥ 0, j ∈ J, t ∈ S(j), (9)

πi ≥ 0, i ∈ V. (10)
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Given the optimal dual variables associated with the current RMP, the resulting pricing subproblem to

be solved becomes

ζyx = maxj∈J\J̄ c̄j , (11)

where c̄j = rj −
∑

i:j∈D(i) πi − γj denotes the reduced cost of tour j. If the optimal objective function

value of this subproblem is positive with c̄j > 0, the variables yj , xjt, t ∈ S(j), and the primal constraint

yj −
∑

t∈S(j) xjt = 0 should be added to the RMP. Otherwise, the optimal solution of the current RMP

is declared as optimal for the LP relaxation of (1)-(6), and the algorithm terminates. The challenge

here is that the value of the dual variable γj , j ∈ J \ J̄ is unknown because the corresponding constraint

is currently absent from the RMP. Hence, in order to design an optimal column-and-row generation

algorithm for ITP, we must devise a method that anticipates the correct value of γj , j ∈ J \ J̄ to

be incorporated into the pricing subproblem. According to Theorem 1.1,
∑

t:j∈F (t) λt =
∑

t∈S(j) λt is

considered as an appropriate estimate for γj , j ∈ J \ J̄ . In the sequel, we first show that this is incorrect,

and then illustrate how to determine the correct value of γj , j ∈ J\J̄ based on the generic column-and-row

generation framework given by Muter et al. (2010).

Consider an iteration of the column-and-row-generation algorithm, where the current RMP is solved

to optimality and the associated optimal dual solution is represented by πi, i ∈ V , γj , j ∈ J̄ , and λt, t ∈ T .

Suppose that yj′ , j
′ ∈ J \ J̄ is to be priced out, where r̄j′ = rj′ −

∑
i:j′∈D(i) πi −

∑
t:j′∈F (t) λt = rj′ −

∑
i:j′∈D(i) πi −

∑
t∈S(j′) λt ≤ 0. Observe for the currently unknown dual variable γj′ that the dual

constraints (9) imply

γj′ ≤ min
t∈S(j′)

λt, (12)

and if | S(j′) |> 1 and maxt∈S(j′) λt > 0, then we may have

γj′ ≤ min
t∈S(j′)

λt <
∑

t∈S(j′)

λt. (13)

Clearly, this may lead to

r̄j′ = rj′ −
∑

i:j′∈D(i)

πi −
∑

t∈S(j′)

λt ≤ 0 < rj′ −
∑

i:j′∈D(i)

πi − γj′ = c̄j′ . (14)

Thus, we conclude that while r̄j ≤ 0 for all j ∈ J as required by Theorem 1.1 due to Avella et al.

(2006), there may exist a tour j′ with c̄j′ > 0. In other words,
∑

t∈S(j′) λt is not an appropriate estimate

of the missing dual variable γj′ , and the column-and-row generation algorithm of Avella et al. (2006)

may terminate prematurely, while there exists a tour j′ with a positive reduced cost. On the other hand,

if λt ≤ 0, t ∈ S(j′), then ∑

t∈S(j′)

λt < γj′ ≤ min
t∈S(j′)

λt (15)

may hold, and this may result in

c̄j′ = rj′ −
∑

i:j′∈D(i)

πi − γj′ ≤ 0 < rj′ −
∑

i:j′∈D(i)

πi −
∑

t∈S(j′)

λt = r̄j′ . (16)

That is, a tour j′ with a nonpositive reduced cost may violate the condition in Theorem 1.1 and it is

unnecessarily added to the RMP.

Using the column-and-row generation algorithm given in Muter et al. (2010), the pricing subproblem

becomes a two-stage problem:

ζyx = max
j∈J\J̄

rj −
∑

i:j∈D(i)

πi − αj , (17)
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where

αj =minimize γj , (18)

subject to − γj + λt ≥ 0, t ∈ S(j), (19)

at least one constraint in (19) is tight. (20)

To calculate the correct reduced cost of yj , we solve the problem (18)-(20) separately for each j ∈ J \ J̄ .

Constraints (19) in the problem (18)-(20) impose that the dual constraints (9) corresponding to the

variables xjt, t ∈ S(j), induced by any j ∈ J \ J̄ are not violated. Consequently, if the optimal objective

of (17) is ζyx = c̄j > 0, then the RMP is augmented with yj and xjt, t ∈ S(j), along with one new

linking constraint of type (3), and yj is the natural candidate to enter the basis at the next iteration of

the column-and-row generation algorithm. In order to warm-start the primal simplex algorithm to re-

optimize the RMP, the optimal basis from the previous iteration must be augmented with a new variable.

This new basic variable xjt is provided by the optimal solution of (18)-(20) for yj and corresponds to

a tight constraint in (19). Thus, the complementary slackness condition for the new basic variable is

satisfied.

We observe that the problem (18)-(20) is unbounded without the restriction (20) for all j ∈ J \ J̄ .

Therefore, for each j ∈ J \J̄ , the solution of (18)-(20) is trivial and αj = γj = mint∈S(j) λt. Consequently,

the correct termination condition for the column-row-generation algorithm that solves the LP relaxation

of (1)-(6) optimally is formalized in the theorem below.

Theorem 1.2 Let πi, i ∈ V , γj , j ∈ J̄ , and λt, t ∈ T be the optimal dual solution corresponding to

the optimal basis B of the current RMP. The primal solution associated with B is optimal for the LP

relaxation of (1)-(6) if rj −
∑

i:j∈D(i) πi −mint∈S(j) λt ≤ 0 for every j ∈ J \ J̄ .

The proof of this theorem follows from the analysis of the column-and-row generation algorithm developed

in Muter et al. (2010).

To support these observations, we generated a random instance of ITP. The column-and-row generation

algorithm is first applied to the LP relaxation of this instance using the stopping condition of Avella et al.

(2006) as stated in Theorem 1.1. We observe that this stopping condition leads to a premature termination

with a suboptimal solution. Then, we employ the stopping condition of Theorem 1.2 and determine

the true optimal solution. These results confirm also empirically that the stopping condition given by

Avella et al. (2006) is not correct1.
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1This counterexample is provided at http://people.sabanciuniv.edu/sibirbil/ejorsupp/.
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