

CSW-2010
1st Computer Science Student Workshop

Proceedings of the 1st Computer Science Student Workshop

Koc University Istinye Campus, Istanbul, Turkey, February 21, 2010.

Edited by

Cengiz Orencik *
Mehmet Ali Yatbaz **
Tolga Eren *
Tayfun Elmas **
Tekin Mericli ***

* Sabanci University, Orhanli, 34956 Istanbul, Turkey
** Koc University, Sariyer, 34450 Istanbul, Turkey
*** Bogazici University, Bebek, 34342 Istanbul, Turkey

Sabancı Üniversitesi
Orhanlı - Tuzla, 34956 İstanbul
Telefon: (0216) 483 9000
Faks: (0216) 483 9005
Web adresi: www.sabanciuniv.edu

© 2010 Sabancı University

Preface

This volume contains the proceedings of the 1st Computer Science Student Workshop (CSW). The

workshop took place on February 21st, 2010 at the Istinye Campus of Koç University, Istanbul.

CSW aims to bring the Computer Science and Engineering graduate students in Istanbul together in a

semiformal workshop atmosphere. This workshop exposes the graduate students to the concepts of

academic writing, peer review, research presentation, critical thinking as well as academic way of

thinking in general. The students also establish connections in this semiformal environment via meeting

each other, sharing ideas, and getting feedback on their work. The ultimate goal of this workshop series

is to form a network of young researchers who will support each other and establish a core group of

senior graduate student leaders, who will serve as mentors and role models for the coming generation.

Therefore, the workshop is organized by graduate students for graduate students.

There were four oral presentation sessions in total, and three poster sessions in between. The oral

presentation sessions were categorized into three main groups; namely "Artificial Intelligence",

"Network and Security", and "Bioinformatics, Data Mining, and Computer Architecture". There were 50

submissions in total and 16 of the submissions were accepted for oral presentation while 15 of them

were accepted to be presented as posters.

Several contributors of the CSW, either as authors or Program Committee members, were awarded in

the "Best Tool Paper", the "Best Research Paper", the "Best Work-in-Progress Paper", the "Best Poster",

the "Best Presentation", and the "Best Reviewer" categories.

This successful workshop would not be possible without the initiation and support of our professors Esra

Erdem and Metin Sezgin, and the hard work of all members of the Organizing Committee and the

Program Committee. We would also like to sincerely thank to Koç University and Sabancı University for

being the sponsors of the workshop.

Workshop chairs

Tekin Meriçli Tayfun Elmas Tolga Eren

Organization

Organizing Committee

Workshop Chairs

Tayfun Elmas, Koç University

Tolga Eren, Sabancı University

Tekin Meriçli, Boğaziçi University

Local Chairs

Bulut Altıntaş, Yeditepe University

Fatma Ergin, Marmara University

Kenan Kule, İstanbul Technical University

Erkan Uslu, Yıldız Technical University

Publications Chairs

Cengiz Örencik, Sabancı University

Mehmet Ali Yatbaz, Koç University

Logistics Chairs

Baybora Bektaş Baran, Koç University

Duygu Karaoğlan, Sabancı University

Publicity Chair

Duygu Çakmak, Sabancı University

Program Committee

Nazlı Nakeeb Alan, Yeditepe University

Bulut Altıntaş, Yeditepe University

Reyhan Aydoğan, Boğaziçi University

Muhammet Balcılar, Yıldız Technical University

Baybora Bektaş Baran, Koç University

Murat Birben, Yeditepe University

Duygu Çakmak, Sabancı University

Emrah Çem, Koç University

Sevgi Çilengir, İstanbul University

Tayfun Elmas, Koç University

Billur Engin, Koç University

Halit Erdoğan, Sabancı University

Tolga Eren, Sabancı University

Fatma Ergin, Marmara University

Utku Erol, İstanbul University

Özgür Kafalı, Boğaziçi University

Emre Kaplan, Sabancı University

Duygu Karaoğlan, Sabancı University

Kenan Kule, İstanbul Technical University

Şükrü Kuran, Boğaziçi University

Tekin Meriçli, Boğaziçi University

Cengiz Örencik, Sabancı University

Bariş Şenliol, İstanbul Technical University

Oya Şimşek, Sabancı University

Berker Taşoluk, İstanbul University

Sinan Tümen, Koç University

Gönül Uludağ, İstanbul Technical University

Erkan Uslu, Yıldız Technical University

Abuzer Yakaryılmaz, Boğaziçi University

Mehmet Ali Yatbaz, Koç University

Table of Contents

1. Fixation Prediction Using Local Image Features ……………………………..p.8

Sinan Tumen, Tevfik Metin Sezgin

2. Advances in malware development: Using Emulators’ Weaknesses and
Cryptography ………………………………………………………………....p.11
Can Yildizli

3. Multi-modal Analysis of Dance Performances for Music-driven
 Choreography Synthesis ………………………………………….......p.14
 Ferda Ofli, Engin Erzin, Yucel Yemez, A. Murat Tekalp

4. Spatial Filtering for Encoding Multi-view Video in Spatially Reduced 3D
Displays ……………………………………………………………………...p.17
Goktug Gurler

5. Haplotype Inference with Polyallelic and Polyploid Genotypes ……………. p.20
Ozan Erdem

6. Air drums: A computer vision based drum simulator ………………………...p.23
Kaan C. Fidan, Ihsan Kehribar, M. Tugce Sahin, Serhan Cosar, Devrim Unay

7. Event Ordering for Turkish Natural Language Texts ………………………...p.26
Sadi Evren Seker, Banu Diri

8. Classifying Exceptions in Agent-Based Protocols: A Thin Line Between
Violation and Opportunity …………………………………………………... p.29
Ozgur Kafali

9. Effect of Consistent Exploration in Dynamic Environments:
 Does Trust Work in Competitions? …………………………………………. p.32
 Ozgur Kafali

10. Use of Cluster Analysis in Twitter …………………………………………... p.35
Nadin Kokciyan

11. BLUE-CHIP: Energy-Efficient Simultaneous Multi-Threaded Processors …. p.38
Mine Mesta and Gurhan Kucuk

12. Performance Analysis of Nature Inspired Heuristics for Survivable Virtual
Topology Mapping …………………………………………………………... p.41
Fatma Corut Ergin, Elif Kaldirim, Aysegul Yayimli, Sima Uyar

6

13. Stretch: An Instance Based Preproccessing Algorithm ………………….…. p.44
Mehmet Ali Yatbaz, Deniz Yuret

14. QED: A Proof System for the Static Verification of Concurrent Software
Tayfun Elmas, Omer Subasi ………………………………………………....p.47

15. Quantifying Solutions in Answer Set Programming ……………………….. p.50
Halit Erdogan

16. L1 Regularization for Learning Word Alignments in
 Sparse Feature Matrices ... p.53
 Ergun Bicici, Deniz Yuret

17. Collaborative Haptic Negotiation and Role Exchange in Multimodal Virtual
Environments ………………………………………………………………... p.56
Salih Ozgur Oguz, Ayse Kucukyilmaz, Tevfik Metin Sezgin, Cagatay Basdogan

18. Rigid Motion Correction in IVUS Sequences ………………………………. p.59
Gozde Gul Isguder, Gozde Unal

19. Genome Rearrangement: A Planning Approach ……………………….…… p.62
Tansel Uras

20. Prime Number Generation: Writing a Parallel Program on a Multi Core Machine
that Implements Miller Rabin Testing ………………………………….…… p.65
Emre Kaplan, Baris Altop

21. Predicting the Effects of Non-Synonymous SNP Variants on Protein Function
Using SIFT ………………………………………………………………..… p.68
Bora Karasulu, Ceren Tuzmen, Beytullah Ozgur

7

Fixation Prediction Using Local Image Features

Sinan Tumen STUMEN@KU.EDU.TR
T. Metin Sezgin MTSEZGIN@KU.EDU.TR

Dept.of Computer Engineering, Koc University

1. Introduction
Human visual system processes only a tiny region of the
scene despite of a large field of view. As the eccentricity of
a scene point from the fovea increases, the resolution de-
creases quadraticly. To recognize a scene precisely, high
resolution is acquired using active scan of the environment.
This scanning process consists of saccades and fixations.
Saccades are rapid movements of the eye in which no infor-
mation is gathered as opposed to fixations which are long
enough to let photoreceptors to respond to visual stimuli.
A typical eye scan pattern executed by an observer viewing
a scene is illustrated in Figure 1.

Gaze is directed to the most informative regions of the
scene to collect as much as information in a short period
of time (Land, 2006). Finding informative regions of a
scene has many uses in many applications and contexts in-
cluding computer vision (e.g., robot vision, compression,
salience estimation) and human-computer interaction (e.g.,
interface usability assessment). The objective of this study
is to estimate the intensity of fixations in a particular patch.

To explore the factors which determine the locations of the
fixations we analyzed the DOVES dataset (Van Der Linde
et al., 2009) using machine learning techniques. In this
dataset, eye movements are recorded from 29 human ob-
servers as they viewed 101 images of size 1024×768. Each
image is displayed for 5 seconds, eye trajectory is sampled
at frequency of 200 Hz which. The participants are asked
whether the given patch belongs to the current image, after
they examined it for five seconds.

2. Related Work
Study of computational modeling of eye movements have
been resulted in two major models: top-down and bottom-
up (Itti, 2000). The While visual attention is directed by
high level features such as the goal of the task and con-
text of the scene in top-down approach, it is triggered by
the visual local statistics in bottom-up approach. Bottom-
up approach is reported to be succeeded in the predicting
the region of interests in the absence of a top-down guid-
ance (Itti, 2000). Based on the feature integration theory

Figure 1. Eye Scan Path

(Treisman & Gelade, 1980), local features are used to cre-
ate saliency maps of the images in bottom-up approaches.
Then the peaks of saliency map are used to predict the se-
quence of fixations (Itti & Koch, 2001; Rajashekar et al.,
2008). In this study, instead of trying to find the most prob-
able sequence of fixations, we try to estimate number of
fixations in a particular part of an image.

3. Model
DOVES dataset consists of images without contextual in-
formation which makes it appropriate for bottom-up ap-
proach. The local features which are reported to be statis-
tically different from non-fixated patches are used to cre-
ate feature maps of the images (Rajashekar et al., 2006).
These features are luminance, RMS contrast, band pass of
luminance and band-pass of patch contrast. Then we used
feature maps to estimate the intensity of fixations in each
region of the images.

3.1 Luminance Map

The mean luminance for an image patch was computed us-
ing a circular raised cosine weighting function w, as fol-
lows (Rajashekar et al., 2008);

8

where M is the number of pixels in the patch, Ii is the
grayscale value of the pixel at location i and the raised co-
sine function w is expressed as:

3.2 RMS Contrast Map

The mean luminance for an image patch was computed us-
ing a circular raised cosine weighting function w, as fol-
lows (Rajashekar et al., 2008);

where M is the number of pixels in the patch, Ii is the
grayscale value of a pixel location i and I is the mean lumi-
nance of the patch.

3.3 Bandpass of Patch Luminance Map

Regions that differ from their surroundings can be detected
by the outputs of the bandpass Gabor kernels. Since at-
tention often seems to be drawn to regions that differ from
their surroundings, output of the band pass Gabor filter is
used as input to saliency map (Rajashekar et al., 2008).

3.4 Bandpass of Patch Contrast Map

Bandpass outputs of local image contrast are used to cap-
ture higher order image structure that is ignored by the lu-
minance filter (Rajashekar et al., 2008).

3.5 Features

Four 1024x768 saliency maps are generated using the for-
mulas above. Then saliency maps are divided into square
patches of size 64x64, which results in 16x12 regions.
Statistics in these patches are collected as features of the
region. The statistical parameters are mean, standard devi-
ation, maximum and minimum of intensity in each saliency
maps that corresponds to 16 features. Since people tend to
fixate to the regions close to the center of the image, we
added Euclidean distance to the center as another features.

3.6 Objective Function

Each image is divided into 64x64 square regions and the
number of fixations of each participant is summed in each

Figure 2. Feature Extraction

patch. The entries of the resulting matrix give the total
number of fixations to a particular region in an image. Then
regression problem formulated as estimating the number
of fixations made to a particular region using features ex-
tracted from the saliency maps of the same patch.

4. Estimation Techniques
Generated dataset with 19392 objects corresponding to
square patches extracted from images are split into train-
ing (60%), validation (20%) and test sets (20%). After re-
gression models are trained on the training set, parameters
of the models are optimized on validation set. The mean
of the squared residuals and the correlation coefficients of
target and estimated values are presented in Table 1. The
learning curve is stabilized as data size increases, suggest-
ing that addition of more data will not decrease the error. If
we take baseline as mean of all fixations in each patch, the
mean square error would be 3.1 and correlation coefficient
would be 0.35. The result suggests that performance of the
trained models are just between the human visual system
and completely arbitrary fixation selection system.

Regression Method MSE Corr.Coefficient
Baseline 3.1 0.35
Linear 1.52 0.74
SVM 1.35 0.76
KNN 1.64 0.71
Ridge 1.51 0.74
Lasso 1.86 0.69

5. Conclusion
Although human visual system makes 4-6 fixations per sec-
ond, these fixations are not deployed to the arbitrary loca-
tions. Instead during the deployment of the current fixa-
tion, the next fixation is selected and eye moves to the next
location according to a attraction rule which is formed by
contextual information and local features of the scene. In
the absence of a context in the scene, the attraction is dom-
inated by the local features. With the method presented in
the study, the most informative regions in an context-free
image can be revealed using only the local features. It can

9

also be used in evaluation of the local features for genera-
tion of saliency maps and comparison with the ground truth
which is real number of fixations in each region.

6. Future Work
There are many other candidate features suggested for the
generation of feature maps. The use of these features may
improve the accuracy of the estimation. Another area of
improvement is making use of sequential methods such as
Kalman filter and Markov chain in modeling the eye move-
ments. We plan to use suggested features and temporal
models in our next studies.

References
Itti, L. (2000). Models of bottom-up and top-down visual

attention. Doctoral dissertation.

Itti, L., & Koch, C. (2001). Computational modelling of
visual attention. Nature Reviews Neuroscience, 2, 194–
204.

Land, M. (2006). Eye movements and the control of actions
in everyday life. Progress in Retinal and Eye Research,
25, 296–324.

Rajashekar, U., van der Linde, I., Bovik, A., & Cormack,
L. (2006). Statistical analysis and selection of visual fix-
ations. Journal of Vision, 6, 496.

Rajashekar, U., van der Linde, I., Bovik, A., & Cormack,
L. (2008). GAFFE: A gaze-attentive fixation finding en-
gine. IEEE Transactions on Image Processing, 17, 564.

Treisman, A., & Gelade, G. (1980). A feature-integration
theory of attention. Cognitive psychology, 12, 97–136.

Van Der Linde, I., Rajashekar, U., Bovik, A., & Cormack,
L. (2009). DOVES: A database of visual eye move-
ments. Spatial Vision, 22, 161–177.

10

Advances in malware development: Using emulators weaknesses and
cryptography

Can Yıldızlı CANYILDIZLI@SABANCIUNIV.EDU

Sabancı University, Orhanlı - Tuzla
Istanbul / Turkey
P.O. Box 34956

1. Introduction
Malwares become more sophisticated in terms of their ob-
fuscation mechanisms. Hence, it gets harder to detect them
with current analysis methods. Today, malwares are ca-
pable to detect analysis tools and environments to evade
detection. Anti-viruses trying to develop more accurate de-
tection mechanisms to protect users from malware threats.
However, anti-virus heuristics are based on emulation of
code which is a weak spot for malware authors. If an em-
ulation process can be detected, a malware can stop it’s
execution or execute some junky code depending on the
implementation. In this paper we present ways to hide a
malware from anti-viruses by generating a decryption key
using the difference between emulation and real execution.
We also present our tool “Cryptoware”, which has the ca-
pability to make any existing malware undetectable to anti-
viruses. Our method can not be bypassed by proposed anti-
anti-Vmware methods (Sun et al., 2008) since decryption
algorithm needs a key which should be generated while ex-
ecuting the code in an environment. The outline of our
paper is as follows.

In Section 2, we explain general analysis techniques of
anti-viruses and their weaknesses. We also give an exam-
ple of using emulation and real execution difference to de-
rive a key with an obfuscation method. In Section 3, we
show how malicious cryptography usage can help the at-
tackers to hide the functions they are using. In Section 4,
we present our tool “Cryptoware” which makes any mal-
ware completely undetectable to anti-viruses by using the
techniques that we described. We also show results of de-
tection rates using techniques described in this paper. Fi-
nally in Section 5, we conclude and propose a new way to
emulate obfuscated malwares as our future work.

2. Analysis Techniques and Problems
Anti-viruses make use of static and dynamic analysis tech-
niques to effectively detect and clean malware. In static
analysis, code of the malware is never executed(Daoud

Figure 1. General representation of an obfuscated malware

et al., 2008). This method uses pattern matching which
allows detecting malicious code faster. However, the tech-
nique is ineffective since most of the malwares are in obfus-
cated form making use of polymorphism, metamorphism
and various other techniques. Also, understanding binary
code becomes generally an impossible task with static anal-
ysis if the malware is self-modifying. Dynamic analysis,
on the other hand, tries to detect malware by emulating
its instructions in a protected environment and observes its
behavior(Aycock, 2006). Dynamic analysis generally pro-
vides better results than static analysis because it makes the
identification of obfuscated code faster and easier by emu-
lating the code. However, there exist some differences be-
tween emulation and real execution. These differences are
heavily used by malware authors to evade detection. Once
a difference is found between two execution environments,
it becomes easy to encrypt malicious code in a way that the
emulator cannot decrypt it. For example, suppose a virus
V is encrypted and we have no way of detecting it with
static analysis in a reasonable time. V contains two parts.
First part contains decryption routine for the encrypted part
of the virus. We will call this part S (S represents stub)
and the remaining part which contains encrypted malicious
code with B (B represents the body of the virus) (Fig. 1).

A typical execution will start from S, S will decrypt B with
the key already hard-coded in itself. Since S doesn’t con-
tain any malicious code but only decryption routine, V will
be considered as safe in static analysis. However, emulat-
ing this code will reveal malicious part B since decryption
routine decrypts B with the correct key which is calculated
by S. In order to hide malicious part from dynamic anal-

11

ysis and emulators we will use a method to generate de-
cryption keys in which some environment information is
involved. Suppose that we used symmetric encryption and
we encrypted the malicious code with the key k with a sym-
metric encryption algorithm. Real execution will be able to
decrypt the body of the virus correctly since it can calculate
k. However, from emulator’s perspective, calculated value
of k will be totally different. As a result of this, anti-viruses
and emulators will observe meaningless instructions when-
ever they try to emulate the malware. To achieve this, we
need some difference between emulation and real execu-
tion so that we can generate different keys for decryption
when we execute the malware.

2.1 Timing (execution speed) differences

Emulators are not capable to emulate instructions as fast as
CPU does. We will explain how to mislead an emulator to
calculate different key with a simple assembly instruction
called rdtsc (Read time stamp counter) which counts the
number of ticks since computer reset1. The idea is to make
a comparison between the running time of some dummy
instructions within the virus and detecting if the code is try-
ing to be emulated by comparing timing values. Suppose
that a virus V has a body B which is encrypted with a key
k. We make two consecutive rdtsc calls and calculate the
difference between results of these functions. It turns out
that in a real execution, timing value will be always smaller
than 100h. However, when this code is emulated, timing
value will be significantly higher. This value can be a ran-
dom number based on the implementation of the emulator.
Timing value difference cannot simply be tested with a con-
ditional branch in the malware. Dynamic analysis methods
are smart enough to save the places where a conditional
branch occurs. They are also capable to revert back to the
branch point and check if the other execution flow looks
suspicious or not. Because of that, instead of comparing
if the value is smaller than 100h, we generate decryption
key by using this information directly. Since we know the
timing difference is below 100h, we can easily make a bit-
wise AND operation to produce a fixed number from that
difference. This fixed number can be used to calculate the
decryption key with appropriate addition or multiplication
operations. Emulation, on the other hand, produces wrong
number from the result of the same AND operation. As a
result of this, decryption key will be different than the real
execution. Using wrong key for decryption will generate
corrupted code in emulation, whereas real execution will
decrypt the malicious code correctly.

1Details for this instruction can be found here:
http://www.intel.com/design/intarch/manuals/243191.htm

2.2 Exception handling

Whenever an error occurs in a normal flow of a program,
it is expected to generate an exception to inform user about
this error. In a Windows operating system, this task is
maintained by SEH (Structured Exception Handling). SEH
will change the flow of the execution whenever an excep-
tion occurs. It is expected that the handler will fix the ex-
ception error and returns to normal flow of execution. At
worst, SEH will inform the user about the error if the ex-
ception is caused by user interaction and stops the program.
Emulation of SEH in an anti-virus is different than real ex-
ecution. Most anti-viruses stop emulating the code when-
ever they detect a fatal error that causes an exception and
terminate the application. Some of them just use their own
exception handlers to deal with common types of excep-
tions. Malwares can make use of this difference by over-
writing SEH entries with their malicious routines so that if
an exception occurs at some point, control of the program
will be directed to the malicious part by the SEH.

2.3 Environment variables

Most emulators return fixed results when some native API
is used to retrieve some data about the working environ-
ment of a program, like some contents of a file, date, time
or details about underlying processor. Those information
can be used to produce the decryption key like in example
given in section 2.1. Descriptor table addresses of emu-
lators may also help to detect whether the code is being
emulated(Quist & Smith, 2004). Addresses of Interrupt
Descriptor Table (IDTR), Local Descriptor Table (LDTR)
and Global Descriptor Table (GDTR) can be accessed with
basic instructions. Those addresses are fixed on real execu-
tion of the program but vary in the emulated environments
since emulators should provide their own set of fixed table
addresses. Detecting virtual machine’s presence by using
descriptor table addresses is a widely used technique by
malware authors. There have been many examples for im-
plementing those detection routines into a single program
to detect emulators like Scoopy Doo2, Red Pill3, No Pill.
Our program Cryptoware also benefits from these common
techniques while generating decryption keys.

2.4 Probabilistic execution and time-bombs

Probabilistic execution, when applied correctly, can obfus-
cate a malware and produce junky code when being em-
ulated. The probability of correct execution can be de-
creased to evade detection but it will also effect the spread-
ing speed of the malware. Time-bombs use a similar tech-
nique like probabilistic execution, but instead of depending

2http://www.trapkit.de/research/vmm/scoopydoo/index.html
3http://www.invisiblethings.org/papers/redpill.html

12

on a probability they are implemented to execute whenever
an event triggers. Most common usage is setting the mal-
ware to execute on a specific date or time. Setting up a
cryptocounter to implement a timebomb can enable a mal-
ware to execute its malicious instructions without revealing
the exact time that triggers the execution(Young & Yung,
2004). We will now propose a way to call APIs without
revealing any information to the observer. This API call
technique can also be used to check events that trigger time-
bombs without revealing the event itself.

3. Malicious Cryptography Usage
Malwares generally make use of native APIs which are de-
tected by heuristics on static analysis since import table of
the executables contains a list of APIs which will be called
during execution. Most APIs are called by loading an ex-
ternal library into memory and calling the function with the
name and correct parameters. APIs give information about
the behavior of the program and a malware author should
obfuscate most of those API calls to evade detection. In-
stead of supplying the address or the name of the API, a
malware author can calculate the hash value for an API
which is going to be called on the runtime. After loading
the external library into memory, a malware can start from
the first API from the loaded library and calculates hash
values of APIs until a match occurs with the hash stored in
itself.

This allows malware to hide any information about the
APIs that will be called upon execution. To make detec-
tion harder, a malware can encrypt the hash function and
decrypt it whenever neccessary.It can also corrupt hash val-
ues after a matching occurs.

4. Cryptoware
Using real execution-emulation differences and cryptogra-
phy we developed a tool that makes a malware completely
undetectable to anti-viruses. The tool “Cryptoware” first
encrypts the malware and adds a stub part at the beginning
of the file like described in this paper. The stub part con-
tains time execution difference technique and checks for
environment variables as described in Section 2. In our ex-
periment we used our tool to process well known malwares
such as AgoBot, RxBot, SDBot and SubSeven. Scan re-
sults after processing those malwares show that anti-viruses
couldn’t be able to detect the malicious code. Processsed
malwares do not generate any threats for the anti-viruses
in both dynamic and static analysis. We test the processed
malwares with public virtual environments as well as sand-
boxes available on the internet. All products we have tested
are failed to emulate and detect our sample malwares.4

4http://www.cryptovirology.org/fig2.png

5. Conclusion and Future Work
In this paper, we address some weaknesses of emulators
and how attackers can make use of them. Instead of just
detecting if the code is being emulated, we propose a new
way to generate decryption keys by using some techniques
which will generate different results in a real execution and
emulated environment. We show that by using those tech-
niques together, attackers can hide any kind of malware
from antiviruses. We also present a tool called ’Crypto-
ware’ which uses techniques that we described in this pa-
per to automatically convert an existing malware, making
it undetectable to anti-viruses.

Our future work will be based on developing a new heuris-
tic engine based on partial execution of the program in a
real system. In a partial emulated environment we believe
that most of the code will still being emulated. However,
for other instructions which helps attackers to detect emula-
tion, we will try to execute it without user interaction. This
will make emulators more efficient and capable to detect
most of the anti-virtual machine methods, thus revealing
the malicious code.

References
Aycock, J. (2006). Computer viruses and malware. Ad-

vances in Information Security, Vol. 22.

Daoud, E. A., Jebril, I. H., & Zaqaibeh, B. (2008). Com-
puter virus strategies and detection methods. Int. J. Open
Problems Compt. Math., Vol. 1, No. 2.

Quist, D., & Smith, V. (2004). Detecting the presence of
virtual machines using the local data table. Offensive
Computing.

Sun, L., Ebringer, T., & Boztas, S. (2008). An auto-
matic anti-anti-vmware technique applicable for multi-
stage packed malware. Proceedings of the 3rd Interna-
tional Conference on Malicious and Unwanted Software
(pp. 17–23).

Young, A., & Yung, M. (2004). Chapter 5: Cryptocounters.
Malicious Cryptography: Exposing Cryptovirology.

13

Multi-modal Analysis of Dance Performances for
Music-Driven Choreography Synthesis

Ferda Ofli FOFLI@KU .EDU.TR

Engin Erzin EERZIN@KU .EDU.TR

Yucel Yemez YYEMEZ@KU .EDU.TR

A. Murat Tekalp MTEKALP@KU .EDU.TR

Electrical and Computer Engineering Department
Koc University

1. Introduction

Choreography is the art of tailoring the sequences of body
movements to music in order to embody or express ideas,
emotions or even tell a story in the form of a dance per-
formance. Hence, the rhythm and the intensity of body
movements in a dance performance are expected to be in
synchrony with those of the music. Nevertheless, different
arrangements can accompany the same musical piece, and
yet, create different choreographies. This exemplifies the
many-to-many nature of the relations between music and
dance. To account for this many-to-many nature, we de-
fine the “exchangeable figures” as the group of dance fig-
ures that are accompanied by similar musical melodies and
hence can be replaced without causing an artifact in the
dance performance (choreography). Our main motivation
in this study is to build a multi-modal framework that uses
the “exchangeable figures” notion for modeling, analysis,
and synthesis of alternative dance choreographies that are
coherent and compelling to audience.

2. Related Work

Most of the studies in the context of multi-modal music
and dance analysis towards dance motion synthesis focuses
solely on the synchronization aspect of the problem be-
tween an existing animation and a piece of music. Kim
et al. use transition graphs to synthesize new motion se-
quences from motion capture data using the results of mo-
tion rhythm analysis (Kim et al., 2003). Shiratori et al. pro-
pose a technique to synthesize dance motion that is percep-
tually matched to music by using a mapping based on the
rhythmic similarities between music and motion segments
for synchronizing the animation with the song (Shiratori
et al., 2006). Sauer and Yang design a music-driven char-
acter animation tool which extracts a set of features such
as the beat and dynamics (louds and softs) of the music
to build an animation from a dictionary of pre-built dance

Figure 1.Block diagram of the overall multi-modal dance perfor-
mance analysis-synthesis framework.

movements specified by the user through a script file (Sauer
& Yang, 2009). In an earlier work, we have described an
automatic music-driven dance animation scheme based on
supervised modeling of music and dance figures in a sim-
plified scenario, where a dance performance is assumed to
have only a single dance figure which is to be synchronized
with the musical beat (Ofli et al., 2008).

3. System Overview

The overall framework, as depicted in Figure 1, comprises
of several blocks that can be grouped into five main tasks:
dance figure labeling and measure localization; acoustic
feature extraction; measure modeling and identification; bi-
gram dance figure modeling; multi-modal dance figure es-
timation. The following sections explain these five main
tasks in more detail.

3.1 Dance Figure Labeling and Measure Localization

A musical piece is a collection of measures and a measure
is a time segment that is defined as the number of beats
in a given duration. Since dance figures are performed in
synchrony with musical rhythm, the boundaries of dance
figures match those of the musical measures. Based on this
knowledge, we manually mark the dance figure/measure
boundaries and assign labels to different dance figures per-
formed in each music frame, i.e., measure.

14

3.2 Acoustic Feature Extraction

Chroma features characterize the melodic or harmonic con-
tent of music since they represent musical audio by project-
ing the entire spectrum onto 12 bins corresponding to the
12 distinct semitones of the musical octave. We extract
chroma features by following similar approach to the well-
known mel-frequency cepstral coefficients (MFCC) calcu-
lation. The difference is in how we choose the triangular
overlapping windows while calculating the chroma coef-
ficients from the magnitude spectrum of DFT of the au-
dio signal. We basically center the triangular weight win-
dows at the locations of semitone frequencies at different
octaves. Then, we take log-average of the harmonics of
the calculated semitone coefficients, that gives us 12-bin
chroma features.

3.3 Measure Modeling and Identification

We employ hidden Markov models (HMMs) to identify
and model the audio measure patterns corresponding to the
dance figures. Each HMM is trained over the collection of
measures co-occurring with the same dance figure. In other
words, each HMM computesP (F |a), i.e., probability of
dance figureF givena, acoustic chroma features. Hence,
we train as many HMMs as the number of different dance
figures that exist in the dance performance.

For measure identification part of this task, we use the
trained HMMs to assign figure ids to the sequence of mea-
sures extracted from the input music. Instead of identify-
ing each measure with the label of the model that gives
the best acoustic score, i.e., the highest likelihood proba-
bility of the model match, we create a list of model labels
with the highest-N acoustic scores. That is, we generate
N alternative transcriptions for each music frame, i.e., mu-
sical measure. We then form a lattice, call itM, where
the vertical dimension represents the dance figures and the
horizontal dimension represents the frames of music (i.e.,
measures). The entries ofM are the acoustic scores (i.e.,
likelihood probabilities) of the corresponding models at the
corresponding music frames.

3.4 Bigram Dance Figure Modeling

We create a bigram probability matrix, call itA, for the
input dance figure sequence to capture the dependency re-
lation of the current dance figure with the previous one.
Specifically, each entry inA, namelyaij , is the probability
of performing the figureFj after the figureFi. This bigram
dance figure model provides us with some rules that spec-
ify the structure of a dance choreography. For instance, we
can enforce a dance figure to always follow a particular fig-
ure if it is also the case in the training video with the help
of the bigram model.

3.5 Multi-modal Dance Figure Estimation

Using the bigram matrixA together with the latticeM, we
estimate an output dance figure sequence by finding a path
alongM in two different ways. In the first one, we follow
the single best path alongM, i.e., the label sequence that
has the maximum total likelihood. In the other one, we
follow a path in which we pick thelikely figure, i.e., the
figure that is randomly selected according to a predefined
distribution, at each music frame.

We employ a Viterbi algorithm to traverse through the
columns ofM usingA. Recall that an entry inM, namely
mij , represents the likelihood of figureFi being performed
at music framej. LetN denote the number of rows inM
(which is also the number of different dance figures);T de-
note the number of columns inM (which is also the total
number of measure frames); andφj(t) represent the partial
likelihood score of performing dance figureFj at framet
along a single path that accounts for the highest partial like-
lihood from frame1 to framet. This partial likelihood can
be computed efficiently using the following recursion:

φj(t) = max
i

{φi(t− 1)aij}mjt. (1)

At time t, each partial likelihood scoreφj(t− 1) is known
for all dance figuresFj , hence Equation 1 can be used to
computeφj(t) thereby extending the partial paths by one
music frame. We also define a structureψj(t) to keep track
of the argument which maximizes Equation 1, for eachj

andt, in order to retrieve the dance figure sequence. The
overall algorithm for finding the single best dance figure
sequence can be summarized as follows:

1. Initialization:

φj(1) = mj1, 1 ≤ j ≤ N

ψj(1) = 0, 1 ≤ j ≤ N
(2)

2. Recursion:

φj(t) = maxi{φi(t− 1)aij}mjt, 2 ≤ t ≤ T

1 ≤ j ≤ N

ψj(t) = argmaxi{φi(t− 1)aij}, 2 ≤ t ≤ T

1 ≤ j ≤ N

(3)

3. Termination:

Φ = maxi{φi(T)}
Ψ(T) = argmaxi{φi(T)}

(4)

4. Path (dance figure sequence) backtracking:

Ψ(t) = ψΨ(t+1)(t+ 1), t = T − 1, T − 2, . . . , 1
(5)

15

Even though this procedure is designed for the first syn-
thesis scenario, i.e., picking thesingle best path alongM,
we can easily modify it for the second synthesis scenario,
i.e., picking alikely path alongM. Instead of picking the
maximum in Equation 1, we can randomly pick one of the
‘likely’ dance figures according to a prespecified distribu-
tionP . It is also necessary to update the recurrence relation
for ψj(t) accordingly.

4. Experiments and Results

In this study, we investigate the Turkish folk dance,kasik1.
Our audiovisual database is 36 minutes long and consists
of 20 dance performances with 20 different musical pieces.
There are 31 different dance figures (i.e.,N = 31) and a
total of 1265 musical measure segments (i.e.,T = 1265).

We define the following five assessment levels to evalu-
ate each figure labelFs in the synthesized figure sequence
compared to the respective figure labelFa assigned by the
expert:

• L0: Fs is marked asL0 if Fs matchesFa.

• L1: Fs is marked asL1 if Fs does not matchFa, but
it is in one of the expert-specified exchangeable figure
groups together withFa.

• L2: Fs is marked asL2 if Fs does not matchFa, and
it is not in one of the expert-specified exchangeable
groups together withFa, either. However,Fs andFa

are performed with the same musical piece.

• L3: Fs is marked asL3 if Fs andFa should not be
performed with the same musical piece, and yet, they
are exchanged due to a recognition error possibly be-
cause the musical pieces with which they are actually
performed have similar rhythmic audio patterns.

• L4: Fs is marked asL4 if it is not marked as one of
L0 throughL3.

We also associate a penalty score ranging from 0 to 4 with
the levelsL0 throughL4, respectively. Then, we calculate
an overall penalty score for measuring the ‘goodness’ of
the resulting dance choreography. For both synthesis sce-
narios, Figure 2 compares the number of figures that fall
into each assessment level both for the recognition and the
synthesis label sequences. The penalty score for the out-
put figure sequence of the first scenario is 911 whereas it is
2033 for the output figure sequence of the second scenario.

Looking at Figure 2 from another point of view, we see
that among all the assessment levels,L0, L1 andL2 are

1Kasik meansspoon in English. The dance is named so be-
cause the dancers clap spoons while dancing.

Figure 2.The number of figures that fall into each assessment
level for the recognition and the synthesis label sequences in the
proposed two synthesis scenarios.

indicators of the diversity of alternative dance figure chore-
ographies rather than being an indicator of error.L3 and
L4, however, can be perceived as indicators of error in the
dance choreography synthesis process. In this context, we
see that around 94% of the synthesized figures fall into one
of the first three assessment levels in the first synthesis sce-
nario. This percentage drops to about 74% for the dance
figure sequence of the second synthesis scenario, which is
still a high percentage of the entire dance sequence.

5. Conclusions

In this paper, we propose a mapping from music measures
to dance figures based on correlations between dance fig-
ures and music measures as well as correlations between
successive dance figures, in terms of figure-to-figure transi-
tion probabilities. We, then, use this mapping to synthesize
a music-driven sequence of dance figure labels. The out-
put sequence of dance figure labels can be considered as a
dance choreography that is in synchrony with the driving
audio signal. The experimental results show that the pro-
posed framework is successful at creatingacceptable alter-
native dance choreographies.

References

Kim, T.-h., Park, S. I., & Shin, S. Y. (2003). Rhythmic-
motion synthesis based on motion-beat analysis.ACM
Trans. Graph., 22, 392–401.

Ofli, F., Demir, Y., Erzin, E., Yemez, Y., Tekalp, A. M.,
Balci, K., Kiziloglu, I., Akarun, L., Canton-Ferrer, C.,
J., T., Bozkurt, E., & Erdem, A. (2008). An audio-driven
dancing avatar.Journal on Multimodal User Interfaces,
2, 93–103.

Sauer, D., & Yang, Y.-H. (2009). Music-driven character
animation. ACM Trans. Multimedia Comput. Commun.
Appl., 5, 1–16.

Shiratori, T., Nakazawa, A., & Ikeuchi, K. (2006).
Dancing-to-music character animation.COMPUTER
GRAPHICS FORUM, 25, 449–458.

16

Spatial Filtering for Encoding Multi-view Video in Spatially Reduced 3D Displays

Göktuğ Gürler cgurler@ku.edu.tr
Electrical Engineering Departmant, Koc University

1.Introduction

3D video is becoming popular. Key technologies that are

required for 3D systems such as stereo acquisition and display

have already been developed along with the streaming

applications. Today it is possible to use advanced telepresence

applications in which the participant can see each other in 3D

at HD resolution. Therefore, it would become an important

branch of video industry thus efficient transmission of MVV it

is a hot research area.

One of the major challenges in streaming multi-view video

is the increase in bandwidth requirements due to transmission

of additional view(s). Up to now, researches addressing this

problem have mainly focused around three solutions: i) Using

multi-view video codec such as MVC extension of H.264/AVC

for exploiting the redundancy among views. This work has

been initialized in 2006 and the final draft proposed in 2009.

(Vetro et al. 2008) ii) Using depth map in addition to the video

signal to generate the artificial view. (Fehn. 2008) iii)

Exploiting the features of human visual system (HSM) that

allows degrading visual quality in one of the view i.e.,

removing high frequency components, without introducing

noticeable artifacts. This is commonly implemented by

performing asymmetric coding among views. (Ozbek et al.

2008; Fehn et al. 2007)

We address the same problem for spatially reduced

stereoscopic displays in which the effective resolution of the

3D content is reduced to accommodate both views in a single

video frame. We propose a novel pre-encoding procedure in

which we identify and filter out the pixels that will be removed

from the scene due to spatial resolution reduction. Since these

pixels do not have a contribution in the rendering process, this

operation does not degrade the perceived 3D quality. We have

also computed the average gain in bitrate by testing the

proposed filtering over multiple stereo contents. Moreover, we

propose backward compatible modifications in real-time

streaming protocol (RTSP) (Schulzrinne et al. 1998) to notify

the type of display system to server for taking advantage of the

proposed method.

Rest of this paper is organized as follows: In section two we

provide brief information about spatially reduced 3D display

systems. Following that, we define the interzigging process

which is required for achieving stereoscopy in spatially reduced

display systems. In section 4 we explain the proposed filtering

operation in detail. In section 5 we define modifications for

RTSP protocol. In section 6 we provide the achieved gain in

compression of MVV using the proposed method for spatially

reduced displays. And finally in section 7 we draw our

conclusions.

2. Overview of Stereoscopic Display Systems

 The stereoscopy is based on projecting the correct view to the

corresponding eye and avoiding exposure to wrong view

through a filtering mechanism. When successfully

implemented, viewers experience a sense of depth and perceive

objects differently based on their location in the scene thus it

becomes possible to distingue objects that are closer to the

screen from the ones that are far away.

2.1 Spatially Reduced Stereoscopic Display Systems

It is possible to experience 3D without wearing special glasses

in spatially reduced display systems while in most of the full

resolution 3D systems require special glasses to filter or block

the non-corresponding view for each eye. There are two

alternative technologies for achieving unaided stereoscopy and

both of them requires merging sub-pixel values (red, green and

blue) of views in a specific order which is known as

interzigging or interdigitizing pattern.

In lenticular sheet technology 2D lens array is placed on a

LCD screen. When an interzigged image is displaced the lenses

direct lights of each view in a certain direction. In parallax

barrier technology lights that compose one of the views are

blocked for certain direction and create a similar result. In both

methods the spatial resolution of the content is halved the

viewer has to be located at the correct position which is called

the sweet spot.

3. Interzigging Pattern

In spatially reduced displays, the interzigged image
contains samples from left and right views at sub-pixel
level. However half of the values in each view are discarded
in interzigged process. Figure 1 depicts the required sub-
pixel samples from each view for the first 3x3 region and
can be interpreted as follows; In order to generate the pixel
of the interziged image at x=1 (left most), y=1 (top most)
position which is highlighted with bold border, red and
blue samples are taken from the left view while the green
sample is taken from the right view. Similarly, for the pixel
located at x=2, y=1, which is highlighted with dashed bold
border, red and blue samples are taken from the right view
and the green sample is taken from left view. In this figure
‘L’ refers to left image and ‘R’ refers to right image and the
subscripts define the coordinate of the sub-pixel values on
the original images.

17

x = 1 x = 2 x = 3

Red Grn Blue Red Grn Blue Red Grn Blue

L1,1 R1,1 L1,1 L2,1 R2,1 L2,1 L3,1 R3,1 L3,1

L1,2 R1,2 L1,2 L2,2 R2,2 L2,2 L3,2 R3,2 L3,2

L1,3 R1,3 L1,3 L2,3 R2,3 L2,3 L3,3 R3,3 L3,3

Figure 1: Interzigging Pattern for Stereoscopic Display

4. Proposed Filters

Significant reduction in bitrate can be achieved by transmitting

only the pixels that are used for generating the interzigged

image. Following this argument one trivial solution may seem

as encoding the interzigged image and then transmitting the

resultant sequence as a monoscopic (single view) video.

However, the 3D experience is lost when the interzigged image

is encoded using a block-based encoder such as H.264/AVC.

The problem with this approach is that, the interzigged image

contains very high frequency components which are suppressed

during encoding due to block based quantization. As a remedy

we propose to split the sub-pixels in a way that we can achieve

two separate images with less high frequency components. In

the following subsections we define two possible remapping

schemes for this purpose.

4.1 Filter 1: Even/Odd Seperation

A frame that is composed of only even or odd pixels of the

interzigged image has less high frequency components. This is

due the fact that in interzigged image the odd pixels (x-axis)

are dominated by left view and even frames are dominated by

right view because those views determine two out of three sub-

pixel values. Therefore, a filter that separates interzigged

images can be used prior to encoding for obtaining two

sequences with less high frequency components. Figure 3 the

sub-pixel maps for sequence and provides sample frames after

such operation.

4.2 Filter 2: Left / Right Seperation

There is a ghostly artifact in the output video sequences due to

the fact that the red and blue sub-pixel is determined by one

view while the green sub-pixel is determined by the other view.

In Filter 2 we swap the green sub-pixels are yield two

sequences in which one of the views are completely determined

by left view and vice versa. This fix removes the ghostly

artifact and corrects the sub-pixel color mismatch. This also

increases the compression efficiency of the output sequences.

5. Current 3D Streaming Protocols and
Proposed Modifications

If the client’s interzigging pattern is signaled to the server then

it is possible to transmit the media using a sequence with lower

bandwidth requirement. However, current RTSP standard does

not define a step for transmitting this information. RTSP is a

client driven messaging protocol and it is designed in a flexible

way to allow extensions. In (Kurutepe et al. 2007) authors have

proposed modifications that allow additional data exchange for

3D video streaming purposes.

We extend these modification by using modified DESCRIBE

message in which the client signals the interzigging pattern. In

the standard, a client sends DESCRIBE message which is

usually replied in session description protocol (SDP) (Handley

et al. 2008) in order to learn some key features about the

content such as type of the codec used in compression and

spatial resolution constraints. Based on the reply from the

client may proceed to initialize the session or may end it

gracefully. We propose adding a new field to DESCRIBE

request that includes the interzigging pattern at the client side.

Using this field a server may reply differently and differentiate

a spatially reduced display. This modification is compliant with

the ‘Extending RTSP’ section of [6] because a standard server

may simply ignore the extra field. There are two common

fundamental interzigging patterns are available. The pattern in

Figure 1 is a horizontal pattern in the sense that reference view

for the sub-pixels remains same in the horizontal axis. Figure 2

presents the modified DESCRIBE message format, and the

bold text is the proposed modification.

Figure 2: Modified DESCRIBE message from client

x = 1 x = 2 x = 3

Red Grn Blue Red Grn Blue Red Grn Blue

L1,1 R1,1 L1,1 L3,1 R3,1 L3,1 L5,1 R5,1 L5,1

L1,2 R1,2 L1,2 L3,2 R3,2 L3,2 L5,2 R5,2 L5,2

L1,3 R1,3 L1,3 L3,3 R3,3 L3,3 L5,3 R5,3 L5,3

a) Video Sequence 1

x = 1 x = 2 x = 3

Red Grn Blue Red Grn Blue Red Grn Blue

R2,1 L2,1 R2,1 R4,1 L4,1 R4,1 R6,1 L6,1 R6,1

R2,2 L2,2 R2,2 R4,2 L4,2 R4,2 R6,2 L6,2 R6,2

R2,3 L2,3 R2,3 R4,3 L4,3 R4,3 R6,3 L6,3 R6,3

b) Video Sequence 2

Figure 3: Pixel distribution for Filter 1

a) Video Sequence 1 b) Video Sequence 2

Figure 4: Samples images for Filter 1

DESCRIBE
rtsp://server.example.com/fizzle/foo
RTSP/1.0
CSeq: #
Accept: application/sdp
Interzig: Horizontal

18

x = 1 x = 2 x = 3

Red Grn Blue Red Grn Blue Red Grn Blue

L1,1 L2,1 L1,1 L3,1 L4,1 L3,1 L5,1 L5,1 L5,1

L1,2 L2,2 L1,2 L3,2 L4,2 L3,2 L5,2 L5,2 L5,2

L1,3 L2,3 L1,3 L3,3 L4,3 L3,3 L5,3 L5,3 L5,3

a) Video Sequence 1

x = 1 x = 2 x = 3

Red Grn Blue Red Grn Blue Red Grn Blue

R2,1 R3,1 R2,1 R4,1 R5,1 R4,1 R6,1 R7,1 R6,1

R2,2 R3,2 R2,2 R4,2 R5,2 R4,2 R6,2 R7,2 R6,2

R2,3 R3,3 R2,3 R4,3 R5,3 R4,3 R6,3 R7,3 R6,3

b) Video Sequence 2

Figure 5: Pixel distribution for Filter 2

a) Video Sequence 1 b) Video Sequence 2

Figure 6: Samples images for Filter 2

5. Conclusions

The decrease in bandwidth requirement when the proposed

filters are utilized is summarized in Table 1 for various stereo

contents. On the average Filter 1 and Filter 2 decreases the

bandwidth requirement by %30 and %35 percent respectively.

The peak-signal-to-noise-ratio (PSNR) is a qualitative metric

based on squared-mean-error and shows the quality of a

compressed sequence. The results reveal that using the

proposed filter causes 0.2dB loss in quality on the average.

However, up to ~1.0dB change in PSNR is not noticeable.

Therefore, it is clear that the proposed methods can be safely

used for the transmission of 3D content for spatially reduced

display systems.

References

Vetro, A., Pandit, P., Kimata H., Smolic A. &. Wang Y. (2008).
Joint draft 8.0 on multiview video coding Joint Video
Team, Doc. JVT-AB204,.

Fehn, C. (2004). Depth-image-based rendering (DIBR),
compression, and transmission for a new approach on 3 D-TV.
Proceedings of SPIE,vol. 5291, pp. 93–104,.

Ozbek, N., & Tekalp, A. M. (2008). Unequal inter-view rate
allocation using scalable stereo video coding and an objective
stereo video quality measure. in Proc. Of Int. Conf. on
Multimedia and Expo, Germany

Fehn C., Cho P. K., Kwon H., Hur N., Kim J., (2007). Asymmetric
coding of stereoscopic video for transmission over T-DMB in
Proc. of 3DTV-CON, Kos, Greece

Schulzrinne, H., Rao A., & Lanphier R., Real time streaming
protocol (rtsp) (1998). [Online]. Available:
http://www.ietf.org/rfc/rfc2326.txt

Kurutepe, E., Aksay A., Bilen C., Gurler CG., Sikora T., Akar G.B.,
Tekalp A.M., (2007). A Standards-Based, Flexible, End-to-End
Multi-View Video Streaming Architecture. Packet Video
Workshop 2007, Lausanne, Switzerland

Handley, M., & Jacobson, V. SDP (1998). Session description
protocol.
[Online] Available: http://www.ietf.org/rfc/rfc2327.txt

19

Haplotype Inference with Polyallelic and Polyploid Genotypes

Ozan Erdem OZANERDEM@SABANCIUNIV.EDU

Sabanci University, Orhanli-Tuzla, Istanbul, Turkey

1. Introduction
Each genotype has several copies, which are called haplo-
types, and they combine to form the genotype. The genetic
information contained in haplotypes can be used for early
diagnosis of diseases, detection of early transplant rejec-
tion, and creation of evolutionary trees. However, although
it is easier to access the genotype data, due to technologi-
cal limitations, determining haplotypes experimentally is a
costly and time consuming procedure. With these biologi-
cal motivations, researchers have been studying haplotype
inference–determining the haplotypes that form a given set
of genotypes– by means of some computational methods.

One haplotype inference problem that has been extensively
studied is Haplotype Inference by Pure Parsimony (HIPP)
(Gusfield, 2003). This problem asks for a minimal set of
haplotypes that form a given set of genotypes; the decision
version of HIPP is NP-hard (Gusfield, 2003; Lancia et al.,
2004). HIPP has been studied with various approaches,
such as HYBRIDIP (based on integer linear programming)
(Brown & Harrower, 2006), HAPAR (based on a branch and
bound algorithm) (Wang & Xu, 2003), SHIPS (based on
a SAT-based algorithm) (Lynce & Marques-Silva, 2006),
RPOLY (based on pseudo-boolean optimization methods)
(Graça et al., 2007), and HAPLO-ASP (based on Answer
Set Programming) (Erdem & Türe, 2008).

However, these systems consider only biallelic and diploid
genotypes; where each site of a genotype can be one of the
two allele types, and each genotype is composed of exactly
two haplotypes. In this paper, we also considered polyal-
lelic and polyploid genotypes; where each site of a geno-
type can be one of the four allele types, and each genotype
is composed of up to four haplotypes. We call the problem
of finding a minimal set of haplotypes that form a given set
of polyallelic and polyploid genotypes as Haplotype Infer-
ence with Polyallelic and Polyploid Genotypes (HIPPG).
HIPPG has been previously studied by (Neigenfind et al.,
2008), which is based on a SAT-based algorithm. In this
paper, we introduce a novel approach to solving HIPPG,
using Answer Set Programming; and extend the HAPLO-
ASP system with it.

ASP is a declarative programming paradigm that provides

Figure 1. HAPLO-ASP system architecture

a highly expressive language for knowledge representa-
tion, and efficient solvers for automated reasoning. The
idea of ASP is to represent a computational problem as a
“program” whose model (called “answer sets”) correspond
to the solutions of that problem, and to compute the an-
swer sets for the program using an “answer set solver”,
like CLASP (Gebser et al., 2009b), after “grounding” the
program, e.g., by the “grounder” GRINGO (Gebser et al.,
2009a). (See (Baral, 2003) for more information about
ASP.) Our system architecture is shown in Figure 1.

As for computations, we have experimented with cul-
tivated potato genotypes (Solanum Tuberosum) to solve
HIPPG using HAPLO-ASP, and compared our results with
(Neigenfind et al., 2008). We were able to obtain the same
solutions with the system of (Neigenfind et al., 2008), SAT-
LOTYPER.

2. Haplotype Inference with Polyploid and
Polyallelic Genotypes

As each site in the genotypes correspond to a single nu-
cleotide polymorphism (SNP), the possible values for an
allele is a nucleotide from the set {A, C,G, T}. We view
each genotype as a vector of tuples where each value
of the tuples is from the set {0, 1, 2, 3, ?}. Each num-

20

ber in the set {0, 1, 2, 3, ?} correspond to an allele from
{A, C,G, T}, and ? corresponds to an unknown allele.
Similarly, we view each haplotype as a vector of alleles
where each allele is from the set {0, 1, 2, 3}. For instance,
(0, 3, 1), (2, ?, ?), (?, 1, 2) is a genotype and 021 is a hap-
lotype with three sites. Additionally, we denote j’th site of
the i’th genotype as gij and the j’th site of the i’th haplo-
type as hij .

We say that two alleles i and j are compatible if they are
identical or if one of them is ?. A set H = {h1, h2...hr}
of haplotypes is compatible with a genotype gi at site j if
every allele in gij is compatible with a different haplotype
from H at site j. A genotype gi is explained by a set H
of haplotypes if H is compatible with gi at each site. For
instance, the haplotype set {011, 023, 211} is compatible
with the genotype (0, 2, 0), (?, 2, 1), (3, ?, ?).

We consider the decision version of HIPPG:

HIPPG-DEC Given a set G of n genotypes each with m
polyallelic sites, an integer p which denotes ploidity, and
a positive integer k, decide whether each genotype in G
can be explained by a subset of cardinality p of a haplo-
type set H containing at most k unique haplotypes.

For sufficiently small k, a solution to HIPPG-DEC is a
solution to HIPPG as well.

To solve HIPPG-DEC we assume the following:

A1 H is a set that contains p ∗n haplotypes, h1, . . . , hp*n,
and

A2 f maps every genotype gi in G to p haplotypes,
hp*i, hp*i-1 . . . h(p-1)*i+1, in H .

Then, for this problem, H is a solution if the following
hold:

C1 Every genotype g in G is mapped by f to a set of
haplotypes which explains g.

C2 There are at most k unique haplotypes in H .

2.1 Representing HIPPG-DEC in ASP

Many answer set solvers, like CLASP, have the same in-
put language of GRINGO; we present our formulation of
HIPPG-DEC in the input language of GRINGO.

We describe the value v of the allele a of j’th site of a
genotype i by atoms of the form g(i, j, a, v). Similarly, we
describe the value v of the j’th site of a haplotype i by
atoms of the form h(i, j, v). For instance, Genotype 4 with
sites (0, 2, 0), (3, 2, 1) and Haplotype 5 with sites 1023 are
described by the atoms:

g(4,1,1,0). g(4,1,2,2). g(4,1,3,0).
g(4,2,1,3). g(4,2,2,2). g(4,2,3,1).
h(5,1,1). h(5,2,0). h(5,3,2). h(5,4,3).

Suppose that we are given n genotypes, each with m sites.
We represent that genotypes are labeled 1..n, that sites are
labeled 1..m, and that haplotypes are labeled 1..p ∗ n (due
to Assumption A1) where p is the ploidy value of the geno-
types, by the following domain predicates:

geno(1..n).
site(1..m).
haplo(1..p*n).

First of all, we generate p ∗ n haplotypes with j sites each
with the following set of rules:

1{h(H,J,A) : allele(A)}1 :- haplo(H), site(J).

We also keep the counts of each allele in each site. The
atoms of the form count(G, J,A, I) are interpreted as:
“Site J of genotype G has a total of I alleles of type A”:

count(G,J,A,I) :- I{g(G,J,P,A): ploidity(P)}I,
geno(G), site(J), allele(A), ploidity(I).

To satisfy Constraint C1, we add the following constraints
to our program, which tell that if a site of a genotype G
contains I alleles of type A, then at least I of the haplotypes
that are mapped to it has value A at that site:

:- {h(H,J,A) : haplo(H) :
(G-1)*p+1 <=H<=G*p}I-1, count(G,J,A,I),
geno(G), site(J), allele(A), ploidity(I).

Moreover, we keep track of the unique haplotypes to satisfy
Constraint C2 later on:

diffhapp(H1,H2) :- h(H1,J,A1), h(H2,J,A2),
haplo(H1;H2), H1<H2, site(J),
allele(A1;A2), A1!=A2.

unique(1).
unique(H) :- H-1 {diffhapp(H1,H):haplo(H1)},

haplo(H), H>1.

Then, to satisfy Constraint C2, we add the following con-
straints:

:- k+1 {unique(H):haplo(H)}.

We also add some constraints to enforce a lexicographic
order among the haplotypes in order to perform symmetry
breaking.

2.2 Solving HIPPG using an Answer Set Solver

An instance of HIPPG can be solved with the ASP pro-
gram above, by trying various values for k (the number
of unique haplotypes explaining the given genotypes). We
compute an approximate lower bound l and an approximate
upper bound u for k, and find the optimal k value by doing
a binary search between l and u. The system architecture
can be seen from Figure 1.

21

3. Experimental Results
We have extended the HAPLO-ASP system, with a PERL
script which includes upper bound computations and sys-
tem calls to answer set solvers, which can be observed from
Figure 1. The performance of HAPLO-ASP was tested
using SNP data from a cultivated potato species, Solanum

Tuberosum, which was obtained from (Neigenfind et al.,
2008).

The Solanum Tuberosum SNP data is tetraallelic and
tetraploid, meaning that each genotype can contain sites
with four different alleles and each genotype is mapped
to four haplotypes. This data contains 19 genotypes, each
with 12 sites. In our experiments, we have found the so-
lution to HIPPG with 12 haplotypes. When we instruct
an answer set solver to compute all the answer sets for 12
haplotypes, we can compute a total of 114 different solu-
tions to HIPPG. Although HAPLO-ASP is slower, it is able
to compute all the solutions SATLOTYPER finds for this
dataset.

4. Conclusion
We presented an ASP based approach to HIPPG, which
is capable of solving a broader range of haplotype infer-
ence problems than many of the existing haplotype infer-
ence systems.

While solving HIPPG using ASP, we have intoduced
new formulations of these problems, and we were able to
compute the results that were previously obtained for the
Solanum Tuberosum data we used.

Our future work includes enhancing our formulations to de-
crease our computation times. Moreover, increasing the
accuracy rate of the inferred haplotypes with respect to the
haplotypes which are found in biological experiments is a
crucial part of our ongoing work.

5. Acknowledgements
My deepest thanks to my advisor, Esra Erdem. I also thank
Jost Neigenfind and Gabor Gyetvai for answering my ques-
tions.

References
Baral, C. (2003). Knowledge Representation, Reasoning

and Declarative Problem Solving. Cambridge University
Press.

Brown, D., & Harrower, I. (2006). Integer programming
approaches to haplotype inference by pure parsimony.
IEEE/ACM Transactions on Bioinformatics and Compu-

tational Biology, 3, 348–359.

Erdem, E., & Türe, F. (2008). Efficient haplotype inference
with answer set programming. AAAI’08: Proceedings

of the 23rd national conference on Artificial intelligence

(pp. 436–441). Chicago, Illinois: AAAI Press.

Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T.,
& Thiele, S. (2009a). On the input language of asp
grounder gringo. LPNMR ’09: Proceedings of the 10th

International Conference on Logic Programming and

Nonmonotonic Reasoning (pp. 502–508). Berlin, Hei-
delberg: Springer-Verlag.

Gebser, M., Kaufmann, B., & Schaub, T. (2009b). The
conflict-driven answer set solver clasp: Progress report.
LPNMR ’09: Proceedings of the 10th International Con-

ference on Logic Programming and Nonmonotonic Rea-

soning (pp. 509–514). Berlin, Heidelberg: Springer-
Verlag.

Graça, A., Marques-Silva, J. P., Lynce, I., & Oliveira,
A. (2007). Efficient haplotype inference with pseudo-
boolean optimization. Proc. of Algebraic Biology.

Gusfield, D. (2003). Haplotype inference by pure par-
simony. Proceedings of the 14th Annual Symposium

on Combinatorial Pattern Matching (CPM03) (pp. 144–
155).

Lancia, G., Pinotti, M. C., & Rizzi, R. (2004). Haplotyp-
ing populations by pure parsimony: Complexity of exact
and approximation algorithms. INFORMS Journal on

Computing, 16, 348–359.

Lynce, I., & Marques-Silva, J. (2006). Efficient haplotype
inference with boolean satisfiability. AAAI.

Neigenfind, J., Gyetvai, G., Basekow, R., Diehl, S., Achen-
bach, U., Gebhardt, C., Selbig, J., & Kersten, B. (2008).
Haplotype inference from unphased snp data in het-
erozygous polyploids based on sat. BMC Genomics, 9,
356.

Wang, L., & Xu, Y. (2003). Haplotype inference by maxi-
mum parsimony. Bioinformatics, 19, 17731780.

22

Air Drums: A Computer Vision Based Drum Simulator

Kaan C. Fidan† KAANCFIDAN@SABANCIUNIV.EDU
İhsan Kehribar† KEHRIBAR@SU.SABANCIUNIV.EDU
M. Tuğçe Şahin† MERVETUGCE@SU.SABANCIUNIV.EDU
Serhan Coşar† SERHANCOSAR@SU.SABANCIUNIV.EDU
Devrim Ünay‡ DEVRIM.UNAY@BAHCESEHIR.EDU.TR

†Computer Vision and Pattern Analysis Laboratory, Sabanci University, Orhanli, Tuzla, İstanbul, Turkey

‡Electrical and Electronics Engineering, Bahcesehir University, İstanbul, Turkey

1. Introduction
The aim of this paper is to present a novel system which
tracks the motion of a drummer and generates the cor-
responding drum sounds. Only a camera, some colored
markers and an everyday PC are used in the development
of the system. The input video sequence from the cam-
era is processed in real-time by using local and adap-
tive color segmentation and Kalman filter based tracking.
The Kalman filter is used to predict the ”hits” so that we
can overcome the processing delays and provide a more-
realistic drumming experience. We use a local and adap-
tive search to detect the effective points of the drum sticks,
which ensures robustness to background clutter and re-
duces the computational burden. We developed a working
demo and evaluated its performance by comparing with the
output signal of an electronic drum pad. We observed that
the timing errors have an average of -8.4 ms and a standard
deviation of 5.4 ms, where the two extreme values were -
22.9 and 3.2 ms in a real drumming experiment consisting
of 121 hits.

2. Related Work
The aim of the project is to create an ”edutainment” oppor-
tunity in an easily achievable system. The resulting human-
machine interface from this work can be used as a way to
improve training sessions of the drummers as well as en-
tertainment purposes. There has been some research con-
ducted about tracking drumsticks in the search for new me-
dia for educating the next generation in specialized skills.
The described system requires previously recorded videos
of qualified drummers performing some basic training sets,
then the videos are processed and the captured motions are
parameterized for future comparison to the students’ results
(Tansuriyavong et al., 2006). The advantage of our system
is its real-time tracking of the drumsticks in order to create
a more realistic drumming experience.

Another field of research is focused on audio-visual pro-
cessing and musical transcription of the drumming perfor-
mances. These works exploit visual information of the
drumsticks and the drums together with the audio of the
performance (Gillet & Richard, 2005; McGuinness et al.,
2007). To the contrary, our system simulates an imaginary
drumset and generates the audio from the visual data.

3. Materials and Methods
3.1 System Overview

Initially our system was planned to work with an everyday
webcam, however the nature of the drumstick motions re-
quires processing at high frame rates. The discretization
becomes too steep in low frame rates to approximate ve-
locities and accelerations of the tips. Therefore in this work
we employ an IDS uEye 1640 camera, which can provide
up to 100 frames-per-second (fps) at 320x256 resolution in
decent lighting conditions.

For drumstick tracking and hit detection, our system,
which is fully implemented in C#, employs the com-
puter vision algorithms presented in the OpenCV library
(Bradski, 2000) through the use of the EmguCV wrapper
(http://www.emgu.com/wiki). Following the hit detection
step, we generate the corresponding MIDI signals that can
be picked up through a virtual MIDI cable by any audio
processing tool.

The algorithm workflow can be seen in Figure 1. The sys-
tem only needs clicks of the user on the tips of the drum-
sticks to initiate the segmentation process.

3.2 Drumstick Segmentation

The segmentation is carried out in HSV space. The hue
channel is thresholded within a small tolerance (all the
other pixels which do not belong in the range picked hue

23

Figure 1. Algorithm Block Diagram

±tolerance are suppressed, chosen pixels are marked with
255). The tolerance for the saturation and the value is tuned
by the user and processed in the same manner. The satura-
tion and the value tolerance covers the shadows and bright
spots on the colored marker. The intersection between the
hue, saturation and the value thresholded images contains
only the colored marker. The gravity center of the binary
image is calculated.

3.3 Drumstick Tracking

We used Kalman filter for tracking. The main motives are:

FReducing the effects of instantaneous measurement rip-
ples caused by lighting variations on the drumstick.

FPredicting the ”hits” before they happen for the sound to
be generated at the moment of the actual hit.

In our case, Kalman filter works with state vectors which
contain the position, the velocity and the acceleration on
X and Y coordinates. The measurement is given as the
position of the gravity center. Kalman filter uses this in-
formation to approximate the velocity and the acceleration,
correct the current measurement using noise models and
predict the next state (Kalman, 1960).

3.4 Updating the Region Of Interest

The ROI is the window where the segmentation is done
in each cycle. It is crucial for reducing the computational
weight and increasing the number of processed frames,
hence increasing the number of data points. Once the grav-
ity center is defined, a window is formed around it. If the
predicted position of the tip gets out of the window, the
window gets larger in proportion with the velocity for not
losing the tip. When the tip is stable, the window turns to
its initial size. If the tip is lost (i.e falls outside the win-
dow), the ROI is canceled and whole image is processed
until it is found again.

The Fig.2 shows a captured image from the working soft-

ware. The drumstick is modeled with a boardmarker and it
is accelerating downwards at the moment. In the binary im-
age, red point marks the current gravity center and the blue
point, the predicted position. The white frame is the ROI,
which is expanding to include the next state prediction.

Figure 2. Segmentation and tracking of the drumstick tip.

3.5 Hit Detection

The real-time goal brings the difficulty of predicting the hit
without the proper information. Hence, the hit detection
algorithm includes a series of assumptions:

F Vertical acceleration should be negative and larger than
a small threshold. The downward acceleration tells that the
drumstick is gaining speed and getting close to a “hit”. The
downward acceleration peaks for a very small amount of
time before the hit due to the nature of the specific motion.

F The predicted position should be in a drum zone. The
sound is generated corresponding to different ”drum zones”
and thus, where the hit will land is important.

F There cannot be 2 consecutive hits with the same drum-
stick in 80 ms. The downward acceleration may appear in
several consecutive frames corresponding to the same hit-
ting motion and cause multiple detections. It is assumed
that even if the user is able to perform at such speed, the
camera would not be able to gather enough data points to
correctly detect the hit.

F Volume of the hit is proportional to the current velocity.
In the real world, the volume is proportional to vibration

24

Figure 3. Vertical acceleration of the drumstick tip with the de-
tected “hit” marked by a star.

Figure 4. Vertical Position vs. Frames

amplitude of the drumhead caused by the reaction force.
The reaction force can be estimated from the acceleration
which stops the drumstick with Newton’s F = m.a . We
assume that the current velocity is a measure of how high
the reverse acceleration will be when the drumstick stops.

4. Results
Our system currently faces difficulties at robustly tracking
the tips of actual drumsticks due to their very fast move-
ments which cause motion blurs at current acquisition set-
tings. We use shorter sticks (i.e. board markers) that have
smaller radius of circular motion, hence easier to spot the
tips in rigid form. Figures 3 and 4 depict a recording of 3
hits and shows the hit detection algorithm’s results.

We have created an experimental setup where we processed
the visual data from a drum practice routine consisting of
121 hits on electronic drum pads and compared the result-
ing MIDI signals. We observed that the timing errors had
an average of -8.4 ms and distributed with a standard devi-
ation of 5.4 ms (Fig. 5).

Figure 5. Error distribution of the proposed method evaluated on
a recording of a drum practice routine.

5. Conclusion
The results show that we are able to compensate the laten-
cies coming up from the sound generation, and provide the
desired experience. The system works well in decent ac-
quisition conditions (i.e uniform and direct lighting, high
frame rates) and can be used to play and record drum se-
quences as if they were played on a MIDI keyboard con-
troller.

As future work, we will try to track 2 other colored markers
on actual drumsticks and use them to estimate the position
of the lost tip. We will also create a user-friendly calibra-
tion routine for mapping the units to the metric system. The
calibration will allow the system to be more robust to vari-
ations in distance between the user and the camera. Up-
to-date information and the demo videos can be found at
http://www.airdrums.info.

References
Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal

of Software Tools.

Gillet, O., & Richard, G. (2005). Automatic transcription
of drum sequences using audiovisual features. IEEE In-
ternational Conference on Acoustics, Speech, and Signal
Processing.

Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Transactions of the ASME -
Journal of Basic Engineering, 82, 35–45.

McGuinness, K., Gillet, O., O’Connor, N. E., & Richard,
G. (2007). Visual analysis for drum sequence transcrip-
tion. EURASIP, 312–316.

Tansuriyavong, S., Nagai, H., Nakahira, K. T., & Fuku-
mura, Y. (2006). Development of multimedia contents
for specialized skill education. Current Developments in
Technology-Assisted Education (pp. 371–375).

25

Event Ordering for Turkish Natural Language Texts

Şadi Evren ŞEKER academic@sadievrenseker.com
Banu DİRİR banu@ce.yildiz.edu.tr

Yıldız Technical University
34349 Besiktas - Istanbul
Turkey
902163023042

1. Time Tagging

Time tagging which can be interpreted as extraction of temporal
semantic from natural language texts is mainly used on almost all of
the natural language research areas like question answering, text
summarization or visualization of the texts which are explained in the
works of (Kadri Hacioglu 2005) and (Inderjeet Mani 2000).
A natural language text contains semantic value from many different
categories. For example the location or personal information or a
know-how can be carried through natural language sentences. Besides
of all these information, all of the natural language sentences should
contain a temporal logic since all the verbs are strongly connected to
time. For example a sentence without a location information is
possible but all sentences should contain a time being.
Time tagging is a technique for marking the temporal information of
events, time expressions or the relations of events on the time line.
Although the linearity of the time is an open discussion, the time
tagging techniques are built over only linear temporal logics. For
example the Allen’s interval logic (Grigore Ro, 2006) or
Reichenbach’s temporal logic (Reichenbach 1947) are two samples
for the representation of time by linear.
After the correct tagging of a natural language text, the
implementation of some automat codes is possible to process the
event ordering or question answering. The tagging can be done by two
possible ways. For mature NLP languages which mostly solved the
morphological and syntactic parsing problems, it is possible to
implement an autonomous software to tag the temporal information
on the NLP. On the other hand for the languages still under massively
development of NLP which do not have a satisfactory success on
morphological and syntactic levels, the only way of tagging the
temporal information is manual.
Time tagging is still important for these languages to show a target for
representation of semantic after the syntactic studies and prepare
some tools after an achievement on these levels. For example in
Turkish there is still no satisfactory syntactic and morphological tools
to extract the semantic and also temporal logic in Turkish is different
than Indo-European languages in some ways.
In this paper, after a research on temporal logics which are built over
Indo-European language family, we have figured out the differences
in Turkish and we have also developed a representation tool.
Furthermore, we have implemented a software for question answering
and visualization of text automatically. Tests of this tool mainly run
over child stories so any child can increase the understanding from
text by generating a visual extraction of chronology of events on the
text or s/he can question the text in a temporal way of understanding.

2. Reichenbach Temporal Logic

Reichenbach temporal logic is built on simple three temporal
anchors.:

• Speech time (symbolized by S)
• Reference time (symbolized by R)
• Event time (symbolized by E)

Most of his study was focused on the natural languages. So he has
formulated the order of these times.
For example a sentence like “I read the book” can be formalized as
R=E<S on the other hand a sentence like “I have read the book” can
be formalized as E<R=S. Please note that on the former model, event
is before the speech time and the speech is referring to the event time,
so the event and reference times are equal and smaller than speech
time on the model. For the latter example, again the event is before
the speech time, but the speech is referring to the current time so the
speech time and reference times are equal and greater than the event
time.
By a simple probability calculation we can end up with 13 possible
order of above temporal anchors. Obviously all of these probabilities
are not meaningful in a natural language.
Reichenbach has named these possibilities by using Anterior, Simple
and Posterior aspects and Past, Present and Future tenses. So in
English or in any natural language there can only be 9 possible
meaningful time in the opinion of Reichenbach.
Below table covers these possibilities and samples for each of the
case:

Table 1. All possible 13 permutation of Reichenbach temporal logic
and their English tense/aspect and a sample for each case.
Permu-
tation

Reichenbach Tense
Name

English Tense Sample

E<R<S Anterior past Past perfect I had slept
E=R<S Simple past Simple past I slept
R<E<S
R<S=E Posterior past I would sleep
R<S<E
E<S= R Anterior present Present perfect I have slept
S= R= E Simple present Simple present I sleep
S= R<E Posterior present Simple future I will sleep
S<E<R
S=E<R Anterior future Future perfect I will have

slept
E<S<R
S<R=E Simple future Simple future I will sleep
S<R<E Posterior future I shall be going

to sleep
Please note that in the above table, blank lines represents the
meaningless cases of the permutation for English.

3. Allen’s Interval Logic

Allen’s interval logic (AIL) or temporal logic (ATL) deals with orders

26

of the events. The representation of event orders like “event A is
before event B” or “event A is at the same time with event B” are the
operators of this logic.
The basic variables in AIL are the intervals and Allen has built his
logic over binary operators working on those intervals. In AIL, there
are 13 basic binary operator connecting intervals by constraints.
These intervals can be considered as running threads or any
operations on time line.
For example in an example sentence like “John ate an apple at the
table after he has entered the room” we have events “eat” and “enter”
also there are hidden event which John goes to the table and takes the
apple in order to eat an apple from the table after he has entered the
room.

If the states of the events are considered, we know John was outside
of the room, before he has entered the room, also he was away from
the table before he approaches table and he has no apples before
taking apple.

So from above sample sentence it is possible to conclude John had an
apple when he is inside the room or John has had no apple while he
was away from the table or while he was outside of the room.
Above sample can be modeled by using AIL. Let’s say entering room
(ER) requires to be outside of the room (OR) and after entering room
the state is inside the room (IR) and similarly approaching table (AT)
changes state of being away from table (SAT) to state of being close
to table (SCT), taking apple (TA) is a transformation of state from not
having apple (NHA) to having apple (HA). All these states are pre-
requirements in the case of eating apple (EA).
Above sentence can be modeled in Allen Temporal Logic as below
formulation:
Meets(OR,ER) ∧ Meets(ER,IR) ∧ During (ER,SAT) ∧ During
(AT,IR) ∧ Meets(SAT,AT) ∧ Meets(AT,SCT) ∧ During(AT,NHA) ∧
During(TA,IR) ∧ During (TA,SCT) ∧ Meets(NHA,TA) ∧
Meets(TA,HA) ∧ During(EA,HA) ∧ During (EA,CT) ∧
During(EA,IR) ∧ Meets(TA,EA)
Above formulation demonstrates all the temporal states and events on
the sample sentence. On the other hand a reader can interpret the
above sentence and can add more states which can still be modeled by
AIL. For example if John does the above order of events when he is
hungry than this state can be added to the model of AIL. For this case
the model would be:
Occurs (hungry, NHA) ∧ Holds (hungry, TA) ∧ Meets (hungry, EA)
So from AIL model, John eats an apple when he gets hungry while he
does not have an apple and he takes an apple while he is hungry and
the status of hungry is finished by eating the apple.
Below list holds the possible operators of Allen Interval Logic:

• Before (x,y) or After (y,x)
• Overlaps (x,y) or Overlapped (y,x)
• Meets(x,y) or MetBy(y,x)
• Contains(x,y) or During (x,y)

• Starts(x,y) or StartedBy(y,x)
• Ends(x,y) or EndedBy(y,x)
• Equals(x,y)

4. IMPLEMENTATION AND TESTING

This section covers the application of TimeML with above
modification on Turkish natural language texts. We have created a
corpus of 15 children stories with 1043 sentences and 1618 events.
The corpus is created because this study is the first time try on event
ordering for Turkish natural language. Unfortunately there is no
previous work and corpus that our study can be compared. We have
created an original corpus for further challenges on the area and
measuring the success of our study.

The distribution of events on tenses in corpus is listed below:

Table 2. Percentages of Turkish Reichenbach temporal model in our
corpus.

Reichenbach
Tense Name

Turkish
Tense

Number Percentage

Anterior past Geçmişin
hikayesi

165 10%

Simple past Geçmiş 133 8%

E
nter R

oom

A
pproach T

able

T
ake A

pple
H

ave apple

O
utside of R

oom

Inside of R
oom

A
w

ay from
 T

able
C
lose to T

able

N
ot having apple

E
at A

pple

Enter
Room

Approach
Table

Take
Apple

Eat
Apple

Figure 1. Sequence of
events on sample sentence

Figure 2. Event and states
diagram

27

 Gelecek
hikayesi

238 15%

Posterior past 0%

 Gelecek
Rivayeti

37 2%

Anterior
present

Şimdiki
Hikayesi

76 5%

Simple present Şimdiki 390 24%

Posterior
present

Gelecek 47 3%

 478 30%

Anterior future 1 0%

 3 0%

Simple future Gelecek
Zaman

48 3%

Posterior
future

 2 0%

Please note that the above corpus mainly contains stories so it is an
expected result to get higher percentages on the past tenses and
present tenses than the future tense. Also the future tenses with “ol-“
(Being) is almost zero because of their rarely usage in Turkish. In fact
most of their usage are from translated stories in Turkish.

After adding the above relation type alternative to TLink BNF, we
have re implemented the ttk-1.0 and Tango v1.5 which are two major
software implemented for TimeML applications. Also we have
created a corpus of child stories for test purposes in Turkish and
tested the success of older and newer versions of TimeML, where in
newer version the “CYCLES” relation type is implemented.

Fig3. Sample screenshot of ATL implementation for Turkish

Success of TimeML in Turkish Corpus without CYCLES relation:
53%

Success of TimeML in Turkish Corpus with CYCLES relation: 55%

There is a 2% of increase after the implementation of the new relation
type to TimeML.

By this study, we have enhanced TimeML a step beyond to cover
Turkish temporal logic. After the above modifications TimeML can
be used in both Turkish and English and can model more events
successfully. Also this enhancement depends on the Reichenbach
temporal logic and already discovered by him as a permutational
manner.

Also the study is applied on a corpus and the numerical results have
been demonstrated above. The success of TimeML before
modification would be 55% percent and after the modifications we
have suggested the success covers all possible event tenses which is
91%.

CONCLUSION

During this study, we have stated the Allen’s temporal logic and its
applications on natural language processing. The comparison between
ATL and temporal logic behind Turkish also criticized and an
additional relation type to ATL is suggested to cover Turkic
languages. Also this suggestion in logical level is carried on to the
implementation layer and an application is modified using this
theoretical logic. The tests carried on a corpus composed by simple
Turkish child stories have showed the importance of this addition and
increased the success of representation of Turkish natural language
sentences in both ATL and TimeML.

REFERENCES

Kadri Hacioglu (2005). Automatic Time Expression Labeling for
English and Chinese Text, Kadri Hacioglu, Ying Chen and
Benjamin Douglas Springer LNCS, Computational Linguistics and
Intelligent Text Processing, ISSN 0302-9743 , pages 548-559

Inderjeet Mani (2000) Robust temporal processing of news,
Proceedings of the 38th Annual Meeting on Association for
Computational Linguistics, Inderjeet Mani , George Wilson Pages:
69 - 76

Grigore Ro (2006) Allen Linear (Interval) Temporal Logic –
Translation to LTL and Monitor Synthesis– Grigore Ro¸su1 _ and
Saddek Bensalem, CAV'06, LNCS 4144, pp 263-277

Reichenbach (1947). H., Elements of Symbolic Logic, New York:
Macmillan (1947)

Ozkirimli A (2001). Türk Dili: Dil ve Anlatım, Đstanbul Bilgi
University Press.

TimeML, TERQAS, (2002), TimeML has been developed in the
context of three workshops starting from 2002.

“TimeML Annotation Guidelines Version 1.2.1” Roser Saur´ı, Jessica
Littman, Bob Knippen, Robert Gaizauskas, Andrea Setzer, and
James Pustejovsky (January 31, 2006)

Natalia Kotsyba (2006). Using Petri nets for temporal information
visualization Études Cognitives/Studia Kognitywne, CEEOL

Andr´e Bittar (2009). Annotation of Events and Temporal
Expressions in French Texts Proceedings of the Third Linguistic
Annotation Workshop, ACL-IJCNLP 2009, pages 48–51, Suntec,
Singapore, 6-7 August 2009. c 2009 ACL and AFNLP

Christian Kissig and Laura Rimell (2005). Closing TLink-Relations
(Reasoning with Intervals) June 23, 2005

28

Classifying Exceptions in Agent-Based Protocols: A Thin Line Between
Violation and Opportunity

Özgür Kafalı OZGURKAFALI@GMAIL.COM

Department of Computer Engineering, Boğaziçi University, TR-34342, Bebek, İstanbul, Turkey

1. Introduction
Open multiagent systems are characterized by the fact that
agents can enter and leave on will. There is usually no
central authority that regulates the actions of the agents.
Hence, an agent’s behavior can neither be controlled nor
predicted before the system’s run time execution (Fisher &
Wooldridge, 1994). When one or more agents behave un-
expectedly in such a system, exceptions may occur, leading
to the improper workings of the entire system. While diag-
nosing an exception is important, it is not feasible to deal
with each exception separately. Thus, when an exception
occurs, the agent facing the exception should determine its
significance and decide whether to diagnose it further.

Accordingly, we provide categories of exceptions and
propose to classify exceptions based on their immediate
causes. Several work has been noted before in effort to
classify exceptions (Klein & Dellarocas, 2000; Sadiq &
Orlowska, 2000). Some of these work focus on exceptions
that can be anticipated before. That is, the exception it-
self and its preconditions are known prior to its occurrence.
Those exceptions can therefore be added to the system’s
design before execution. However, most exceptions of that
type are domain-specific. Thus, it is hard to make a general
judgment based on that classification.

In this work, we deal with exceptions that are not antic-
ipated at design-time, but rather encountered during run-
time. So, the classification we propose can be applied to
any domain (e.g., e-commerce) as long as a formal model
for action descriptions and agent interactions are provided.
Here, we use commitments to model agent interactions and
predicate logic to represent outcomes of agent actions. We
give a case study from a delivery process to exemplify its
applicability. The next section gives necessary background
on the concepts that are key to this work. Then, we present
our classification algorithm, and the case study. Finally, we
conclude with possible future directions.

2. Background
Next, we describe our theoretical framework.

2.1 Commitments

Commitments are formed between two agents and roughly
correspond to obligations (Singh, 1999). The debtor of a
commitment is the agent that is committed to bring about a
condition. The creditor benefits from the commitment. A
base-level commitment c(x, y, p(z)) represents an obligation
from debtor x to creditor y to bring about proposition p(z).
A conditional commitment cc(x, y, q(z), p(z)) represents a
contract between debtor x and creditor y with condition q(z)

and proposition p(z). When q(z) is satisfied, x will become
committed to y for satisfying p(z). We allow commitments
to have three states; (1) active commitments are created and
are in charge, (2) fulfilled commitments are no longer in
charge due to their propositions being satisfied, (3) violated

commitments are also not in charge but their propositions
have not been satisfied.

2.2 Ontologies

An ontology is a data model used for representing a do-
main, and it defines a set of concepts and the relations be-
tween those concepts (Guarino, 1998). As is customary in
multiagent systems, we use ontologies to provide domain
knowledge to agents. The agents can then use this to rea-
son on exceptions, and deal with them.

2.3 Protocols

A process is represented by a set of protocols (Papazoglou,
2003). Here, we are concerned with distributed settings
where agents are only aware of part of their environment.
Thus, it is important to specify protocols from the view-
point of the roles that the agents are enacting. This enables
us to specify the exact information that is available to each
role.

Definition 1 A protocol template Pr = 〈M,P,R〉 is a
description of what role r is aware of in order to act in its
environment. M is a set of messages that role r can send.
It simply corresponds to the actions that role r can perform
(with particular effects on commitments) while executing
the protocol Pr. P is a set of predicates that role r is aware

29

of and R is a set of roles that role r is aware of.

Definition 2 A protocol state S is a set containing predi-
cates that hold at a particular time point and the status of
commitments at that time point.

Definition 3 A goal state Gi is a desired state for agent i
that it wishes to reach during execution of the protocol.

2.4 Exceptions

Exceptions have been classified before in the literature ac-
cording to several criteria (Klein & Dellarocas, 2000; Sadiq
& Orlowska, 2000). In the light of those, we classify excep-
tions into three distinct categories, each covering separate
cases that may arise during protocol execution.

• Violation: A violation occurs when a predicate or
commitment that is included in the agent’s goal state
is violated, e.g., a bookstore violating its commitment
with a customer for delivering its book.

• Bad-Fulfillment: There may be situations that al-
though the goal is satisfied, an extra event obstructs
its complete fulfillment, e.g., a CD comes damaged.

• Bonus: A bonus is an unexpected situation which is
not necessarily a bad thing for the agent, e.g., the book
comes with a CD. Although the agent may benefit
from the situation, it is still considered an exception,
and the agent may benefit from inspecting it further.
Usually, protocols are extended with such opportuni-
ties. That is, the protocol execution that covers the
bonus is added to the protocol itself.

The second and third classifications both represent a mono-
tonic increase in the agent’s goal state (i.e, extra pred-
icates). Thus, they point to unexpected situations even
though the goal seems to be satisfied. The second repre-
sents an unwanted case and the agent’s goal is not fully
satisfied since the extra predicate obstructs the goal itself.
The third represents a beneficial case which the agent may
benefit from. In that case, the extra predicate has no rela-
tion with the goal whatsoever.

3. Proposed Method
During protocol execution, agents change state due to per-
formed actions or occurred events. When entered a new
state, an agent compares the state with its goal state, check-
ing for exceptions.

3.1 Classification

Algorithm 1 describes how an agent classifies an exception
based on its current state and its goal state. The first two

Algorithm 1 Classification
Require: Sc {current state}
Require: Gi {goal state}

{violation}
1: for all c(x, y, p(z)) : violated ∈ Sc do
2: if (c(x, y, p(z)) : fulfilled ∈ Gi) or (p(z) ∈ Gi) then
3: return c(x, y, p(z)) : violated
4: end if
5: end for
6: for all p(z) ∈ Sc do
7: if ¬p(z) ∈ Gi) then
8: return p(z)
9: end if

10: end for
{bad-fulfillment}

11: for all p(z) ∈ Sc do
12: if (p(z) /∈ Gi) and (z ∈ Gi) then
13: p(z)
14: end if
15: end for

{bonus}
16: for all p(z) ∈ Sc do
17: if (p(z) /∈ Gi) and (z /∈ Gi) then
18: p(z)
19: end if
20: end for

cases cover violation based exceptions (lines 1-10). The
third case covers situations where the goal of the agent is
obstructed by an extra event (lines 11-15). The object of
the extra predicate provides the relation with the goal. The
last case covers bonus situations where the extra event has
no relation with the goal (lines 16-20). Further classifica-
tion can be done within these categories using a domain
ontology (e.g., determine the level of violation, how badly
the goal is fulfilled, or how significant the bonus is).

3.2 Case Study

Figure 1 describes the delivery process inspired from the
MIT Process Handbook (Klein & Dellarocas, 2000). It
contains three business parties; customer, bookstore, and
deliverer. In a normal execution, the customer purchases
an item from the bookstore. The bookstore pays for the
delivery of the item. The deliverer delivers the item.

Customer Bookstore

Deliverer

purchase

paydeliverydeliver

Figure 1. Delivery Process

We use following commitments to represent the contracts
between the agents (i.e., parties); cc(bookstore, customer,
purchase(z), deliver(z)) tells that if the customer purchases

30

an item, the bookstore delivers that item. cc(deliverer,
bookstore, paydelivery(z), deliver(z)) tells that if the book-
store pays for the delivery of an item, the deliverer delivers
that item. The goal state of the customer is Gcustomer =
{purchase(z), deliver(z)}. Once the customer purchases
an item, it wishes to get that item delivered. Let us now
consider three cases from the delivery process.

• Violation: Assume the customer’s state to be
Gcustomer = {purchase(book1)}. The customer has
purchased a book, but the book does not arrive. This
is a violation of the bookstore’s commitment to the
customer, and it is classified as a violation.

• Bad-Fulfillment: Assume the customer’s state to
be Gcustomer = {purchase(cd1), deliver(cd1),
damaged(cd1)}. The customer has received the CD,
but it is damaged. This situation obstructs the cus-
tomer’s goal, and it is classified as a bad-fulfillment as
the extra predicate is related with the goal.

• Bonus: Assume the customer’s state to be
Gcustomer = {purchase(book1), deliver(book1),
deliver(book2)}. So, the customer has received the
book, in addition another book is also delivered. This
corresponds to a bonus situation which is classified
as the extra predicate’s object is not included in the
customer’s goal.

Consider the following change in the bonus situation
above; Gcustomer = {purchase(book1), deliver(book2)}.
So, the customer has purchased book1, but book2 comes
while there is still time for book1 to be delivered. This
is again classified as a bonus. However, book2 may be
wrongly delivered instead of book1 (i.e., violation). This
case actually corresponds to a deviation from normal pro-
tocol execution, and should be considered separately as
a new category. In addition, the significance of an ex-
ception may vary within a category. Consider the cus-
tomer’s state Gcustomer = {purchase(cd1), deliver(cd1),
¬invoice(cd1)}, meaning that an invoice has not been sent
with the delivery. This is also considered a bad-fulfillment.
However, it may not be as significant as the CD being dam-
aged. The current classification does not support such level
of detail. Domain knowledge is required to provide priori-
ties within categories.

4. Discussion
We have previously considered identifying exceptions that
occur in business protocols (Kafalı & Yolum, 2009). As a
single agent task, identifying an exception’s actual cause is
hard, if not impossible (due to limited knowledge). When
considered as a collaborative task, diagnosing exceptions

is even harder and requires considerable amount of com-
putation. Thus, we have provided a classification based on
exception categories. This classification is a forward step in
determining the significance of each exception, and select-
ing which ones to diagnose further. Further classification
can be done based on domain knowledge. This will pro-
vide extra accuracy while determining the diagnosis effort
of an agent when faced with several exceptions with strict
time considerations. In addition, other types of processes
exist in e-commerce scenarios such as fit or sharing pro-
cesses rather than flow processes as we have seen in our
case study (Klein & Dellarocas, 2000). Although not for
violation based exceptions, we believe that classification
can be harder in those process types.

References
Fisher, M., & Wooldridge, M. (1994). On the formal spec-

ification and verification of multi-agent systems. Inter-

national Journal of Cooperative Information Systems.

Guarino, N. (1998). Formal ontology in information sys-

tems. IOS Press.

Kafalı, Ö., & Yolum, P. (2009). Detecting exceptions
in commitment protocols: Discovering hidden states.
LADS Workshop, MALLOW’09.

Klein, M., & Dellarocas, C. (2000). A systematic reposi-
tory of knowledge about handling exceptions in business
processes. ASES Working Report. MIT.

Papazoglou, M. P. (2003). Web services and business trans-
actions. World Wide Web, 6, 49–91.

Sadiq, S. W., & Orlowska, M. E. (2000). On capturing
exceptions in workflow process models. Proceedings of

the 4th International Conference on Business Informa-

tion Systems.

Singh, M. P. (1999). An ontology for commitments in mul-
tiagent systems: Toward a unification of normative con-
cepts. Artificial Intelligence and Law, 7, 97–113.

31

Effect of Consistent Exploration in Dynamic Environments: Does Trust Work
in Competitions?

Özgür Kafalı OZGURKAFALI@GMAIL.COM

Department of Computer Engineering, Boğaziçi University, TR-34342, Bebek, İstanbul, Turkey

1. Introduction
Agents often need to model their surroundings when work-
ing together, either cooperatively or competitively. This
is because, each agent has different expertise in different
fields of work. And they need others to delegate some of
their assigned work when they lack the required expertise.
However, each agent is not equally trustworthy due to the
autonomy of open environments (Yolum & Singh, 2005).
Thus, an accurate model of the environment is required to
decide which agents to interact with and delegate tasks to.

Building an accurate model of trust in an open dynamic en-
vironment is hard. When competitive agents are involved,
it is even harder since each agent is self-interested and may
disguise its actual behavior. We aim to identify the ef-
fect of consistent exploration on the accuracy of models in
such settings. For this purpose, we use two different types
of agents, one that builds trust based on traditional meth-
ods (Huynh et al., 2004; Sabater & Sierra, 2001), and one
that relies on action-based modeling and aggressive explo-
ration. We use the ART Testbed environment to make sim-
ulations since it mimics the described settings best (Fullam
et al., 2005). In some sense, being trustworthy is related
to providing good services in the testbed. Thus, the con-
cepts trustworthy and useful can be used interchangeably
in the ART context. The next section briefly introduces
ART Testbed, and two types of agents that we use in our
experiments. Then, we describe our metrics, the simula-
tion setup, and depict our results. Finally, we conclude with
further discussion on related work.

2. Background
2.1 ART Testbed

The ART Testbed simulates an art appraisal domain where
clients wish to get their paintings evaluated by the service
provider agents (Fullam et al., 2005). Each participating
agent is a service provider (i.e., an appraiser) in the game
that sells its opinion when requested. Clients as well as
other service providers may be willing to purchase opinions
about a painting. Each painting belongs to a specific era of

art, and every agent has an expertise value for each era,
which may change within a game. The expertise of the
agent for an era determines how well it can judge the value
of paintings for the era (i.e., higher expertise values lead to
better evaluation of paintings).

The game runs as a series of timesteps with agents trying
to evaluate the paintings assigned by the clients. When a
timestep ends, the appraisal errors are computed for the
agents by checking their evaluations. When an agent is as-
signed a painting for an era that it has low expertise, it may
ask other agents for their opinions about the value of the
painting. However, each transaction in the game has a cost
associated with it. The aim of the game is to end up with
the highest bank balance (i.e., an overall value considering
the agent’s income and expenses).

2.2 Agent-Based Trust Model

We use the agent Frost in our simulations as the basis of an
agent-based modeling approach (Kafalı & Yolum, 2006).
Frost has been ranked third in the first ART competition
in 2006, and thus is a good benchmark for our compar-
isons. Similar to most other traditional approaches (Huynh
et al., 2004; Sabater & Sierra, 2001), Frost models all other
agents within the environment and chooses the agents to in-
teract with based on these models. In order to model its sur-
roundings, Frost keeps an estimation of every other agent’s
expertise value for each era in the game. The modeled ex-
pertise value represents how well the agent generates opin-
ions about paintings (i.e., how trustworthy it is in that era).
Frost does not explore its environment all the time. That
is, when it identifies useful opinion providers in the envi-
ronment, it exploits those agents until their services are no
more useful (i.e., they start to provide inaccurate opinions)
rather than trying to find other useful agents.

2.3 Action-Based Trust Model

Typically, agents utilizing reinforcement learning model
their environments through trial and error interactions
(Kaelbling et al., 1996). The agent has an opportunity to
select from a variety of actions which either leads to a re-

32

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

C
he

at
in

g
E

nv
iro

nm
en

t)

Timestep

Frost
Blizzard

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 B

an
k

B
al

an
ce

 (
C

he
at

in
g

E
nv

iro
nm

en
t)

Timestep

Frost
Blizzard

Figure 1. Effect of Consistent Exploration in a Cheating Environment

ward or a punishment as a consequence (i.e., reinforcement
value). The agent’s primary goal is to maximize the total
reinforcement value during the execution.

Blizzard is our concrete agent implementation that adopts
action-based modeling. Blizzard also participated in the
ART competition in 2007, and it has been ranked third.
Here, we use that agent as the basis for our action-based
modeling approach (Kafalı & Yolum, 2008). It uses an
extension of reinforcement learning, called Q-learning, to
model its actions (Wiewiora et al., 2003). In order to act in
an environment, Blizzard needs only to be aware of its set
of actions that are available for that environment. Unlike
traditional trust models, it does not require further heuris-
tics on the operational properties of the environment (e.g.,
distribution of expertise values to the agents) since it will
not aim on predicting how other agents are performing. The
main type of action that Blizzard records for the ART do-
main is the Opinion Request action. Unlike Frost, Blizzard
consistently explores its environment to check the status of
its current service providers (i.e., to point out changes ear-
lier), and to identify new useful providers.

3. Experiments
We evaluate how exploration affects an agent’s perfor-
mance in dynamic and competitive environments. We use
the following two metrics, one for measuring the accuracy
of trust models, and one for the cost of those models.

• Precision: Informally, this metric measures how well
an agent finds the useful opinion providers in the
game. The metric is designed to measure the percent-
age of contacted providers that are actually experts in
their eras. Equation 1 measures the precision for a
particular era j.

Precision(j) =
∑numAgents

i=0 pij ∗ eij

hj
(1)

Here, pij is the percentage of queries directed to agent
i in the jth era. eij is the actual expertise of agent i in
era j. To normalize the metric, we divide it by the ex-
pertise of the most expert agent (hj) in that era. Then
we average this value over all eras to get a measure in
the scale of 1 to 100.

• Total Bank Balance: Bank balance is used to evalu-
ate the overall success of the agent. It shows the to-
tal of the agent’s income minus the agent’s expenses
over the game rounds. Recall that the agent’s income
mainly stems from correct opinions it generates and
its expenses stem from buying opinions from other
agents. Here, we employ bank balance to incur the
cost of exploration into the experiments.

The simulation environment consists of three Frost and
three Blizzard agents, eight honest, eight cheating, and
eight dummy agents. Honest agents always respond truth-
fully to opinion requests, whereas cheating agents consis-
tently cheat in their responses. The behavior of dummy
agents is rather unpredictable, they alternate between hon-
est and cheating behavior throughout the simulation. In
addition, the expertise of agents are dynamic in the sense
that half of the honest agents’ expertise values change after
the first half of the simulation. We call this a Cheating En-

vironment, since competition is a motivation for cheating.
We run five replicas of the simulation to eliminate the ef-
fect of randomness, and output those results. Figure 1 plots
the two metrics, comparing Blizzard with Frost.

Precision: Due its aggressive exploration strategy, Bliz-
zards maintains a high precision value in a few timesteps.

33

Frost, however, is not very successful in increasing its pre-
cision quickly. It builds up trust progressively and rather
slowly. When expertise changes occur, Frost’s precision
is not affected at all. Since not all of the honest agents
have their expertise values changed, it is most probable
that Frost has not explored enough to be aware of those
agents. Blizzard, on the other hand, is drastically affected
by the changes in the environment but regains its highest
precision value by exploring the environment again when
it senses the expertise changes.

Total Bank Balance: Blizzard has a huge advantage over
Frost when the incomes of the two agents are considered.
That is, although Blizzard invests more on exploration, it is
rewarded well from the very beginning of the simulation.
The only drop in Blizzard’s bank balance is observed when
it explores the environment again, just after the expertise
changes occur. During that period, its bank balance does
not increase rapidly as it does before. However, it regains
its acceleration after the expertise changes stop and its pre-
cision reaches its maximum again.

The simulations reveal the fact that trust solely is not
enough to maintain a concrete model of an environment
without consistent exploration. This is due to the open and
dynamic behavior of multiagent systems, where an agent’s
next action cannot be predicted beforehand.

4. Discussion
Exploring an environment via direct interactions is a
proven way of accurately building trust (Huynh et al., 2004;
Sabater & Sierra, 2001). However, in dynamic environ-
ments with large number of agents, it is unrealistic to as-
sume that each agent can access every other directly. Thus,
reputation information can also be used in such settings to
justify an agent’s belief about others. Costa et al. exper-
imented on how reputation can be utilized by the agents
competing in ART Testbed (da Costa et al., 2008). While
we do not believe that reputation information is directly
useful when building trust from scratch, it may be helpful
to support an agent’s prior belief about a subject agent.

We have other evidence supporting the success of Bliz-
zard’s aggressive exploration strategy. Teacy et al. also
made a similar analysis on the finalists of two past ART
competitions (Teacy et al., 2008). There, they have shown
that Blizzard explores the environment sufficient enough
to find the service providers which are capable of provid-
ing the best services available and reaches the highest bank
balance. Note that the cost involved in realizing the explo-
ration is also included in the results.

References
da Costa, A. D., de Lucena, C. J. P., da Silva, V. T.,

Azevedo, S. C., & Soares, F. A. (2008). Computing rep-
utation in the art context: Agent design to handle nego-
tiation challenges. Eleventh International Workshop on

Trust in Agent Societies, AAMAS (pp. 121–131).

Fullam, K., Klos, T. B., Muller, G., Sabater, J., Topol, Z.,
Barber, K. S., Rosenschein, J. S., & Vercouter, L. (2005).
The agent reputation and trust (ART) testbed architecture
(pp. 50–62.).

Huynh, T. D., Jennings, N. R., & Shadbolt, N. (2004). Fire:
An integrated trust and reputation model for open multi-
agent systems. Proceedings of 16th European Confer-

ence on Artificial Intelligence (pp. 18–22).

Kaelbling, L. P., Littman, M. L., & Moore, A. P. (1996).
Reinforcement learning: A survey. Journal of Artificial

Intelligence Research, 4, 237–285.

Kafalı, Ö., & Yolum, P. (2006). Trust strategies for ART
Testbed. Ninth International Workshop on Trust in Agent

Societies, AAMAS (pp. 43–49).

Kafalı, Ö., & Yolum, P. (2008). Action-based environment
modeling for maintaining trust. Eleventh International

Workshop on Trust in Agent Societies, AAMAS (pp. 23–
32).

Sabater, J., & Sierra, C. (2001). Regret: Reputation in gre-
garious societies. AGENTS ’01 (pp. 194–195). Montreal,
Quebec, Canada: ACM Press.

Teacy, L., Chalkiadakis, G., Rogers, A., & Jennings, N.
(2008). Sequential decision making with untrustworthy
service providers. AAMAS (pp. 755–762).

Wiewiora, E., Cottrell, G. W., & Elkan, C. (2003).
Principled methods for advising reinforcement learning
agents. ICML (pp. 792–799).

Yolum, P., & Singh, M. P. (2005). Engineering self-
organizing referral networks for trustworthy service se-
lection. IEEE Transactions on Systems, Man, and Cy-

bernetics. Part A, 35, 396–407.

34

Use of Cluster Analysis in Twitter

Nadin Kokciyan NADIN.KOKCIYAN@BOUN.EDU.TR

Department of Computer Sciences, Bogazici University

1. Introduction
Social networking became very popular online that we call
Online Social Networking with the advent of social sites
such as Facebook, MySpace, Twitter, Orkut etc. There is a
huge number of people participating in social networking
sites. People sharing common interests are creating groups
to be together.

In this paper, our focus is on one social site: Twitter. Twit-
ter is composed of users sending short messages (tweets)
to each other. We are interested in relations between users.
We are collecting a dataset starting from a seed user and
examine interrelations between users within this dataset.

The goal of this paper is to discover close-knit clusters
of users according to relations between users in Twitter
through the use of two clustering algorithms. After detect-
ing these clusters, we are interpreting the results to find a
meaning on these communities.

2. Study Methodology
2.1 Twitter

Twitter is a large network of users and user groups hav-
ing common interests. There is the notion of “public” and
“private” profile for each user. If a user profile is declared
as “public”, it can be accessed by anyone. Otherwise, it
is only accessed by friends of this user. Some vocabulary
related to Twitter is as the following:

• tweet: it is the short message written and shared by a
user. Each tweet contains a maximum of 140 charac-
ters

• following(friend): a user can follow other users’
tweets.

• follower: other users can follow a user.

• mention: a user can mention names of other users in
his/her tweets. Every mention begins with a character
‘@’, and this character is followed by a username.

2.2 Twitter API1

Twitter offers an API for developers to extract information
from Twitter. The API supports many methods to send and
receive Twitter data. Inherently, there are some limitations.
Every user is allowed to use the API in a certain rate limit.

2.3 Scenarios

Once we have the account to use Twitter API, it is possi-
ble to use many methods offered by the API to extract all
data(friends, tweets, mentions etc.) of a user who has a
public profile. Here are some scenarios to collect data:

1. Choosing a seed user and adding all the friends of this
user having the same location, to the dataset.

2. Choosing a location, finding random users from this
location and adding these users to the dataset

3. Choosing a seed user, adding all the friends of this
user to the dataset.

In all scenarios, the idea is to create NxN adjacency ma-
trices (N is the number of users in the dataset). We focus
on friendship and mention relations which reflect user’s be-
havior in a social network such Twitter.

2.4 Datasets

The location information on Twitter is an optional field.
One can declare it as “everywhere, anywhere, utopia, pan-
dora” etc. or can leave it as an empty field.

Because of this ambiguity on location information, we
decide to continue with the third scenario. We choose
some seed users from Twitter. For each seed user, all
friends of this user are added to the dataset. We collect
all data(tweets, mentions, friends) for each user within the
dataset.

This data extraction phase is repeated for each seed user.
Once we have the data, it is time to extract information
from it.

1http://apiwiki.twitter.com/

35

2.5 Information Extraction

What we call information is the friendship and mention re-
lations of a user with others within the dataset.. This infor-
mation is represented as binary values, if a relation exists(1)
or not(0). For each seed user, these values are kept in NxN
matrices.

So for each seed user, we have two NxN matrices: first one
is for friendship relation and the second one is for men-

tion relation. These matrices are variant from one user to
another because of the different user behaviors. (Krishna-
murthy et al., 2008) introduced a few categories of Twitter
users by analyzing the follower-following count of users.

3. Clustering
There is a huge number of users participating in social net-
works. In these large networks, we are expecting to dis-
cover communities or clusters. For this purpose, we pre-
fer to use two different clustering algorithms: k-Means and
Fuzzy k-Means.

3.1 k-Means

k-Means clustering aims to partition n observations into k

clusters in which each observation is assigned to the cluster
with the nearest mean. In a given sample, we have k ref-
erence vectors and the best reference vectors minimize the
total reconstruction error (Alpaydin, 2004).

k-Means is an iterative procedure. We start with some
means randomly initialized but in this work, we randomly
selected k initial means from the dataset. Then, at each it-
eration we have an Assignment Step and an Update Step.

In the Assignment Step, we assign each observation to the
nearest cluster. In the Update Step, we calculate the new
means to be the center of the observations in the clus-
ter. These two steps are repeated until means stabilize
i.e. when the observations’ assignments no longer change
(Wikipedia, 2010).

3.2 Fuzzy k-Means

In fuzzy clustering, each point has a degree of belonging
to clusters, so each point can belong to many clusters. For
each point x we have a coefficient giving the degree of be-
ing in the kth cluster Uk(x). Usually, the sum of these co-
efficients for any given observation is defined to be 1 as it
is like a probabilistic approach.

In this algorithm, the center of a cluster is the mean of all
points, weighted by their degree of belonging to the cluster.
The algorithm repeats until it converges (Wikipedia, 2010).

We don’t start with random means as in k-Means algorithm

but with random coefficients assigned to each observation.
In these algorithms, results are changing according to the
start point randomly generated. In Fuzzy k-Means, there is
a fuzzified coefficient m, when m is close to 1, this algo-
rithm has similar results with k-Means.

4. Visualization of Networks
Pajek2 is a software used for network analysis and visual-
ization. While visualizing networks with Kamada-Kawai3

perspective on Pajek, we can observe clusters within the
overall network structure.

Pajek is preferred to visualize the social network structure
of Twitter. As friendship and mention relations are not re-
ciprocal in Twitter, we used arcs(directed relations) in our
network model.

5. Implementation
The data extraction part is implemented in Java through the
use of Twitter4j, a Twitter API for Java and the clustering
part is implemented in MATLAB. The Hamming Distance4

is used as a distance measure between two observations. So
if two users have many friends in common or many men-
tions directed to common users, the Hamming distance be-
tween these users is very low which means that these users
are mostly part of a same cluster.

6. Results and Discussions
In this section, we show some resulting networks of “usku-
darli” who is one of our seed users in Twitter. We can ob-
serve several clusters with the Kamada-Kawai perspective
of Pajek. This perspective is useful to approximately ob-
serve the results before running the clustering algorithms.

6.1 Friendship Relation

Figure 1 shows an example of clusters in the social network
of uskudarli based on friendship relation. While observing
users assigned to this cluster, we realize that this is mostly
the cluster of Bogazici University’s students using Twitter.

6.2 Mention Relation

Figure 2 shows an example of clusters in the social network
of uskudarli based on mention relation. While observing
the cluster in the middle, we realize that these people are re-
searchers from Netherlands working on computer sciences.

2http://vlado.fmf.uni-lj.si/pub/networks/pajek/
3an algorithm for drawing graphs via grouping
4Hamming Distance between two strings of equal length is

the number of positions at which the corresponding symbols are
different

36

Figure 1. One of the uskudarli’s clusters with friendship relation

Figure 2. Part of the uskudarli’s Mentions Network

The cluster in the middle is the group of researchers accord-
ing to the clustering algorithms’ results. But when examin-
ing with Pajek, this group has much more members, this is
because Kamada-Kawai perspective of Pajek doesn’t use a
clustering algorithm.

7. Summary and Future Work
Twitter is one of the popular social networking sites and
we observe the user intentions in this site through the use
of clustering algorithms. We focus on two types of rela-
tion: friendship and mention. We also visualize resulting
networks via Pajek.

As described above, we use a similarity utility and we only
group people having similar relations(friendship, men-
tions) according to this utility. With our approach, as an
interpretation, we can say which user is similar to whom
because of the similarity utility.

Clustering is a problematic issue for social networks, be-
cause a vertex(a node in the graph, in our case a “user”) can
belong to many clusters. So we have overlapping clusters
rather than sparse clusters. To prevent this problem, a new
formulation of the graph clustering problem where each
node belong to exactly one cluster is done (Mishra et al.,
2007). k-Means and Fuzzy k-Means algorithms are fast
algorithms. Both depend on the initial choice of weights,
both minimizes intra-cluster variance and both focus on lo-
cal minimum of variance. When using k-Means algorithm,
each user is assigned exactly to one cluster. But when us-
ing Fuzzy k-Means, each user has a degree of belonging to
clusters.

It can be interesting to analyse resulting networks through
different similarity measures. A user’s profile is dynamic
so it is possible to observe a user behavior over time. With a
more detailed social network analysis, we can deduce some
interesting points from clustering results.

References
Alpaydin, E. (2004). Introduction to machine learning

(adaptive computation and machine learning). The MIT
Press.

Krishnamurthy, B., Gill, P., & Arlitt, M. (2008). A few
chirps about twitter. WOSP ’08: Proceedings of the first

workshop on Online social networks (pp. 19–24). New
York, NY, USA: ACM.

Mishra, N., Schreiber, R., Stanton, I., & Tarjan, R. E.
(2007). Clustering social networks. Computer Science,
4863/2007, 56–67.

Wikipedia (2010). Cluster analysis. [Online; accessed 13-
Feb-2010].

37

BLUE-CHIP: Energy-Efficient Simultaneous Multi Threaded Processors

Mine Mesta MMESTA@CSE.YEDITEPE.EDU.TR
 GKUCUK@CSE.YEDITEPE.EDU.TR

Dept. of Computer Engineering, Yeditepe University

1. Introduction

Processors get faster and more complex, becoming more and
more energy-hungry each passing day. The heat that comes out
from the processors causes many mechanical and electrical
problems. Additionally, low energy dissipation in processors
has additional positive outcomes, such as reduction in cost of
cooling, increased systems ergonomics, improved processor
lifetime and performance, and positive effects over electricity
bills. Thus, any solution intended for energy savings is valuable
for today's processors.

Simultaneous Multi-Threaded (SMT) processors are very
popular due to their improved throughput on running multiple
threads and their simplistic design requiring minor
modifications to the existing superscalar datapaths. Today, we
find examples of SMT processors on server machines such as
Intel Xeon as well as inexpensive laptop computers such as
Intel Atom. Energy dissipation became a major issue to be
solved, since it directly affects the lifetime, reliability,
performance and the die size of these processors.

In SMT processors, there are many datapath resources which
are either shared or replicated. The shared resources are
designed to be larger in size to accommodate the entries from
multiple threads, whereas replicated resources layout additional
challenges and increase complexity within the processor. As a
result, complexity reduction is beneficial for both improving
the performance and reducing the energy dissipation for these
processors.

2. Related Work

Two different methods are popular to solve the heat related
problems emerged from the power and energy dissipation of
processors. First method, Dynamic Voltage/Frequency Scaling
(DVFS) reduces energy dissipation by lowering the
voltage/frequency values (Marculescu, 2000; Weissel et al.,
2002; Kondo et al., 2004).

Second method is shortly named as the architectural solution.
This method aims the energy savings by decreasing the
capacitance and the constant, activity factor values (Ponomarev
et al., 2001; Kucuk et al., 2004; Buyuktosunoglu et al., 2000;
Ponomarev et al., 2006; Kucuk et al., 2001; Kucuk et al., 2003;
Raasch et al., 2003; Sharkey et al., 2006). In this method
activity factor is directly related with capacitors' switching
count, capacitance is directly related with capacitors' sizes and
wire length.

107E196.

These two alternative methods are orthogonal, and therefore,
can be utilized at the same time to achieve greater energy
savings. The study in this paper is in the architectural solution
category, and specifically targets SMT processors.

3. System Overview

In this section, first, hardware components, configurations, and
simulators used are described. Then, the proposed dynamic
resizing algorithm is explained, in detail.

3.1 System Configuration

The hardware components of the platform used for the SMT
simulation are as follows: 5 DELL VOSTRO 400MT,
Core2Quad Q6600 2.40GHz, 8MB L2 cache, 4GB 667 MHz
RAM and 3 TB total storage space.

The software configurations of the platform used for
simulations are as follows: Fedora9 x86_64 OS (Fedora
Project, 2008), M-sim v2.0 (SMT simulator, 2008) and
SPEC2K (SPEC benchmarks, 2000). We arranged 12
application mixtures as a result of our literature survey. In
Table 1, the simulation parameters are given, in detail.

Table 1. The processor configuration used throughout the tests

Parameter Configuration
Machine width 8-wide fetch, issue and commit
Window size 64 entry IQ, 96-entry ROB,

48-entry LSQ, 192-entry PRF
L1
I-Cache

512KB, 32- cache block size,
2-way set associative, LRU

L1
D- Cache

512KB, 32-cache block size,
4-way set associative, LRU

L2 Cache 1024KB, 128- cache block size,
8-way set associative, LRU

TLB (I)16-entry, 4096- page size,
4-way set associative, LRU
(D)32-entry, 4096- page size,
4-way set associative, LRU

Functional
Units

8-INT ALU, 3-INT MULT,
8-FP ALU, 3-FP MULT

Thresholds Upsize: 32K, Downsize: 32K
Cycle, Partition Size: 8 Entries

3.2 Dynamic Resizing Algorithms

The dynamic resizing algorithm is distributed over each
datapath resource rather than being a centralized mechanism.
For each of the resources different finite state machines are
utilized.

38

In this study, we propose adaptive resizing of issue queue,
physical register files, reorder buffer, load/store queue in SMT
processors. The proposed method physically partitions a given
datapath resource into multiple pieces (Figure 1), and turns off
unused (or underutilized) partitions of a resource to reduce the
energy dissipation on the chip. Main idea is to achieve
maximum energy savings without impacting the performance
of the processor. It should be noticed that, in Figure 1, the
system allows any partition to be turned off. Applying this
property to a FIFO queue structure might cause logical
problems. Consider partition 1 in Figure 1 is turned off, and
queue structure starts from partition 0 and continues to partition
2. In that case, the reactivation of partition 1 for reuse, will
damage the integrity of a queue structure. To prevent such
problems, we only allow the activation and deactivation of the
last partition for all structures we studied. This restrictive
approach might prevent higher energy savings, but it will be
much simpler to implement in hardware.

Figure 1. A partitioned resource

The finite state machine for ROB and LSQ structures is shown
in Figure 2. Starting from the stable phase according to the
decision made, the algorithm tries to finish the resource
upsizing or downsizing process. Unfortunately, these decisions
cannot be applied immediately for the circular FIFO queues
due to possible integrity problems. As a result, another resource
upsizing or downsizing decision can be made before the system
handles the current active decision. In those cases, we give
priority to Resource Upsize Decision due to our performance
concerns.

Figure 2. Resizing algorithms for queue structures

We aimed to activate or deactivate one partition at a time for a
stable system, depending on our experiences from the previous

studies. An alternative method can be implemented for resizing
a resource with more than one partition. These aggressive
techniques are to be studied in a future work, and are not the
focus of this paper.

Resource Downsize Decision is taken at the end of predefined
Sampling Periods. For this study, the sampling period is chosen
to be 32K cycles. While taking the decision, average resource
occupancy values within the preceding cycles are evaluated
according to the active partitions at that moment. Consider the
first three partitions are active and the last one is deactivated in
Figure 1. After a sampling period, if it is investigated that the
average resource occupancy fits in only the first two partitions,
then the current last partition (partition 2) is decided to be
deactivated. Here to be able to keep the average occupancy
values, we need a 32 or 64 bit counter and a shift register.

For Resource Upsize Decision, experiences show that waiting
until the end of a specific period may degrade the system
performance. In that case, resource upsize decision can be
made at any time. A new counter is added to each resource for
counting the number of stalls due to limited resource sizes.
This counter is checked at every cycle, and if it exceeds a
threshold (Upsize Threshold), resource upsize decision is
made. After the decision, the stall counter is immediately reset.

IQ and PRF resource structures are shared among all the
threads in the SMT processors. The differences of these
structures from ROB and LSQ are they contain out of order
instructions, and they are implemented as buffer structures.
Thus, resizing of these structures has less complexity compared
to the queue structures. Here, upsizing can be performed right
after the upsize decision without any need of a specific
Resource Upsize Phase. Figure 3 depicts the finite state
machine of buffer structures.

Figure 3. Resizing algorithms for buffer structures

Figure 4. Performance and power results

39

In Figure 4, average occupancy percentages of datapath
resources are shown. As it can be noticed, most of the
applications do not use these resources in full capacity. In
Figure 5, results of instructions per cycle (IPC) drop percentage
(performance penalty) for each benchmark in a mixture, total
instructions per cycle (TPC) drop percentage for each mixture
and average total power per instruction reduction percentage
for each mixture is presented.

Figure 5. Datapath resource occupancies

In our tests, we studied various resource upsize and downsize
threshold values and partition sizes. The Blue Chip architecture
achieves better performance and power results compared to the
baseline configuration in some of these configurations. For
example, in Figure 6, the D64_U16_P8 (i.e. Downsize
Threshold: 64K cycles, Upsize Threshold: 16K cycles and
Partition Size: 8 entries) configuration gives the best results.

Figure 6. Comparison of various threshold values

4. Conclusion & Future Work

In this study, we resize both shared and replicated datapath
resources in SMT processors. We turn off 45% of the ROB,
59% of the LSQ, 43% of the IQ, 30% of the integer PRF and,
finally, 48% of the floating PRF. When compared with the
baseline configuration, the Blue-Chip reduces total processor
power by more than 20% while improving the processor
performance by 5.7%, on the average across all simulated
SPEC benchmarks. As a future work we now aim to resize L2
cache to achieve better power savings.

References

Marculescu, D. (2000). On the Use of Microarchitecture-
Driven Dynamic Voltage Scaling. Proceedings of the
Workshop on Complexity-Effective Design.

Weissel, A., & Bellosa, F. (2002). Process Cruise Control:
Event-Driven Clock Scaling for Dynamic Power Management.

Proceedings of the International Conference on Compilers,
Architecture.

Kondo, M., & Nakamura, H. (2004). Dynamic Processor
Throttling for Power Efficient Computations. Proceedings of
the Workshop on Power-Aware Computer Systems.

Ponomarev, D., Kucuk, G., & Ghose, K. (2001). Reducing
Power Requirements of Instruction Scheduling through
Dynamic Allocation of Multiple Datapath Resources.
Proceedings of the 34th International Symposium on
Microarchitecture.

Kucuk, G. (2004). Energy-Efficient, Complexity-Effective
Superscalar Processor Design. PhD. dissertation
http://cse.yeditepe.edu.tr/~gkucuk/kucuk_PhD.pdf. State
University of New York at Binghamton, Department of
Computer Science, Binghamton, New York, USA.

Buyuktosunoglu, A., Schuster, S., Brooks, D., Bose, P., Cook,
P., & Albonesi, D. (2000). An Adaptive Issue Queue for
Reduced Power at High Performance. Proceedings of the
Workshop Power-Aware Computer Systems.

Ponomarev, D., Kucuk, G., & Ghose, K. (2001). Dynamic
Allocation of Datapath Resources for Low Power. Proceedings
of the Workshop on Complexity-Effective Design, held in
conjunction with ISCA-28.

Ponomarev, D., Kucuk, G., & Ghose, K. (2006). Dynamic
Resizing of Superscalar Datapath Components for Energy
Efficiency. IEEE Transactions on Computers vol.55, No.2
(pp.192-213).

Kucuk, G., Ghose, K., Ponomarev, D., & Kogge, P. (2001).
Energy Efficient Instruction Dispatch Buffer Design for
Superscalar Processors. Proceedings of the International
Symposium on Low-Power Electronics and Design.

Kucuk, G., Ergin, O., Ponomarev, D., & Ghose, K. (2003).
Distributed Reorder Buffer Schemes for Low Power.
Proceedings of the International Conference on Computer
Design.

Kucuk, G. Ponomarev, D., Ergin, O., & Ghose, K. (2004).
Complexity-Effective Reorder Buffer Designs for Superscalar
Processors. IEEE Transactions on Computers, vol.53, No.6
(pp.653-665).

Raasch, S., & Reinhardt, S. (2003). The Impact of Resource
Partitioning on SMT Processors. Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques.

Sharkey, J., Balkan, D., & Ponomarev D. (2006). Adaptive
Reorder Buffers for SMT Processors. Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques.

The Fedora Project, http://fedoraproject.org/

M-Sim: The Multi-threaded
Simulator,www.cs.binghamton.edu/~ msim

Standard Performance Evaluation Corporation, www.spec.org

40

Performance Analysis of NIHs for Survivable Virtual Topology Mapping1

Fatma Corut Ergin FATMA .ERGIN@MARMARA .EDU.TR

Marmara University, Computer Engineering Department

Elif Kaldırım ELIFKALDIRIM @GMAIL .COM

Ayşegül Yayımlı GENCATA@ITU .EDU.TR

Şima Uyar ETANER@ITU .EDU.TR

Istanbul Technical University, Computer Engineering Department

1. Introduction

Optical networking (Mukherjee, 1997) is the most effective
technology to meet the high bandwidth network demand.
The high capacity of fiber used in optical networks, can be
divided into hundreds of different transmission channels,
using the WDM technology. Each of these channels work
on different wavelengths and can be associated with a dif-
ferent optical connection, called lightpath. All the light-
paths set up on the network form the virtual topology (VT).
Given the physical and the virtual topologies, VT mapping
problem is to find a proper route for each lightpath.

Any damage to a physical link (fiber) on the network causes
all the lightpaths routed through this link to be broken.
Survivable VT mapping problem is to design the virtual
layer such that the virtual topology remains connected in
the event of a single link failure.

Since the VT mapping problem is known to be NP-
complete (Modiano & Narula-Tam, 2002), heuristic ap-
proaches should be used. In this study, as a solution to
the problem, we propose evolutionary algorithms (EA) due
to their successful applications on NP-complete problems
and ant colony optimization (ACO) due to their success-
ful performance on constrained combinatorial optimization
problems. As a result of the experiments, we show that both
ACO and EA can solve the problem in less than a minute.

The rest of the paper is organized as follows. In section 2
the problem is defined and related literature is given. Next,
the details of how NIHs are applied to our problem are
given in section 3. Finally, in section 4, the experimental
results are given and discussed thoroughly.

1An extended version of this paper can be found in Proceed-
ings of IEEE Globecom’09, Hawaii, USA, Nov.30 - Dec.4, 2009

2. Problem Definition and Related Work

In this work, given the physical and the virtual topologies,
our aim is to find a survivable mapping of the VT. There
are two main constraints of the problem. The survivabil-
ity constraint states that all the lightpaths of a cut-set in
VT cannot be routed using the same physical link. Capac-
ity constraint ensures that the number of wavelengths on a
physical link does not exceed its capacity. Our objective is
to minimize the total number of physical links used in the
whole physical topology.

The survivable VT mapping problem was solved using tabu
search (Crochat & Le Boudec, 1998), (Nucci et al., 2001),
local search (Ducatelle & Gambardella, 2005) and SMART
(Kurant & Thiran, 2007) algorithms. ILP (Integer Lin-
ear Programming) formulation to the problem is given in
(Modiano & Narula-Tam, 2002).

3. Application of the NIHs to the Problem

Designing a solution encoding is crucial in EA and ACO
performance. For the solution encoding, first, thek-
shortest paths for each lightpath are determined. Then,
a solution candidate is represented as an integer string of
lengthl, wherel is the number of lightpaths in the VT. Each
location on the solution string gives the index of the short-
est path for the corresponding lightpath, which can take on
values between[1..k], wherek is the predefined number of
shortest paths for the lightpaths.

In EA, constraint violations are considered as penalties in
the fitness evaluation stage. In ACO, constraints are taken
into consideration during solution construction, therefore
constraint violation is not possible.

3.1 Evolutionary Algorithm Design

A steady state EA with duplicate elimination is used. After
a random initial population generation, binary tournament

41

selection and uniform crossover are applied as EA oper-
ators. If mutation occurs on a gene, its current value is
replaced by the index of the least similar shortest path for
the corresponding lightpath, similarity being defined as the
number of common physical links. The offspring replaces
the worst individual in the population.

Violations of the constraints for the problem are included
as penalties in the fitness function. The penalty for an un-
survivable solution is determined as the sum of the total
number of lightpaths that become disconnected in the event
of each physical link failure (Crochat & Le Boudec, 1998).
A capacity constraint violation adds a penalty value which
is proportional to the total number of physical links which
exceed the predetermined wavelength capacity. These two
penalties are multiplied with a penalty factor and added to
the fitness of the solution.

3.2 Ant Colony Algorithms Design

In this study, we chose elitist ant system (EAS) as the ACO
algorithm. The ants are sorted in decreasing order accord-
ing to the quality of the solutions they constructed.

Solutions are constructed by applying the following sim-
ple constructive procedure to each ant: (1) choose a start
lightpath and one of its shortest paths, (2) use lightpath
pheromone to select the next lightpath (3) use shortest path
pheromone together with heuristic values to probabilisti-
cally determine the path between the nodes of the corre-
sponding lightpath, until all lightpaths have been visited. If
the ant cannot select a shortest path that makes the solution
feasible, i.e., all alternative shortest paths violate thesur-
vivability and the capacity constraints, this ant is removed
from the current iteration.

3.3 An Example

Figure 1.a. Physical Topology, b. Virtual Topology c. Mapping
for Example Individual [1 1 2 3 1 1 2]

Consider the physical and virtual topologies given in Fig-
ure 1. In Table 1, the second row shows the lightpaths as
source-destination node pairs. Three shortest paths for the
corresponding lightpath are given in the following rows.

Assume we have a solution encoded as [1 1 2 3 1 1 2].
This encoding means that the lightpathsa andc use the1st

shortest path ((1-2) and (1-2-4), respectively) and lightpath
b uses2nd shortest path (1-2-4-5), etc. If we sum up the
number of physical links used in this solution, we have 12
as the resource usage.

For this sample solution, a failure on the physical links con-
necting nodes1-2, 2-4, or 3-4, would result in the virtual
topology disconnection. If1-2 link is broken, 3 lightpaths
(a,b, and c), if2-4 link is broken, 4 lightpaths (b,c,d, and
e), and if3-4 link is broken, 2 lightpaths (d and f) would
not find an alternative path to communicate. As a result,
in EA, a penalty of9 ∗ p is added to the fitness, wherep
is the penalty factor. On the other hand, since ACO checks
the constraints during solution construction, such a solution
would not be generated.

Table 1.Three different shortest paths for the lightpaths of the ex-
ample virtual topology given in Figure 1.

lightpath
1-2 (a) 1-4 (c) 1-5 (b) 2-3 (d) 2-4 (e) 3-4 (f) 4-5 (g)

s
p
1

1-2 1-2-4 1-3-5 2-3 2-4 3-4 4-5
s
p
2

1-3-2 1-3-4 1-2-4-5 2-1-3 2-3-4 3-2-4 4-3-5

s
p
3

1-3-4-2 1-3-2-4 1-2-3-5 2-4-3 2-1-3-4 3-5-4 4-2-3-5

In EA, if a mutation occurs on the second gene of this sam-
ple individual, the new individual becomes [1 2 2 3 1 1 2].

4. Experiments

In this section, we present the results obtained from the
experiments to evaluate the efficiency of our NIHs. For
performance comparisons, we used two metrics, namely
success rate, and resource usage. Success rate is the per-
centage of program runs in which a solution that does not
violate the constraints is found. Resource usage is the total
number of physical links used throughout the network.

For the experiments, we used two different physical topolo-
gies: the 14-node NSF network and a 24-node network (see
(Mukherjee, 1997) chapter 11 pp.557). For each physical
topology we created 100 random VTs with average connec-
tivity degrees of 3, 4, and 5. We assumed 10 wavelengths
per physical link.

4.1 Experimental Results

We performed our initial experiments on the NSF network.
Both EA and ACO were able to find feasible solutions of
equal quality for all VTs, with 100% success rate. In this
paper we report the results for the larger network. For the
experimentation, we selected the EA and ACO with the
most promising parameter sets according to a set of tests.
For each algorithm and VT connectivity degree, we exam-
ined three different numbers of alternative shortest paths:
5, 10, and 15.

42

The results of the experiments are given in Tables 2- 5. Ta-
ble 2 shows the success rates of both heuristics averaged
over 2000 runs (20 runs per VT instance) while Table 3
shows the average of resource usages calculated using only
the results of the successful runs. The comparison of our
NIHs with basic and relaxed ILP are given in Tables 4
and 5.

A quick observation of Table 2 shows that success rates for
both algorithms are very high. Generally ACO achieves
higher success rates. From Table 2, we can see that success
rates increase with the increase in the number of alternative
shortest paths.

Table 2.Success rates
5 shortest paths 10 shortest paths 15 shortest paths
EA ACO EA ACO EA ACO

3 97 98 98 100 97 100
4 99 98 100 100 100 100
5 100 100 100 100 99 100

The probability of random candidate solutions being sur-
vivable increases with the connectivity degree of the VT.
Therefore, for higher connectivity degrees of VTs, both al-
gorithms have higher success rates.

Table 3 shows that the resource usage increases slightly
with the increase in the number of alternative shortest
paths, especially for EA. This is an expected result, since,
the probability of getting stuck at local optima is higher in
larger search spaces and both algorithms are allowed to run
up to a predefined maximum time. If the run times are in-
creased, the resource usage results for different number of
shortest paths will converge.

Table 3.Resource usages
5 shortest paths 10 shortest paths 15 shortest paths
EA ACO EA ACO EA ACO

3 111 110 112 110 113 110
4 144 143 145 143 146 144
5 182 181 183 181 186 181

To assess the quality of our solutions, we also imple-
mented basic ILP and ILP Relaxation-1 given in (Modi-
ano & Narula-Tam, 2002), for all connectivity degree VTs.
We implemented these ILP formulations using the CPLEX
software package. However, since the problem is a large
one, we could only solve the problem using basic ILP for
only 58% of 3 connected VTs.

Table 4.Number of feasible solutions
EA ACO ILP-Relaxation Basic ILP

3 100 100 52 58
4 100 100 88 0
5 100 100 100 0

From Table 4, we can see that our NIHs can find a feasible

solution for all test sets, although, it is not the case for ba-
sic and relaxed ILP. Moreover, if we compare the resource
usages of our feasible solutions to the optimum ones found
using basic or relaxed ILP as in Table 5, we can see that at
least 97% of our solutions are the optimum.

Table 5.Number of solutions having optimum resource usage

3 4 5
EA 97 97 100

ACO 98 98 100

5. Conclusion

High success rates show that both heuristics are promising
for the survivable VT mapping problem. Since the time
needed to find a feasible solution is less than a minute, these
heuristics can easily be applied to real world applications.

References

Crochat, O., & Le Boudec, J. Y. (1998). Design protection
for wdm optical networks.Journal on Selected Areas in
Communications, 1158–1166.

Ducatelle, F., & Gambardella, L. M. (2005). Survivable
routing in ip-over-wdm networks: An efficient and scal-
able local search algorithm.Optical Switching and Net-
working, 2(2), 86–99.

Kurant, M., & Thiran, P. (2007). Survivable routing of
mesh topologies in ip-over-wdm networks by recursive
graph contraction.IEEE Journal on Selected Areas in
Communications, 25(5), 922–933.

Modiano, E., & Narula-Tam, A. (2002). Survivable light-
path routing: A new approach to the design of wdm-
based networks. IEEE Journal on Selected Areas in
Communications, 20(4), 800–809.

Mukherjee, B. (1997).Optical communication networks.
New York: McGraw-Hill.

Nucci, A., Sanso, B., Crainic, T., Leonardi, E., & Marsan,
M. A. (2001). Design of fault-tolerant virtual topologies
in wavelength-routed optical ip networks.Proceedings
of IEEE Globecom.

43

Preprocessing with Linear Transformations that Maximize the Nearest
Neighbor Classification Accuracy

Mehmet Ali Yatbaz MYATBAZ @KU .EDU.TR

Deniz Yuret DYURET@KU .EDU.TR

Computer Engineering, Koç University, Istanbul, Turkey

1. Introduction

In this paper we explore the use of linear transformations as
a preprocessing step in classification problems. Our algo-
rithm, STRETCH, seeks a linear transformation of the input
features that maximizes the nearest neighbor classification
accuracy on the training set. The goal is to bring instances
in like-classes closer together, or equivalently to push the
instances from different classes further apart. The result-
ing transformation, when successful, widens the bound-
aries between classes, and reduces the relative effect of
redundant, irrelevant, interacting, or noisy features. We
demonstrate that preprocessing with such transformations
significantly benefit nearest neighbor (NN) algorithm.

Figure 1.An example of STRETCHat work. The figure on the left
is the original data in two dimensions with two classes indicated
by circles and pluses. The one on the right shows the same points
after stretching.

Figure 1 illustrates the effect of STRETCH on an artificial
example. Two classes of points are separated by a diag-
onal boundary. Some of the points at the boundary are
closer to points in the other class instead of their own class.
Leave-one-out cross validation of the one nearest neigh-
bor algorithm (1-NN) with the original data set indicates 11
misclassified points. STRETCH transforms the input space
by emphasizing the direction orthogonal to the boundary
and by reducing the effect of the direction parallel to the
boundary. Stretching as illustrated by the right pane in Fig-
ure 1 eventually reduces the number of misclassified points
to zero.

STRETCH constructs the transform incrementally. At each
iteration a random instance is picked and its closest neigh-
bor that is not in the same class is located. We then calcu-
late a linear transform that stretches the input space to push
these two points apart. If this transform improves the over-
all 1-NN performance it is accepted and applied to the data
set. The whole process is repeated until no further improve-
ment can be made. The composition of these transforms is
the output of the algorithm.

Transformations of the input space have been used to re-
duce the adverse effects of irrelevant and redundant at-
tributes in instance based learning(Dasarathy, 1991). The
focus has been on feature weighting schemes, where each
feature is scaled by a constant when computing the dis-
tance between two points (see (Wettschereck et al., 1997)
for a review). Various approaches have been used to op-
timize the weights: RELIEF uses incremental update rules
similar to the STRETCH algorithm(Kira & Rendell, 1992;
Kononenko, 1994). VSM uses conjugate gradient meth-
ods (Lowe, 1995; Wettschereck, 1995a) and CCF uses a
probabilistic model (Creecy et al., 1992). VDM uses differ-
ent weight vectors for different parts of the instance space
(Stanfill & Waltz, 1986; Aha & Goldstone, 1992). Algo-
rithms that employ more general transformations than basic
feature weighting include QM2m (Mohri & Tanaka, 1994)
which uses PCA to transform the input features before as-
signing weights, and IB3-CI (Aha, 1991) which employs
domain specific knowledge to construct good feature com-
binations.

Basic feature weighting corresponds to the specific subset
of linear transformations that have diagonal matrices. In
contrast, STRETCH can generate arbitrary linear transfor-
mations, thus includes feature weighting as a special case.
The transformations generated by STRETCH are not re-
stricted to principle components and do not require domain
specific knowledge.

44

2. Algorithm

This section describes the STRETCH algorithm. We will
start with the mathematics of constructing matrices that
stretch the distance between two points relative to orthogo-
nal directions. This is followed by a description of the main
loop that constructs the target linear transform.

Stretch matrices: Consider two instances,x1 andx2 as
points inℜn. Letv = x1−x2 be the difference vector. The
following procedure will construct the matrix of the linear
transform that will increase the distance betweenx1 andx2

by a factorα relative to the directions orthogonal tov:

1. Construct an orthogonal basis forℜn with the first ba-
sis vector parallel tov. Here is one way to do this:

(a) LetM be ann × n square matrix.
(b) Set the first column ofM to be the vectorv.
(c) Set the other columns to be different unit vectors

making sure the resulting matrix does not have
an all zero row.

(d) Compute theQR decomposition ofM .
(e) The resultingQ will be an orthogonal matrix

with its first column parallel tov.

2. Construct a diagonal matrixD with the first diagonal
entryα and the other diagonal entries 1.

3. Return the matrixQDQT . The first eigenvector of
QDQT is parallel tov and the first eigenvalue isα.
The other eigenvectors are orthogonal tov with corre-
sponding eigenvalues equal to 1.

The main loop: The goal is to construct a linear trans-
form that moves the instances around such that the maxi-
mum number of instances belong to the same class as their
closest neighbor. Our algorithm accomplishes this incre-
mentally, trying to fix one instance at a time. Let us call the
number of instances that have the same class as their closest
neighbor theLOO1NN (leave-one-out 1-NN) score. Given
a set of instancesX in ℜn and a learning rateα, we ini-
tialize the target transformation matrixA to be the identity
matrix and repeat the following steps until convergence:

1. Construct misclassified instance set of 1NN and pick
a random misclassified instancex ∈ X.

2. Let z be the closest neighbor ofx that belongs to a
different class. Construct a stretch matrixZ that in-
creases the distance betweenx andz by α.

3. Calculate the regularization term ofEAZ for the up-
dated stretch matrixAZ.

4. If LOO1NN(AZX) + EAZ ≥ LOO1NN(AX) + EA

thenA = AZ.

Convergence: The candidate moves are accepted as long
as they do not decrease the accuracy in the training set and
distorts the data. However, this default behavior generally
results in the convergence on a local maximum. In order to
get out of local maxima, we occasionally allow jumps (bad
moves) to be made. Specifically, after trying all boundary
(misclassified) points and finding no good moves, a random
boundary point is picked and its associated stretch matrix
is incorporated into the transform. These moves usually
allow the algorithm to get out of local maxima.

Normalization: One potential problem during these iter-
ations is floating point overflows. To prevent this the cu-
mulative transform matrix A is normalized by dividing it
with the volume ofV olumeA after each modification. The
V olumeA is defined in terms of the singular vectors ofA.
Since the singular vectors are orthonormal to each other,
we can think of these vectors as the vertices of a prism.

A = QV QT (1)

whereQ andV are an orthonormal and a diagonal matrix,
respectively. The singular column vectors ofQ have only
the direction information and their lengths equal to 1. The
length of each singular vector is kept in the correspond-
ing diagonal entry ofV . The volume ofA is given by
V olumeA =

∏n

i=1
vi, wherevi is the ith diagonal entry

of V .

Regularization: Initially each singular value is equal to
1 and any linear transformation updates these singular val-
ues. However , if the algorithm always stretches along the
direction thatv1 corresponds thenv1 becomes larger com-
pared to the rest of the singular values as the number of
iteration increases. To punish distortion of the data we de-
fine the regularization costEAZ of a stretch matrixZ as
EAZ =

∑n

i=1
(log vi)

2. As a result,Z is accepted only if
theLOO1NN(AZX) is less than theLOO1NN(AX) while it
does not distort the data significantly compared to the other
possible linear transformations.

3. Experiments

In this section we empirically analyze the impact of
STRETCH on 1NN algorithm using datasets from the UCI
repository(Asuncion & Newman, 2007). Each dataset is
randomly divided into 70% training and 30% testing por-
tions. Half of the training set is used as a validation set
to prevent overfitting and optimization. The best transform
on the validation set is determined and the learning algo-
rithm is trained on the transformed data. Later the same
transform is applied to the test set and the learned model is
evaluated. It is important not to taint the preprocessing by
using the test set because STRETCH makes use of the class
information when constructing the best transform.

45

Table 1.Percentage of instances accurately classified by their
nearest neighbor on the training and the test data before and af-
ter the application of the STRETCH with 400 iterations and 100
jumps. Changes in bold format are statistically significant.

Dataset Before 1NN Train 1NN Test
Banded 0.82±0.01 0.97±0.03 0.95±0.03
Sinusoidal 0.86±0.01 0.95±0.02 0.93±0.02
Gauss-band 0.63±0.02 0.84±0.03 0.75±0.04
Parity 0.66±0.02 1±0.00 98±0.02
LED-7 Display 0.51±0.05 0.53±0.05 0.51±0.05
LED-7+17B 0.38±0.03 0.73±0.04 0.43±0.02
LED-7+17C 0.60±0.04 0.81±0.03 0.58±0.03
Waveform-21 0.78±0.02 0.93±0.01 0.77±0.03
Waveform-40 0.67±0.03 0.96±0.02 73±0.04
Cleveland 0.76±0.03 0.84±0.02 0.77±0.05
Hungarian 0.77±0.02 0.83±0.01 0.79±0.03
Voting 0.92±0.01 0.96±0.01 0.94±0.02

Performance: Table 1 illustrates the impact of the
STRETCH transform on theLOO1NN score of the training
set and the test set. In each case the training set error is
reduced by the resulting linear transform. However as we
see in the 1-NN Test column of Table 1, this improvement
is not always reflected on the test set.

4. Contributions

We have introduced a preprocessing algorithm for classi-
fication problems based on linear transformations called
STRETCH. The algorithm tries to find the transformation
that maximizes the number of instances which have the
same class as their closest neighbor. Earlier feature weight-
ing algorithms can be represented as linear transformations
with diagonal matrices. In contrast STRETCH is capable of
constructing any transformation.Experiments with a num-
ber of standard data sets indicate that most of the time
STRETCH can find a transform that increases the nearest
neighbor score of the training set to near 100%. The test
set results for 1-NN with and without the STRETCH trans-
form indicate improvements in most of the datasets.

References

Aha, D., & Goldstone, R. (1992). Concept learning and
flexible weighting.Proceedings of the Fourteenth Annul
Conference of the Cognitive Science Society(pp. 534–
539). Bloomington, IN: Lawrence Erlbaum.

Aha, D. W. (1991). Incremental constructive induction: An
instance-based approach.Proceedings of the Eighth In-
ternational Workshop on Machine Learning(pp. 117–
121). Evanston, LI: Morgan Kaufmann.

Asuncion, A., & Newman, D. (2007). UCI machine learn-
ing repository.

Creecy, R., Masand, B. M., Smith, S. J., & Waltz, D. L.
(1992). Trading mips and memory for knowledge engi-
neering.Communications of the ACM, 48–64.

Dasarathy, B. V. (Ed.). (1991).Nearest neighbor (nn)
norms: Nn pattern classification techniques. Los Alami-
tos,CA: IEEE Computer Society Press.

Kira, K., & Rendell, L. (1992). A practical approach to
feature selection.Proceedings of the Ninth International
Conference on Machine Learning.(pp. 249–256). Ab-
erdeen, Scotland: Morgan Kaufmann.

Kononenko, I. (1994). Estimating attributes: Analysis and
extensions of relief.Proceedings of the 1994 European
Conference on Machine Learning.(pp. 171–182). Cata-
nia,Italy: Springer Verlag.

Lowe, D. (1995). Similarity metric learning for a variable-
kernel classifier.Neural Computation, 72–85.

Mohri, T., & Tanaka, H. (1994). An optimal weighting
criterion of case indexing for both numeric and symbolic
attributes.Case-Based Reasoning: Papers from the 1994
Workshop. Menlo Park,CA: AAAI Press.

Stanfill, C., & Waltz, D. (1986). Toward memory-based
reasoning.Communications of the Association for Com-
puting Machinery, 1213–1228.

Wettschereck, D. (1995a).A description of the mutual in-
formation approach and the variable similarity metric.
(Technical Report). German National Research Center
for Computer Science,Artificial Intelligence Research
Division, Sankt Augustin,Germany.

Wettschereck, D., Aha, D. W., & Mohri, T. (1997). A re-
view and comparative evaluation of feature weighting
methods for lazy learning algorithms.Artificial Intel-
ligence Review, 273–314.

46

QED: A Proof System for the Static Verification of Concurrent Software

Tayfun Elmas TELMAS@KU.EDU.TR
Ömer Subaşı OSUBASI@KU.EDU.TR

Koç University, Rumeli Feneri Yolu, Sariyer, İstanbul, Turkey

1. Introduction
Because of emerging technologies such as multicore pro-
cessors and grid computing, concurrency is becoming an
important issue of today’s software systems and is likely to
become even more so in the future. A wide-range of sys-
tems including web servers, databases, and operating sys-
tems contain highly concurrent data structures, e.g., a bi-
nary tree, and services, e.g., a persistence manager, in order
to respond efficiently to a large number of simultaneously-
accessing clients. Such software makes use of sophisti-
cated synchronization techniques, including fine-grained
locking and non-blocking operations, and creates extra
threads for internal operations, for example, to re-balance a
binary tree. These techniques require intensive care to use,
and bugs due to incorrect use of them can have serious con-
sequences, such as data corruption, operating system crash,
or even more catastrophic results, e.g., failure of an aircraft
flight control system. Therefore, the functional correctness
of software is as fundamental as its performance.

This paper focuses on statically verifying the (partial) func-
tional correctness of concurrent software. The correctness
is specified using two criteria: validity of assertions and
linearizability. Assertions state local conditions expected
to hold when the execution of the program reaches a cer-
tain location in the code. Linearizability formalizes the
requirement that a concurrently-accessed data structure im-
plementation conform to a sequential specification contain-
ing atomic versions of the data structure’s operations (Her-
lihy & Wing, 1990). That is, every operation of the im-
plementation takes effect instantly between call and return
points where the effect is determined by a corresponding
operation of the specification. We provide a formal proof
system and a supporting software tool using which one can
show that 1) no execution of a program leads to an asser-
tion violation and 2) every concurrent execution of a data
structure is equivalent to an execution of its atomic specifi-
cation.

2. Background and Related Work
Because the full precise static verification is undecidable,
the verification of a program is decomposed into decidable
pieces, requiring code annotations from the user. These
code annotations express facts about the computations per-
formed by the program and include, for sequential pro-
grams, loop invariants, procedure pre- and post-conditions.
The effectiveness of the proof is highly dependent on the
(manual) selection of the annotations. Annotations for con-
current programs require significantly more intellectual ef-
fort to state than those for sequential programs. The funda-
mental reason behind this is the interaction between threads
over the shared memory: while writing the annotations for
a program under fine-grained concurrency, one has to con-
sider possible interleavings of a large number of conflicting
operations.

In the invariant-based approaches, e.g. Owicki-Gries (Ow-
icki & Gries, 1976), each potential interleaving point in a
program must be annotated with an invariant that is valid
under interference from other concurrently-executing ac-
tions. In other words, each invariant must remain true
even after another thread overwriting shared variables is
scheduled at the corresponding interleaving point. Rely-
guarantee methods (Jones, 1981) make this approach more
modular by obviating the need to consider each pair of
concurrent statements separately. Both these methods re-
quire the programmer to reason about interleavings of fine-
grained actions; consequently, the annotations are complex.
Concurrent separation logic (O’Hearn et al., 2004) has the
ability to maintain separation between shared and local
memory, enabling sequential reasoning for multithreaded
programs; however, this is not particularly useful for pro-
grams with high level of interference.

Fine-grained concurrency also complicates establishing an
abstraction map and identifying the commit points of oper-
ations while proving linearizability (Herlihy & Wing, 1990;
Vafeiadis et al., 2006). Managing these requirements when
the operations of a data structure are written in terms of
many small actions that make visible changes to the state
requires considerable expertise.

47

Atomicity is a well-known specification for concurrently
executed code blocks. A code block is said to be atomic
every interleaved execution of the block is equivalent to an
indivisible execution of the block. Several verification ap-
proaches were developed to verify atomicity (Flanagan &
Qadeer, 2003; Freund & Qadeer, 2004; Wang & Stoller,
2005), using reduction as a key ingredient. Their use of
reduction is limited to simple synchronization disciplines
and can only reason about commutativity of accesses that
are not simultaneously enabled. In order to enable wider
application of reduction, they require using auxiliary vari-
ables, which are additional program variables that are used
to express extra facts about the program, and access predi-
cates, which are annotations indicating the synchronization
disciplines in a program. Abstractions have been used as a
mechanism to prove atomicity in the work on purity (Fre-
und & Qadeer, 2005; Wang & Stoller, 2005).

On the other hand, our approach uses atomicity as a reason-
ing tool to enable more tractable verification of other spec-
ifications such as linearizability. Moreover, we use more
flexible notions of reduction and abstraction. Our method
is orthogonal and complementary to existing methods that
do not make direct use of reduction and abstraction, by en-
hancing their applicability, and subsumes others that do.

3. QED Proof System
The primary contribution of this work is a static proof
system, called QED, for proving assertions (Elmas et al.,
2009a) and linearizability (Elmas et al., 2010). QED pro-
vides a novel proof strategy in which atomicity is used as
a proof tool: a program with fine-grained concurrency is
transformed iteratively to make it consist of larger atomic
actions, and the correctness conditions are checked after
the program reaches an atomicity level appropriate for lo-
cal analyses, which can analyze a individual code blocks
without needing the entire program. This gradually re-
duces the influence of thread interleavings on the com-
plexity of the reasoning, and therefore permits significantly
more tractable proofs than those provided by existing meth-
ods. For example, we prove assertions by performing se-
quential (local) checks within atomic blocks of the final
program. The transformations preserve or expand the set
of behaviors of the program, so that assertions proved at
the end of a sequence of transformations are valid in the
original program. In addition, one can simplify a program
with larger atomic blocks using QED and can continue the
proof with another method, e.g., separation logic (O’Hearn
et al., 2004).

A distinguishing and essential aspect of our method is the
iterative and alternating application of two kinds of trans-
formations, abstraction and reduction, which allows us to
reach the desired level of atomicity even when there is

apparent interference between threads. While reduction
and abstraction have been studied in isolation in the lit-
erature, they are symbiotic in QED. Reduction (Lipton,
1975) replaces a compound statement consisting of sev-
eral atomic actions with a single atomic action if certain
non-interference conditions hold and allows a subsequent
abstraction step to summarize the entire calculation in that
statement locally. Reduction uses the commutativity of ac-
tions. If an action commutes with all other actions, then it
can be merged with one of the action. Abstraction replaces
an atomic action with a more relaxed atomic action allow-
ing more behaviors, permitting a later application of reduc-
tion to reason that it does not interfere with other atomic
actions and merge it with other actions.

In addition to checking validity of assertions, our proof sys-
tem simplifies verifying linearizability by using abstraction
and reduction. We prove an implementation is lineariz-
able with respect to a sequential specification by transform-
ing the implementation to the specification in two phases.
In reduction phase, we use reduction and abstraction de-
fined above to increase atomic code blocks. In refinement
phase, we transform code closer to the specification. Re-
finement phase help us to remove conflicts that are not real
conflicts in terms of the specification such as conflicts re-
garding some implementation variables. In this manner, we
construct abstraction map incrementally. Abstraction map
is usually used in order to establish a linearizability proof
which relates the states of the implementation to the states
of the specification. Our method does not require identi-
fication of commit points in the implementation. Commit
points are the points when a concurrent operation effect be-
come visible. The place of these points depends on concur-
rent executions. The commit point of a procedure may be
inside or outside of the procedure.

4. Implementation and Experience
We implemented our verification method in a software tool,
also called QED. QED is open source and can be down-
loaded from http://qed.codeplex.com.

Our tool accepts as input a multithreaded program in
QEDPL language and a proof script. QEDPL is an ex-
tension of the Boogie programming language (DeLine &
Leino., 2005) of Microsoft Research with concurrency con-
structs, e.g., thread creation. We are also developing a
translator from Java to QEDPL. The proof script contains
a sequence of proof commands. A proof command is used
for one of two purposes: to transform the input program
using abstraction, reduction or a combination of the two,
or to provide a concise specification of the behavior of the
current version of the program, including locking proto-
cols and data invariants. The tool automatically generates
the verification conditions justifying each step of the proof

48

and verifies them using Z3 (de Moura & Bjørner, 2008),
a state-of-the-art SMT solver developed by Microsoft Re-
search. After executing each step in the proof script, QED
allows the user to examine the resulting program, intercept
the proof, and give new commands.

We also provide a set of proof script templates. These
templates document and mechanize proof idioms, a se-
quence of low-level proof rules applied for a common sce-
nario, for example, indicating that a variable is always lock-
protected. We presented the proof idioms for common syn-
chronization mechanisms, such as mutex and reader/writer
locks in (Elmas et al., 2009b).

We have evaluated QED by verifying a number of multi-
threaded programs with varying degree of synchronization
complexity. These examples include programs using fine-
grained locking and non-blocking data structures. We have
found that the iterative approach embodied in QED pro-
vides a simple and convenient way of communicating to
the verifier the programmer’s understanding of and correct-
ness arguments on the computation and synchronization in
the program. Thus, the proofs in our method are invariably
cleaner than the proofs based on existing approaches.

The proof script of a program serves as a reproducible
(by our tool) documentation of its correctness. There-
fore, QED provides a proof repository for a collection of
concurrent software including the following purity bench-
marks from (Freund & Qadeer, 2005), fine grained multi-
set and lock-coupling linked list implementations, and non-
blocking stack, queue, deque, and readers/writer lock im-
plementations (Herlihy & Shavit, 2008).

Contributions:
– A novel proof system for verifying assertions in and the
linearizability of multithreaded programs.
– A tool that implements our proof system using a set of
concise and machine-checked proof commands.
– Evaluation of our technique and tool on a variety of small
to medium-sized multithreaded programs.

References
de Moura, L., & Bjørner, N. (2008). Z3: An efficient smt solver,

vol. 4963/2008 of Lecture Notes in Computer Science, 337–
340. Springer Berlin.

DeLine, R., & Leino., K. R. M. (2005). Boogiepl: A typed proce-
dural language for checking object-oriented programs. Techni-
cal Report MSR-TR-2005-70, Microsoft Research.

Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., & Tasiran, S.
(2010). Simplifying the proof of linearizability with reduction
and abstraction. (To appear) TACAS 2010: Proceedings of the
7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems.

Elmas, T., Qadeer, S., & Tasiran, S. (2009a). A calculus of atomic

actions. POPL ’09: ACM Symposium on Principles of Pro-
gramming Languages. New York, NY, USA: ACM.

Elmas, T., Sezgin, A., Tasiran, S., & Qadeer, S. (2009b). An
annotation assistant for interactive debugging of programs with
common synchronization idioms. Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging.

Flanagan, C., & Qadeer, S. (2003). Types for atomicity. TLDI
’03: Proceedings of the 2003 ACM SIGPLAN international
workshop on Types in languages design and implementation
(pp. 1–12). New York, NY, USA: ACM.

Freund, S., & Qadeer, S. (2004). Checking concise specifications
for multithreaded software. Journal of Object Technology, 3,
81–101. Special issue: ECOOP 2003 workshop on FTfJP.

Freund, S. N., & Qadeer, S. (2005). Exploiting purity for atom-
icity. IEEE Trans. Softw. Eng., 31, 275–291. Member-Cormac
Flanagan.

Herlihy, M., & Shavit, N. (2008). The art of multiprocessor pro-
gramming. Morgan Kaufmann.

Herlihy, M. P., & Wing, J. M. (1990). Linearizability: a correct-
ness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12, 463–492.

Jones, C. B. (1981). Development methods for computer pro-
grams including a notion of interference. Doctoral dissertation,
Oxford University. Printed as: Programming Research Group,
Technical Monograph 25.

Lipton, R. J. (1975). Reduction: a method of proving properties
of parallel programs. Commun. ACM, 18, 717–721.

O’Hearn, P. W., Yang, H., & Reynolds, J. C. (2004). Separa-
tion and information hiding. POPL ’04: Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (pp. 268–280). New York, NY, USA:
ACM.

Owicki, S., & Gries, D. (1976). Verifying properties of parallel
programs: an axiomatic approach. Commun. ACM, 19, 279–
285.

Vafeiadis, V., Herlihy, M., Hoare, T., & Shapiro, M. (2006).
Proving correctness of highly-concurrent linearisable objects.
PPoPP ’06 ACM Symposium on Principles and practice of par-
allel programming (pp. 129–136). New York, NY, USA: ACM.

Wang, L., & Stoller, S. D. (2005). Static analysis for programs
with non-blocking synchronization. ACM SIGPLAN 2005
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP). ACM Press.

49

Quantifying Solutions in Answer Set Programming

Halit Erdogan HALIT@SABANCIUNIV.EDU

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, TURKEY

1. Introduction
Answer Set Programming (ASP) (Lifschitz, 2008) is a form
of declarative programming oriented towards difficult (NP-
hard) search problems. A problem is represented as a
logic program whose answer sets correspond to the solu-
tions. The answer sets for the given formalism can be com-
puted by special systems called answer set solvers. Due
to the expressive representation language and continuous
improvements of efficiency of solvers, ASP can be use-
ful for a wide-range of knowledge-intensive applications
from different fields such as: developing a decision sup-
port system for a Space Shuttle (Nogueira et al., 2001);
phylogeny reconstruction (Brooks et al., 2007); multi-agent
planning (Son et al., 2009).

Finding a solution to the problem that we are interested in
is generally the main objective. But many problems have
numerous solutions, instead of a single solution. At that
case it might be desirable to compute a subset of preferred
solutions, instead of computing all the solutions. Consider,
for instance, a product configuration problem: Suppose you
want to buy a car. There are various constraints on what
type of car you want. A product advisor system might con-
sider your constraints and what is available for sale and
offer you a set of cars. But you might not have enough
time to consider all the cars that are offered by the sys-
tem. At that case, it might be desirable to quantify the
solutions (cars) offered by the system. For example, you
might like to see the similar cars similar to a car that you
selected. Or you might like see the cars ranked according to
a preference function (from cars to real numbers) that you
determined. Motivated by such an application we propose
novel methods to quantify solutions in answer set program-
ming. We developed a system called CLASP-NK which is
a modification of the existing ASP solver CLASP (Gebser
et al., 2007). CLASP-NK takes an ASP description of a
problem and a preference function on solutions (in C++);
and it outputs quantified solutions to the problem based on
the preference function. More details and results can be
found in (Eiter et al., 2009); since this paper is a summary
of (Eiter et al., 2009).

2. Answer Set Programming
The idea of answer set programming (ASP) (Lifschitz,
2008) is to represent a computational problem as a logic
program whose answer sets correspond to the solutions of
the problem and to find the answer sets for that program by
using an answer set solver.

Two kind of rules play the major role in ASP: those that
“generate” many answer sets corresponding to possible so-
lutions, and those that “test” the possible solutions and
eliminate the ones that does not correspond to a solution.

For example, recall that a clique in a graph is a set of pair-
wise adjacent vertices. Suppose that we are interested in
the cliques whose size is at least 10 then we can represent
the problem in ASP as follows (Lifschitz, 2008):

10 {select(X) : vertex(X)}.
:- select(X), select(Y), vertex(X),

vertex(Y), X!=Y, not edge(X,Y),
not edge(Y,X).

The first rule correspond to the “generate” part. It generates
the possible solutions that contains at least 10 vertices (se-
lect atoms correspond to the selected vertices). The second
rule is a constraint that checks whether the selected vertices
correspond to a clique. To use this program, we combine it
with a description of the graph, such as:

vertex(1..99). % 1,...,99 are vertices
edge(3,7). % 3 is adjacent to 7
. . .

When we run this ASP program in an ASP solver, if there
exists a clique of at least size 10 then the solver outputs
answer sets. Each answer set corresponds to a clique and
the select atoms in the answer set defines the vertices that
constitutes that clique.

3. Similar Solutions in ASP
Consider the clique example of the previous section and
suppose that the maximum clique size is three. Assume
that for each three consecutive vertices we have a clique:
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, ...}. In addition we have the

50

following two cliques: {{1, 2, 4}, {1, 2, 5}}. Now suppose
that we would like to find the three most similar cliques
in the graph (a set of three cliques where the number of
differentiating atoms (Hamming Distance) are minimum).
At that case three most similar cliques of the graph will be:
{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} since they only differ with
one vertex.

In this example we quantify the solutions based on their
similarity to other solutions. And we accomplish that by
defining a distance measure for a set of solutions. We used
the simple Hamming Distance but more complex prob-
lems might require more complex distance measures. Mo-
tivated by such an example we defined the following deci-
sion problem:

n k-SIMILAR SOLUTIONS
Given an ASP program P that formulates a computa-
tional problem P , a distance measure ∆ that maps a
set of solutions for P to a nonnegative integer, and two
nonnegative integers n and k, decide whether a set S
of n solutions for P exists such that ∆(S) ≤ k.

In the next section we introduce methods to solve the prob-
lem with ASP.

4. Computing Similar Solutions in ASP
Offline Method We can compute a set of n k-similar so-
lutions to a given problem, by computing all solutions in
advance and then using some clustering methods to find
the similar solutions. The idea is to make clusters of n so-
lutions, measure the distance of the set of solutions in each
cluster, and pick the cluster whose distance is less than k.

Online Method 1 The idea of this method is to solve the
problem by describing it in ASP. This method reformulates
the given program P to compute n-distinct solutions, for-
mulates the distance function ∆ as an ASP programD, and
formulates constraints on the distance function as an ASP
program C, so that all n k-similar solutions can be extracted
from an answer set for the union of these ASP programs,
P ∪ D ∪ C.

Online Method 2 This is an approximate method to
solve the problem. In this method we do not modify the
given ASP program P , but formulate the distance ∆(S) of
a given set S of solutions as an ASP program D, and con-
straint on the distance function as an ASP program C, so
that a k-close solution can be extracted from an answer set
for P ∪D∪C. By iteratively computing a k-close solution,
we can compute a set of n k-similar solutions.

Online Method 3 This is also an approximate method
to solve the problem. This method does not modify the

given program, and does not formulate the distance func-
tion as an ASP program, but it modifies the ASP solver
CLASP (Gebser et al., 2007) to compute all n k-similar so-
lutions at once. As a result, we developed a system called
CLASP-NK which is capable of computing n k-similar so-
lutions. CLASP-NK takes the ASP program P and the C++
definition of ∆ as input and outputs n k-similar solutions.

CLASP performs a type of branch and bound algorithm. In
each step it decides an atom to be added to the answer set
(branch). And according to that atom it propagates other
atoms that shall be included in the answer set. Then it
checks whether there is a conflict by considering the rules
of the program. If there exists such a conflict CLASP learns
the conflict (to not to repeat it) and performs a backtracking
(bound).

CLASP-NK contains a slight modification on the bounding
procedure of CLASP. At each step —after CLASP decides
the atoms to include to the answer set— CLASP-NK per-
forms an extra check based on the input distance measure.
If the currently selected atoms (at the level we are in) vi-
olates the distance measure (in the context of similar solu-
tions it means that it is impossible to compute a solution
which is similar to the previously computed solutions if we
continue branching) then we set those atoms as conflict and
perform a backtracking. Therefore, CLASP-NK is forced to
compute a similar solution to the previously computed so-
lutions

5. Computing Similar Phylogenies
Phylogenetics studies the evolutionary relationships be-
tween taxonomic units (e.g., species) based on their shared
traits. These relations are represented as a tree whose
leaves represent the taxa, internal vertices represent their
ancestors, and edges represent the relationships between
them. Such a tree is called “phylogenetic tree” or “phy-
logeny”. Phylogeny reconstruction is an NP-hard prob-
lem and there exists ASP programs that can infer phyloge-
nies (Brooks et al., 2007). But in many cases the phylogeny
reconstruction programs output numerous phylogenies that
describe the historical evolution of the same species. At
those cases experts go over these phylogenies manually to
find the most plausible ones. Instead of computing all the
phylogenies, the experts want to compute a set of similar
phylogenies to perform better analysis. Therefore we de-
fined n k-similar phylogenies problem analogous to the n
k-similar solutions problem. We used the ASP program
of (Brooks et al., 2007) to compute a phylogeny (solution),
and we used a distance measure from the literature to com-
pute the distance between phylogenies. And we run some
experiments to test the methods described in the previous
section. The table below shows the performance of each
method from the point of view of computation time and

51

memory.

Problem Offline Online Online Online
Method Method 1 Method 2 Method 3

2 most 12.39 sec. 26.23 sec. 19.00 sec. 1.46 sec.
similar 32MB 430MB 410MB 12MB

k = 12 k = 12 k = 12 k = 12
3 most 11.59 sec. 60.20 sec. 43.56 sec. 1.56 sec.
similar 32MB 730MB 626MB 15MB

k = 15 k = 15 k = 15 k = 16
6 most 11.66sec. 327.28 sec. 178.96 sec. 1.96 sec.
similar 32MB 1.8GB 1.2GB 15MB

k = 25 k = 25 k = 29 k = 25

Let us first compare the online methods. In terms of
both computation time and memory size, Online Method 3
(CLASP-NK) performs the best, and Online Method 2 per-
forms better than Online Method 1. These results conforms
with our expectations: Online Method 1 requires an ASP
representation of computing n k-similar phylogenies, and
such a program may be too large for an answer set solver
to compute an answer set for. Online Method 2 relaxes
this requirement a little bit so that the answer set solver can
compute the solutions more efficiently: it requires an ASP
representation of phylogeny reconstruction, and an ASP
representation of the distance measure, and then computes
similar solutions one at a time. However, since the answer
set solver needs to compute the distances between every
two solutions, the computation time and the size of mem-
ory do not decrease much, compared to those for Online
Method 1. Online Method 3 deals with the time consum-
ing computation of distances between solutions, not at the
representation level but at the search level; so it does not
require an ASP representation of the distance function but
requires a modification of the solver.

The offline method is more efficient, in terms of both com-
putation time and memory, than Online Methods 1 and 2
since it does not compute phylogenies. On the other hand,
the offline method is less efficient, in terms of both com-
putation time and memory, than Online Method 3, since it
requires both representation and computation of distances
between solutions.

6. Conclusion
We introduce one offline and three online methods to com-
pute n k-similar solutions in ASP. We developed a system
CLASP-NK (Online Method 3) which is capable of comput-
ing n k-similar solutions on the fly. We showed the effec-
tiveness and applicability of our methods on phylogenetics
domain.

This paper is a proof-of-principle that CLASP-NK is use-
ful for quantifying solutions in ASP. In this paper, we con-
sider quantifying the solutions based on their similarity to

other solutions. CLASP-NK’s capabilities are not limited
to only computing similar solutions in ASP. We can define
any preference function so that CLASP-NK can compute the
quantified solutions based on that preference function.

Acknowledgments
I am grateful to my supervisor, Esra Erdem, for excel-
lent advice and encouragement. The central ideas in this
work are the product of a close collaboration with Esra Er-
dem, Thomas Eiter and Michael Fink. I also wish to thank
Martin Gebser and Benjamin Kaufmann for their help with
CLASP.

References
Brooks, D., Erdem, E., Erdogan, S., Minett, J., & Ringe,

D. (2007). Inferring phylogenetic trees using answer set
programming. Autom. Reason., 39, 471–511.

Eiter, T., Erdem, E., Erdogan, H., & Fink, M. (2009). Find-
ing similar or diverse solutions in answer set program-
ming. In (Hill & Warren, 2009), 342–356.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T.
(2007). clasp: A conflict-driven answer set solver. Proc.
of LPNMR (pp. 260–265). Springer-Verlag.

Hill, P. M., & Warren, D. S. (Eds.). (2009). Logic pro-
gramming, 25th international conference, iclp 2009,
pasadena, ca, usa, july 14-17, 2009. proceedings, vol.
5649 of Lecture Notes in Computer Science. Springer.

Lifschitz, V. (2008). What is answer set programming?
Proc. of. AAAI (pp. 1594–1597). AAAI Press.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R.,
& Barry, M. (2001). An a-prolog decision support sys-
tem for the space shuttle. Proc. of PADL (pp. 169–183).
London, UK: Springer-Verlag.

Son, T., Pontelli, E., & Sakama, C. (2009). Logic program-
ming for multiagent planning with negotiation. In (Hill
& Warren, 2009), 99–114.

52

L1 Regularization for Learning Word Alignments in Sparse Feature Matrices

Ergun Biçici EBICICI@KU.EDU.TR
Deniz Yuret DYURET@KU.EDU.TR

Department of Electrical and Computer Engineering
Koç University, Istanbul, Turkey

1. Introduction
In statistical machine translation, parallel corpora, which
contain translations of the same documents in source and
target languages, are used to estimate a likely target trans-
lation for a given source sentence based on the observed
translations. Sparse feature representations can be used in
various domains. When the number of instances, m is sig-
nificantly smaller than the number of features, n, m � n,
then we have an under determined system of equations.

We examine the effectiveness of regression to find the map-
pings between sparsely observed feature sets. Regulariza-
tion of the cost function plays an important role to increase
the performance; therefore we experiment with L1 regular-
ization. We analyze and devise instance selection methods
for a given source sentence to increase the performance of
the word alignment. The performance is estimated by com-
paring with the phrase table obtained by GIZA++ (Och &
Ney, 2003), which is a state of the art word alignment tool
commonly used in phrase-based machine translation sys-
tems. GIZA++ combines the result of various statistical
word alignment models and performs symmetrization of
the generated directed alignments.

2. Regression Based Alignment Learning
Let the feature matrices MX ∈ RNX×m and MY ∈
RNY ×m be obtained from m training instances such that
each column of MX (MY) is obtained by a feature mapper
ΦX : X∗ → RNX (ΦY : Y ∗ → RNY). The ridge regres-
sion solution usingL2 regularization is given in Equation 1:

HL2 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ ‖H‖2F (1)

= MY MT
X(MXMT

X + λI)−1 (2)

HL1 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ ‖H‖1 . (3)

HL2 does not give us a sparse solution as most of the coef-
ficients remain non-zero. L1 norm behaves both as a fea-
ture selection technique and a method for reducing coeffi-
cient values. Equation 3 presents the lasso (least absolute

shrinkage and selection operator) (Tibshirani, 1996) solu-
tion where the regularization term is now the L1 matrix
norm defined as ‖ H ‖1=

∑
i,j |Hi,j |. HL2 can be found

by taking the derivative but since L1 regularization cost is
not differentiable, HL1 can be found by optimization or ap-
proximation techniques.

We perform experiments with forward stagewise regres-
sion (Hastie et al., 2006) (FSR) and quadratic optimiza-
tion (QP) techniques to find HL1 . The incremental forward
stagewise regression algorithm increases the weight of the
predictor variable that is most correlated with the residual
by a small amount, ε, multiplied with the sign of the corre-
lation at each step. As ε→ 0, the profile of the coefficients
resemble the lasso (Hastie et al., 2001). We can pose lasso
as a QP problem as follows (Mørup & Clemmensen, 2007).
We assume that the rows of MY are independent and solve
for each row i, Myi

∈ R1×m, using non-negative variables
h+

i ,h
−
i ∈ RNX×1 such that hi = h+

i − h−i :

hi = ‖Myi − hiMX‖2F +λ

NXX
k=1

|hi,k| (4)

hi = arg min
h̃i

1

2
h̃i
gMX

gMX
T

h̃i
T − h̃i(gMXMT

yi
− λ111) (5)

s.t. h̃i > 0, gMX =

»
MX

−MX

–
, h̃i =

ˆ
h+

i h−i
˜

Orthogonality of the coefficient matrix can be desirable
since the L2 regularization parameter penalizes in propor-
tion to HT H and setting HT H = HHT = I corresponds
to assuming that features are selected independently (i.e.
correlation of source and target features is identity). There-
fore, we also experiment with symmetric coefficient matrix

HS =
√

H×←−HT , where × stands for the element-wise

multiplication operator and
←−
H is the coefficient matrix ob-

tained when solving the inverse problem (i.e. estimating
MX by using

←−
HMY).

53

3. Experiments
Training set contains about 80K English-German parallel
news articles available from WMT2009 (Koehn & Had-
dow, 2009). We conducted experiments on 10 sentences
with 10 tokens (short) and another 10 sentences with 20
tokens (long). The feature mappers are 3-spectrum count-
ing word kernels, which consider all N -grams up to order
3 weighted by the number of tokens in the feature. Proper
selection of training instances plays an important role to
learn feature mappings within limited time and at expected
accuracy levels. Instance selection is performed with the tf-
idf (term frequency, inverse document frequency) weight-
ing using the cosine similarity. We experiment with differ-
ent instance selection methods: (i) per source sentence, (ii)
per source sentence feature, (iii) instances’ longest com-
mon matches per source sentence feature. Selection (ii)
selects instances per feature (ipf) either proportional to the
length of the feature, f , (ipf = n × length(f)) or dynam-
ically proportional to n/ log(1 + idfScore(f)/9.0). Dy-
namic instance selection select more instances from rare
features whose idf scores are higher. Selection (iii) uses
only the longest matching parts to try to remove features
coming from irrelevant tokens. We discard features that
are observed less than three times from the training set.

Evaluation: We evaluate the performance of the coeffi-
cient matrix, H, by measuring the precision, recall, and
fmeasure when compared with the entries in the phrase ta-
ble, PT, obtained by GIZA++ using the full training set.
Let T contain the training indices of the target features in
the PT that match the source sentence features, S, found in
H whose values are greater than zero, then we define:

precision =

∑
i∈S

∑
j∈T Hj,i PTi,j∑

j∈T

∑
∗>0 Hj,∗

(6)

recall =

∑
i∈S

∑
j∈T Hj,i PTi,j∑

i∈S

∑
j∈T PTi,j

(7)

fmeasure =
2× precision× recall

precision + recall
(8)

where Hj,i stands for the coefficient for target feature j, tj ,
and source feature i, si,

∑
∗>0 Hj,∗ sums over all the en-

tries in row j that are greater than 0, and PTi,j is the multi-
plication of the lexical translation probabilities p(si|tj) and
p(tj |si) found in PT. We also use top3%, which measures
the percentage of observing the top 3 scored target features
in the phrase table translations, sqLoss, which measures the
squared loss of the estimation with respect to the target
sentence, and cov., which measures the average coverage
of the training set in representing the target sentence. Ta-
ble 1 presents our evaluation of the performances of differ-
ent techniques when training instances are selected dynam-
ically with n = 4. The effectiveness of selection (iii) can

be seen in the increase in the precision, recall, and fmeasure
metrics and decrease in computation time in Table 2.

Conclusion: Our findings are listed below:

• L1 regularization helps improve the performance. L2

solution performs worse. QP in general perform better
than FSR but takes very long time.

• Symmetrization helps in improving precision, recall,
and fmeasure score. It reduces sqLoss in FSR and
sometimes in QP solutions.

• Coverage and top3% increase as we select more in-
stances, but this decreases precision and sqLoss due
to adding more noise.

• QP quickly becomes infeasible due to increased com-
putation time when NX and NY increase. Selection
(iii) helps us increase precision, recall, and fmeasure
without increasing the sqLoss too much.

References
Hastie, T., Taylor, J., Tibshirani, R., & Walther, G. (2006).

Forward stagewise regression and the monotone lasso.
Electronic Journal of Statistics, 1.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The ele-
ments of statistical learning: Data mining, inference and
prediction. Springer-Verlag.

Koehn, P., & Haddow, B. (2009). Edinburgh’s submission
to all tracks of the WMT 2009 shared task with reorder-
ing and speed improvements to Moses. Proceedings of
the Fourth Workshop on Statistical Machine Translation
(pp. 160–164). Athens, Greece: Association for Compu-
tational Linguistics.

Mørup, M., & Clemmensen, L. H. (2007). Multiplicative
updates for the LASSO. MLSP 2007.

Och, F. J., & Ney, H. (2003). A systematic comparison
of various statistical alignment models. Computational
Linguistics, 29, 19–51.

Tibshirani, R. J. (1996). Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical Soci-
ety, Series B, 58, 267–288.

54

Table 1. Numbers represent averages. Time is in seconds. S suffix is for symmetrized techniques.
Top: Performances of different techniques when training instances are selected dynamically with n = 4.
Bottom: Selection (i) results using long set of sentences. 50 and 100 instances per sentence are selected.

n=4, dynamic prec. recall fmeas. top3% sqLoss time

short

L2 0.007 0.038 0.011 0.206 39.521 0.204
L2S 0.006 0.039 0.010 0.223 69.514 0.674
QP 0.061 0.062 0.061 0.377 26.208 335.121

QPS 0.162 0.072 0.098 0.377 30.281 352.124
FSR 0.038 0.070 0.049 0.335 62.973 24.490

FSRS 0.193 0.076 0.106 0.318 32.456 23.674

long

L2 0.0 0.034 0.009 0.297 69.240 0.960
L2S 0.0 0.037 0.008 0.276 129.042 1.932
QP 0.066 0.081 0.072 0.419 51.146 1105.915

QPS 0.189 0.095 0.125 0.419 51.172 1058.366
FSR 0.056 0.094 0.069 0.362 99.644 73.107

FSRS 0.239 0.102 0.141 0.353 53.125 79.008
n, selection (i) prec. recall fmeas. top3% sqLoss time

50

L2 0.010 0.033 0.015 0.172 43.242 0.067
L2S 0.009 0.036 0.014 0.186 50.194 0.137
QP 0.091 0.056 0.068 0.350 37.885 31.119

QPS 0.255 0.054 0.087 0.335 31.685 30.879
FSR 0.051 0.085 0.063 0.285 79.713 3.906

FSRS 0.321 0.085 0.131 0.275 33.421 3.190

100

L2 0.007 0.035 0.011 0.251 55.511 0.363
L2S 0.006 0.038 0.010 0.254 74.590 0.815
QP 0.089 0.071 0.079 0.426 43.309 416.296

QPS 0.257 0.082 0.123 0.417 39.404 423.335
FSR 0.053 0.085 0.065 0.377 84.525 31.043

FSRS 0.294 0.091 0.137 0.358 43.266 27.953

Table 2. Numbers represent averages taken over the long set of sentences. Time is in seconds.
Top: QP performance when training instances are selected dynamically and with proportion to length.
Bottom: QP performance when training instances are selected dynamically with n and only matching parts are used as training sentences.

QP n ipf cov. prec. recall fmeas. top3% sqLoss time

dynamic

1 1.616 0.324 0.083 0.074 0.077 0.330 42.534 113.205
2 1.663 0.328 0.081 0.073 0.076 0.342 44.195 143.112
3 2.111 0.360 0.076 0.080 0.077 0.359 49.779 508.252
4 2.704 0.378 0.066 0.081 0.072 0.419 51.146 1105.915

length

1 1.616 0.324 0.083 0.074 0.077 0.330 42.534 114.167
2 1.954 0.347 0.074 0.075 0.073 0.359 48.205 411.712
3 2.439 0.365 0.066 0.079 0.071 0.394 49.872 1132.119
4 3.113 0.385 0.057 0.079 0.066 0.435 51.777 2508.383

n m NX NY ipf cov. prec. recall fmeas. top3% sqLoss time
2 81.000 385.700 427.500 1.737 0.243 0.095 0.072 0.081 0.222 41.411 29.661
3 103.500 428.900 474.000 2.214 0.250 0.106 0.084 0.093 0.250 43.289 25.440
4 133.600 433.700 479.900 2.849 0.254 0.113 0.091 0.100 0.263 43.243 52.357
5 162.000 441.600 490.200 3.450 0.256 0.120 0.091 0.102 0.279 43.399 52.019
6 190.300 441.600 494.100 4.048 0.262 0.122 0.096 0.105 0.283 44.083 92.475
7 216.500 442.000 495.800 4.605 0.264 0.129 0.101 0.112 0.286 44.110 89.570
8 242.400 442.300 497.600 5.148 0.270 0.131 0.101 0.112 0.287 44.310 90.859
9 266.800 442.700 498.700 5.662 0.270 0.134 0.100 0.113 0.296 44.249 155.055

10 290.800 443.000 500.100 6.165 0.273 0.136 0.099 0.113 0.298 44.343 175.650

55

Collaborative Haptic Negotiation and Role Exchange in Multimodal Virtual
Environments

S. Ozgur Oguz SOGUZ@KU .EDU.TR

Ayse Kucukyilmaz AKUCUKYILMAZ @KU .EDU.TR

Tevfik Metin Sezgin MTSEZGIN@KU .EDU.TR

Cagatay Basdogan CBASDOGAN@KU .EDU.TR

College of Engineering, Koc University

1. Introduction

This work is a preliminary study to investigate the benefits
of haptic guidance with collaborative role exchange mech-
anisms over simple guidance methods in dyadic interac-
tion. Our system employs a novel negotiation mechanism
that realizes role exchange using a three-state finite state
machine. This scheme creates a favorable communication
while providing acceptable task performance. Our initial
findings suggest that this scheme introduces a tradeoff be-
tween the accuracy in task performance and the effort of
the user.

We concentrated our studies in tasks where human and
computer connect through the haptic channel. Haptics can
improve task performance by providing the user with ap-
propriate feedback (Morris et al., 2007; Feygin et al., 2002)
and create a sense of acting together (Basdogan et al.,
2000; Salln̈as et al., 2000). Few groups studied role defini-
tions for collaboration, most of which implement a leader-
follower scheme, where the human partner takes on the
leading role (Khatib, 1999; Kosuge et al., 1993). These
improve performance yet fail to create a sense of collabo-
ration. Reed and Peshkin (Reed & Peshkin, 2008) examine
specialization of partners in dyadic interaction. However
applying the observed specialization scheme to the com-
puter fails, probably due to a lack of careful examination
of the nature of specialization. Stefanov et al. (Stefanov
et al., 2009) propose executor and conductor roles for hap-
tic interaction. This work presents important observations
regarding communication for role exchange, yet is not ap-
plied to human-computer interaction. Evrard and Kheddar
(Evrard & Kheddar, 2009) similarly define leader and fol-
lower roles in a symmetric dyadic task. Despite the sim-
plicity of their experimental design, they introduce a novel
method for modeling interaction behavior. However this
method involves neither a user-centric nor a dynamic nego-
tiation mechanism to handle interaction.

2. Haptic Board Game

Figure 1. A screenshot of the Haptic Board Game.

The goal of the haptic board game is to hit targets on a
flat board with a ball in a specific order with the help of a
PHANToM device. Visually, the board is tilted about the
x and z axes as a result of the movement of the ball. Fig-
ure 1 shows a snapshot of the game where the current and
previous targets are clearly visible.

To create a collaborative system, we came up with a novel
haptic negotiation scheme as in Figure 2. In this model,
the system is controlled by three virtual massless particles:
haptic, controller, and negotiated interface points (respec-
tively HIP, CIP, and NIP). HIP, CIP and the ball are inter-
connected at NIP, through which the ball is directly moved.

Figure 2. The physical model for the haptic board game.Kp and
Kd values in the figure represent the spring and damper coeffi-
cients. In no guidance condition CIP and NIP coincide at all times
to prevent computer intervention.

56

In order to investigate the effect of different collaboration
mechanisms, we implemented three conditions to be tested
with the Haptic Board Game:

No Guidance: The user only feels the resistive forces due
to the rotation of the board, but the computer does not pro-
vide any haptic guidance. In this condition, CIP and NIP
coincide to prevent any computer intervention.

Both Axes Guidance: Both the user and the com-
puter affect the system equally at all times. Using PD
(Proportional-Derivative) control algorithm, the controller
adjusts the orientation of the board such that the ball auto-
matically moves towards the target

Role Exchange: The system allows dynamic haptic ne-
gotiation between the user and the computer by inferring
user’s intentions. Based on the user’s force profile, per-
sonalized threshold values are calculated and depending on
these values, the computer decides on how the parties share
control. The degree of provided guidance is adjusted dy-
namically with a role exchange policy, implemented with a
three-state finite state machine (see Figure 3).

Figure 3. The state diagram defining the role exchange policy.
Fuser: the force applied by the user.FThL, FThU : the lower and
upper threshold values for initiating the state transitions.S1: user
is the dominant actor,S3: both computer and user have equal de-
gree of control,S2: role blending is in process to change the con-
troller’s role gradually. Initially the system is in stateS1, where
user is the dominant actor of the game while the controller only
gently assists him.

3. Experiment

10 subjects (5 female, and 5 male) participated in our study.
In order to eliminate learning effects on successive trials,
the order of experimental conditions was mixed, with at
least three days between two successive experiments. In
the beginning of the experiments, we used certain training
applications, to familiarize the subjects with the haptic de-
vice. We did not inform the subjects about the nature or
the existence of different conditions we were testing. All
experiments were conducted under the same physical set-
tings. A single experiment took about half an hour, and
in each experiment the users played with either no guid-
ance, both axes guidance, or role exchange conditions. In
the no guidance and both axes guidance conditions, each
subject played the game 15 times for a single experiment.
Each game consisted of hitting eight targets in a specific

order, with the ball. At the end of each game another game
is automatically instantiated without interrupting the sys-
tem’s simulation. To avoid fatigue, subjects were given a
short break after the5th and the10th games . For the role
exchange condition, the users played an extra game under
no guidance condition at the beginning of each block of 5
games in order for the system to determine the force thresh-
olds necessary for the role exchange process.

4. Results

4.1 Subjective Evaluation Results

After each experiment, the users were given a question-
naire, designed by the technique used by Slater et al. (Slater
et al., 2000). The questions are asked to measure the self-
perception of users’ performance and the collaborative as-
pects of the system, as well as the degree to which the users
felt they or the computer were in control.

Subjects believed that they performed better on both axes
guidance and role exchange compared to the no guidance
condition. The differences were statistically significant for
both axes guidance and role exchange when compared to
the no guidance condition (p < 0:005 andp < 0:02, re-
spectively). No significant difference is observed between
both axes guidance and role exchange conditions.

For the level of perceived collaboration, subjects had a
higher sense of collaboration for the role exchange and
both axes guidance conditions compared to the no guid-
ance condition (p< 0:01). Again, no significant difference
is observed between both axes guidance and role exchange
conditions.

Subjects’ and computer’s levels of control were similar in
all three conditions. However, in role exchange condition,
even though the subjects perceived reduced control over the
game, they had a stronger sense of computer participation.

4.2 Quantitative Measurements

We quantified user performance and the utility of provid-
ing haptic guidance by task completion time, the deviation
of the ball from the ideal path, integral of time and abso-
lute magnitude of error (ITAE) (Dorf & Bishop, 2000), and
work done by the user due to the spring located between
NIP and HIP. Since the forces accumulated in the system
are sent indirectly to the user through this spring only, we
assume that this force is the force felt by the user.

According to paired t-test results (p= 0:05), all three con-
ditions display significant difference from each other re-
garding task performance (see Figure 4). We observed that
best performance is achieved in both axes guidance con-
dition. In no guidance condition, the performance is the
worst, while role exchange falls in between the two.

57

Figure 4. Means and standard deviations of paired differences of
(a) completion times, (b) path deviations, (c) path lengths, and
(d) ITAEs per condition (NG: no guidance, BG: guidance without
negotiation, RE: guidance with negotiation and role exchange)

Figure 5. Means and standard deviations of energy on the spring
between NIP and HIP per condition and paired differences of en-
ergy (NG: no guidance, BG: guidance without negotiation, RE:
guidance with negotiation and role exchange)

Figure 5 illustrates the average work done by the user. No
significant difference is observed between no guidance and
role exchange conditions, whereas both are statistically dif-
ferent from both axes guidance condition.

As a result, both axes guidance has higher energy require-
ments, while the completion time and spatial error of no
guidance is inferior. It is the role exchange mechanism that
allows us to trade off accuracy for energy without causing
user dissatisfaction.

5. Conclusion

This paper presents the novel haptic negotiation and role
exchange model we developed for a collaborative task in a
highly dynamic environment. This model realizes dynamic
negotiation between a human user and a computer and im-
plements role exchange using a three state finite state ma-
chine that allowed us to achieve seamless interaction. With
the proposed role exchange mechanism, the users are pre-
sented with an option to choose and optimize between pre-
cision and energy, implying a tradeoff between the accu-

racy in task performance and the effort of the user.

References

Basdogan, C., Ho, C.-H., Srinivasan, M. A., & Slater, M.
(2000). An experimental study on the role of touch in
shared virtual environments.ACM Trans. Comput.-Hum.
Interact., 7, 443–460.

Dorf, R. C., & Bishop, R. H. (2000).Modern control sys-
tems. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Evrard, P., & Kheddar, A. (2009). Homotopy switching
model for dyad haptic interaction in physical collabora-
tive tasks.WHC ’09: Proceedings of the World Haptics
2009 - Third Joint EuroHaptics conference and Sympo-
sium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems(pp. 45–50).

Feygin, D., Keehner, M., & Tendick, F. (2002). Haptic
guidance: Experimental evaluation of a haptic training
method for a perceptual motor skill.HAPTICS ’02: Pro-
ceedings of the 10th Symposium on Haptic Interfaces for
Virtual Environment and Teleoperator Systems(p. 40).

Khatib, O. (1999). Mobile manipulation: The robotic assis-
tant. Robotics and Autonomous Systems, 26, 175–183.

Kosuge, K., Yoshida, H., & Fukuda, T. (1993). Dynamic
control for robot-human collaboration.Robot and Hu-
man Communication, 1993. Proceedings., 2nd IEEE In-
ternational Workshop on(pp. 398–401).

Morris, D., Tan, H., Barbagli, F., Chang, T., & Salisbury, K.
(2007). Haptic feedback enhances force skill learning.
WHC ’07: Proceedings of the Second Joint EuroHaptics
Conference and Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems(pp. 21–26).

Reed, K. B., & Peshkin, M. A. (2008). Physical collabo-
ration of human-human and human-robot teams.IEEE
Trans. Haptics, 1, 108–120.

Salln̈as, E.-L., Rassmus-Gröhn, K., & Sj̈ostr̈om, C. (2000).
Supporting presence in collaborative environments by
haptic force feedback.ACM Trans. Comput.-Hum. In-
teract., 7, 461–476.

Slater, M., Sadagic, A., Usoh, M., & Schroeder, R. (2000).
Small-group behavior in a virtual and real environment:
A comparative study.Presence: Teleoper. Virtual Envi-
ron., 9, 37–51.

Stefanov, N., Peer, A., & Buss, M. (2009). Role determina-
tion in human-human interaction.WHC ’09: Proceed-
ings of the World Haptics 2009 - Third Joint EuroHaptics
conference and Symposium on Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems(pp. 51–56).

58

Rigid Motion Correction in IVUS Sequences

Gozde Gul Isguder ISGUDER@SU.SABANCIUNIV.EDU
Gozde Unal GOZDEUNAL@SABANCIUNIV.EDU

Sabanci University, Tuzla/ Istanbul

1. Introduction
Intravascular Ultrasound(IVUS) is an imaging technology
which provides high resolution images of internal vascular
structures. IVUS is a special tool that is widely used in
plaque detection and measurement of vessel wall stiffness.
These properties of IVUS provide assistance for diagnosis
of cardiac diseases. Unfortunately during the pullback due
to the catheter motion inside the arteries in-vivo and heart
expansion, longitudinal geometry of the vessel wall seems
pulsatile and jagged which makes the analysis and diagno-
sis of the cardiac diseases harder. In this paper, we present
two motion correction methods based on spectral analysis
and intensity based registration applied across IVUS cross-
section images for 3D reconstruction and visualization of
reconstructed boundaries. Furthermore we compare the re-
sults of these two methods on in-vivo sequences. Currently
there are no accepted evaluation techniques for our prob-
lem, but from our 3D visualization it can clearly be seen
that the motion is strongly reduced.

2. Related Work
There have not been many approaches for the motion prob-
lem. One of the main approaches was addressing only the
cardiac cycle movement(heart motion). In-vivo studies a
special unit, named ECG unit, can be used to capture only
the frames synchronized with the cardiac pulse, thus reduc-
ing the motion caused by the heart motion. Since it longers
the image acquisition procedure, automatic image-gating
methods (O’Malley et al., 2008) that can be used after im-
age acquisition, were developed. Although those methods
reduce the motion, they cause a big loss of information by
ignoring the frames between two cardiac cycles.

There have been also non-rigid methods and vessel geomet-
ric appearance based approaches mainly focusing on mor-
phology of the vessel. Although the motivation behind the
work is nice, those methods were computationally ineffi-
cient.

Figure 1. Left:Original stack of IVUS Frames; Right: Registered
stack of IVUS Frames

3. Method
During a pullback, as the catheter moves inside the arter-
ies in-vivo, it inevitably translates and rotates and causes a
misalignment between the two recorded consecutive cross-
section images. Moreover, the catheter may go back and
forth as the heart dilates and compresses. The result is a
pulsatile and jagged longitudinal geometry of the vessel
wall (see Fig 1). For an accurate 3D vessel geometry and
longitudinal analysis, these catheter effects should be cor-
rected.

3.1 Preprocessing

In this section two different methods that address rigid mo-
tion correction are presented. First method is the spectral
based method. For this method, there’s a need for previ-

59

(a) (b) (c) (d)

Figure 2. Preprocessing stage for spectral and intensity based reg-
istration (a)Original IVUS Frame; (b)After removing the catheter
artifact; (c) After downsampling the IVUS Frame; (d) After
smoothing the downsampled IVUS Frame

ously segmented lumen borders to find the lumen centers
by calculating the center of mass. We use our own seg-
mentation tool that was published in (Unal et al., 2006)
for lumen segmentation purposes. Due to the algorithm’s
efficiency and robustness to noise, no other preprocessing
stage is needed.

Second method is an intensity based method that uses mu-
tual information between two consecutive frames. This
method is tied strongly to the intensity values and hence not
robust to noise. Due to the fact that the optimizer may take
a long time if no appropriate initial values are provided,
first we downsample the images to reduce the execution
time. In order to reduce the noise in the downsampled im-
ages, we then smooth the images with a Gaussian filter with
a 3x3 kernel with σ =1.

In all IVUS frames, there are brighter areas in a small ra-
dius circle, that was caused by the catheter. This artifact is
called catheter artifact and must be removed for the sake of
effectiveness of both of the algorithms. In order to remove
the artifact a horizontal scanning is made through the im-
ages and the last line that has a brightness above the mean
was chosen to be the artifact line, and the rows above this
line are assigned to zero. The preprocessing stage can be
seen in Fig. 2.

3.2 Spectral Based Method

In this paper, we don’t address the heart motion artifact
which causes a back-forth motion and causes us to see
some cross-section frames multiple times; but we only ad-
dress two types of cross-sectional catheter motion: transla-
tion and rotation. As the catheter moves inside the vessel,
due to the varying vessel curvature, both types of motion
occur. We estimate these transformation parameters seper-
ately. First, we account for the translation by aligning the
IVUS cross-section images w.r.t. their lumen area’s center
of mass that was extracted by our segmentation tool.

Secondly, to address the rotation of the catheter during pull-
back, we estimated rotation between subsequent frames via
a spectral correlation analysis method inspired by (Hernan-
dez et al., 2006), where the translation on a rectangular im-
age, which corresponds to a rotation on the display image,
is calculated as follows: Let I be the rectangular image
and It is the translated version of I with a 2D translation

Figure 3. fitted plane to phase ρ

(a) (b)

(c) (d)

Figure 4. Rotation estimation: Middle column: source image;
Right top: reference image; Right bottom: rotated source image
with the estimated rotation=5.21 degrees;

t = (t1, t2). The ratio between the Fourier transforms of
the image I and It: k(w1, w2) = F (It)/F (I).e

−j<w,t>,
can be used to extract the phase: ρ(w) = 〈w, t〉 = w1 ∗
t1 + w2 ∗ t2, where w = (w1, w2) denotes the 2D fre-
quency vector. The idea then is to estimate the amount of
shift using the phase defined over the 2D frequency space
by fitting a plane to the ρ function that can be seen in Fig.
3: Aw1 + Bw2 + Cρ = D. Here a translation between
the two images in either the horizontal or the vertical di-
rection can be detected over the plane aligned with one of
the frequency axis w1 or w2. Practically, a least-squares
estimator is used via a singular value decomposition. In
the IVUS rectangular images, the calculated slope B of
the plane represents the estimated rotation value in radians
(whereas D=0). An example is shown for rotation estima-
tion between two subsequent IVUS frames in Fig. 4 .

3.3 Intensity Based Method

This is a very well known method that uses image intensity
information to find a transformation T, between the images.
By means of its simplicity and flexibility, this method was
previously adapted to many different vision problems and
used with a wide variety of image modalities.

Let’s define X and Y as two 2D images that we want to
register. Start by initializing a T (holds for transformation)
on one of the images.

60

(a) (b)

(c) (d)

Figure 5. Rotation estimation: Left column: source image; Right
top: image to be registered; Right bottom: transformed image
with the estimated rotation=12.14 degrees, dx=0.80 , dy=0.75 in
pixels ;

Step 1) Transform Y with T to get T (Y).
Step 2) Compare X and T (Y) using the full image
content.
Step 3) Refine T and go to step 1 until the convergence
criteria is reached.

The most important part of the problem is defining a simi-
larity measure for comparison. Current similarity measures
include classical statistic methods like SSD,NCC and infor-
mation theoretic measures that treats the data as a random
variable and uses probability of intensity values instead
of the values itself. Mutual information is an example of
information theoretic approach that uses joint histograms.
For our purposes we used Mutual Information as the simi-
larity measure.

The second problem is choosing an optimization method to
minimize/maximize the similarity measure thus refine T .
Current optimization methods include downhill simplex,
best neighbor and newton like methods. Best neighbor and
newton like methods are more likely to stuck at local min-
ima, thus we choose downhill simplex for our optimization
problem.

The last important issue is choosing an interpolation
technique. Interpolation is crucial to minimize distor-
tions/errors when applying transform. For that reason bi-
linear interpolation technique, which uses also the neighbor
pixel information was used.

A registered example can be seen in Fig. 5 estimated
parameters are translation in x direction=0.80796 ,transla-
tion in y direction=0.75619 in pixels and the rotation an-
gle=12.1409 degrees.

4. Results and Discussions
All IVUS images were performed by Volcano Eagle Eye
IVUS machine using motorized pullback with a speed of
0.5 mm per sec. 100 microgram nitro were given intra-
coronary before image acquisition. The two methods were
applied on one pullback and the results are shown in Fig.
1.

In the result shown in Fig. 1, the white lines present the lu-
men center(can be referred as vessel center). For the sake of
clearness , we’ve shown the original pullback with less im-
ages, while we show the registered pullback more densely.
As can be seen from the results, in the registered pullback
the vessels’ centers are aligned and in contrast to the orig-
inal pullback, the lumen ,which have a brighter pattern, is
clearly aligned. In conclusion we can claim that we ex-
tracted the real 3D geometry of the vessel.

Although the spectral based method requires a segmenta-
tion process beforehand for the lumen center estimation, it
is more efficient and robust to noise. Intensity based meth-
ods don’t require any primary knowledge about the lumen
contours but computationally less efficient and redundant
to intensities thus easily effected by the noise.In our exper-
iments, we observed that spectral registration method gives
far better results than intensity based methods.

5. Future Work
In our future work, we will work on a method to extract
real 3D vessel geometry, that is not strongly tied to the seg-
mentation results or the intensity values, and more efficient.
Furthermore we will test our methods on more pullbacks,
and try to define a novel evaluation method for this area.

References
Unal, G., Bucher, S., Carlier, S.,Slabaugh, G.,Fang, T.,

Tanaka, K.(2006). Shape-driven Segmentation of the Ar-
terial Wall in Intravascular Ultrasound Image Proceed-
ings of the MICCAI: The First International Workshop
on Computer Vision for Intravascular and Intracardiac
Imaging (CVII) (pp. 51–58).

Hernandez, A.,Radeva, P., Tovar, A., Gil, D.(2006). Ves-
sel structures alignment by spectral analysis of IVUS
sequences. Proceedings of Computer Vision for In-
travascular and Intracardiac Imaging (CVII) Copen-
hagen,Denmark.

O’Malley, S.M. Granada, J.F. Carlier, S. Naghavi,
M.Kakadiaris, I.A.(2008). Image-Based Gating of
Intravascular Ultrasound Pullback Sequences. IEEE
Transactions on Information Technology in Biomedicine
Vol.12, No.3, May 2008,(pp. 299–306).

61

Genome Rearrangement: A Planning Approach

Tansel Uras TANSELURAS@SABANCIUNIV.EDU

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

1. Introduction
In biology, evolutionary trees (or phylogenies) can
be reconstructed from the comparison of genomes of
species (Sankoff & Blanchette, 1998). One metric of evo-
lutionary distance for this purpose is the number of rear-
rangement events such as transpositions and inversions to
convert one genome to the other where a smaller num-
ber of such events implies a closer lineage. A rearrange-
ment event is a genome-wide mutation that changes the or-
der and/or orientations of genes (and sometimes their ex-
istence) in a genome. Finding the minimum number of
these rearrangement events between genomes is called the
genome rearrangement problem and it is conjectured to be
NP-hard (Bylander, 1994).

We consider the genome rearrangement problem as a plan-
ning problem as in (Erdem & Tillier, 2005): one of the
genomes is represented as the initial state and the other
one as the goal state; the planner is prompted to find a
sequence of at most k actions (rearrangement events) that
leads the initial state to the goal state. As in (Erdem &
Tillier, 2005), we describe the genome rearrangement prob-
lem in ADL (Pednault, 1989), and use TLPLAN (Bacchus
& Kabanza, 2000) to compute solutions. Our formulation
of the genome rearrangement problem differs from that of
(Erdem & Tillier, 2005) in the following ways. First of all,
it extends the descriptions of genomes to be able to han-
dle duplicate genes—genes that occur multiple times in a
single genome. Accordingly, it not only extends the de-
scriptions of transpositions, inversions, inverted transposi-
tions (transversions) but also introduces new operators for
insertions and deletions. The temporal control information
is described as preconditions of events. As observed in
(Rintanen, 2000; Gabaldon, 2003), such a modification im-
proves the computational efficiency. Also, the goal-check
is done in a more computationally-efficient way by means
of a biologically motivated measure, called the breakpoint
distance, which does not require us to check the whole gene
orders of the genomes.

The main contribution of our work are as follows:

• We have introduced a computational method that can
solve the genome rearrangement problem with du-

plicates and unequal gene content. Although the
genomes of many species (in particular, the chloro-
plast genomes) contain duplicate genes, no existing
genome rearrangement software (e.g., GRIMM (Tesler,
2002), GRAPPA (Moret et al., 2001), DERANGE
2 (Blanchette et al., 1996)) can handle them.

• One method to handle duplications without loss of
information is to treat them as different genes and
solve the problem for each possible relabeling of these
genes (Cui et al., 2006); however, there are exponen-
tially many possible relabelings in the number of oc-
currences of the duplicate genes. We have introduced
a new method to handle duplicates without such enu-
meration of relabelings, by identifying the duplicates
upfront and introducing a 0-cost auxiliary action.

• We have illustrated the applicability and the effective-
ness of our planning-based approach to genome rear-
rangement on three sets of real data: mitochondrial
genomes of Metazoa (animals with a nervous system,
and muscles) (Blanchette et al., 1999), chloroplast
genomes of Campanulaceae (flowering plants) (Cos-
ner et al., 2000), and chloroplast genomes of various
land plants and green algae (Cui et al., 2006). Our
results conform with the most recent and widely ac-
cepted results.

2. Genome Rearrangement Problem
The genome of a single-chromosome organism can be rep-
resented by circular configurations of numbers 1, . . . , n,
with a sign + or − assigned to each of them. For in-
stance, Figure 1(a) shows a genome for n = 5. Num-
bers ±1, . . . ,±n will be called labels. Intuitively, a
label corresponds to a gene, and its sign corresponds
to the orientation of the gene. By (l1, . . . , ln) we de-
note the genome formed by the labels l1, . . . , ln or-
dered clockwise. For instance, each of the expres-
sions (1, 2,−5,−4,−3), (2,−5,−4,−3, 1), . . . denotes
the genome in Figure 1(a).

About genomes g, g′ we say that g′ is a transposition of g
(or can be obtained from g by a transposition) if, for some

62

1 2

−5

−4

−3

−4

−3

2

1

−5

(a) (b)

5

−4

−3 −2

−1 5 −2

1

−4

−3

(d) (c)

Figure 1. (a) A genome; (b) a transposition of (a); (c) an inversion
of (b); (d) a transversion of (c).

labels l1, . . . , ln and numbers k, m (0 < k, m ≤ n),

g = (l1, . . . , ln)
g′ = (lk, . . . , lm, l1, . . . , lk−1, lm+1, . . . , ln).

For instance, the genome in Figure 1(b) is a transposition
of the genome in Figure 1(a).

Similarly, about genomes g, g′, we say that g′ can be ob-
tained from g by a deletion (or g can be obtained from g′

by an insertion) if, for some labels l1, . . . , ln and a number
m (0 < m ≤ n),

g = (l1, . . . , ln)
g′ = (l1, . . . , lm−1, lm+1, . . . , ln).

Other events, inversions and transversions, can be defined
as in (Erdem & Tillier, 2005).

We say that there is a breakpoint between two genomes
if one of the genomes includes the pair l, l′ and the other
genome includes neither the pair l, l′ nor the pair −l′,−l.
For instance, there are 3 breakpoints between (1, 2, 3, 4, 5)
and (1, 2,−5,−4, 3). The number of breakpoints between
two genomes is called their breakpoint distance.

The genome rearrangement problem can be defined as fol-
lows: given two genomes g and g′, and a positive integer
k, decide whether g′ can be obtained from g by at most
k successive events. We view the genome rearrangement
problem as a planning problem:

given two genomes g and g′, and a nonnegative
integer k, find a sequence of at most k events that
reduces the number of breakpoints between g and
g′ to 0.

Note that this planning problem is different from the one
described in (Erdem & Tillier, 2005) in that both genomes
are specified in the initial world, and that the goal is speci-
fied in terms of the number of breakpoints.

3. Representing the Planning Problem
We represent a genome by specifying the clockwise order
of its labels, and by identifying which genes are duplicates.
Both genomes are described in the initial state; for that,
we introduce two fluents to describe their gene orders. To
describe the goal, we introduce a functional fluent to de-
note the number of breakpoints: initially, it is counted; af-
ter that, at each step, it is decreased by the application of
a rearrangement event. We introduce five actions to de-
scribe transpositions, inversions, transversions, insertions
and deletions, and represent them as ADL-style operators
in the language of TLPLAN. The definitions of these oper-
ators extend the definitions in (Erdem & Tillier, 2005) with
respect to the planning problem above to handle duplicates.

4. Experimental Results
We have experimented with three sets of data using
TLPLAN: Metazoan mitochondrial genomes (Blanchette
et al., 1999), Campanulaceae chloroplast genomes (Cos-
ner et al., 2000), and chloroplast genomes of various land
plants and green algae (Cui et al., 2006). Only in the last
data set, genomes are of unequal content with duplicate
genes.

To analyze the accuracy of our approach, for each data set,
first we have computed a small number of events for each
pair of genomes and constructed a distance matrix, and then
we have constructed a phylogeny using the distance matrix
program NEIGHBOR (Felsenstein, 2009).

In all experiments, TLPLAN is run with the depth-best-first
search strategy. The cost of each action is 1 (except the 0-
cost action of swapping duplicates); so the goal is to find a
plan with a small cost (rather than a shortest plan). The pri-
orities of insertions, deletions, and swaps are much higher
than the other events.

Mitochondrial genomes of Metazoa: Each one of these
11 genomes consists of 36 genes. The priorities of trans-
positions, inversions, transversions are specified as 2, 1, 1
respectively. All 45 plans (each with 1–26 events) are com-
puted in less than 3 minutes. The phylogeny constructed
by NEIGHBOR groups chordates and echinoderms together,
arthropods, molluscs and annelids together; nematodes are
a sister to these two groupings. These results conform with
the results of (Nielsen, 2001) based on morphological data.
Groupings of chordates and echinoderms, and molluscs and
annelids also conform with the most widely accepted view
of Metazoan Systematics and Tree of Life, based on the
analysis of molecular data (18S rRNA sequences).

Chloroplast genomes of Campanulaceae: We consider 13
genomes, each with 105 genes. The priorities of trans-
positions, inversions, transversions are specified as 2, 3,

63

4 respectively (since inversions often occur in chloroplast
genomes). All 66 plans (each with 1–12 events) are com-
puted in less than 1 minute. According to the phylogeny
constructed by NEIGHBOR, the groupings are identical to
the ones in the consensus tree presented in Figure 4 of (Cos-
ner et al., 2000). The major division between the grouping
of Codonopsis, Cyananthus and Platycodon, and the others
conform with the most recent results (Cosner et al., 2004)
based on the sequence analysis; also this division corre-
sponds to the distribution of pollen morphology character-
istics, unlike the previous results.

Chloroplast genomes of land plants and green algae:
These 7 genomes share 85 genes; each genome is of
length 87–97. The priorities of transpositions, inversions,
transversions are specified as 2, 3, 4 respectively. All 21
plans (each with 6–47 events) are computed in less than an
hour. (The computation of a phylogeny for these species
takes almost 25 days in (Cui et al., 2006).) The phylogeny
constructed by NEIGHBOR groups Nicotiana and Marchan-
tia with Chaetosphaeridium, thus grouping the land plants
and charophyte algae; it also groups Chlorella and Chlamy-
domonas with Nephroselmis, thus grouping the chloro-
phyte algae; Mesostigma is an outlier. These results con-
form with the biological evidence based on the analysis of
50 concatenated proteins (Cui et al., 2006).

5. Conclusion
We have introduced a new computational method, based
on AI planning, to solve genome rearrangement problems
with duplicate genes, involving transpositions, inversions,
inverted transpositions, insertions, and deletions. No exist-
ing genome rearrangement software can handle such prob-
lems. We have shown the applicability and the effective-
ness of our planning-based method on real data sets; we
have observed that the results are similar to those widely
accepted.

Acknowledgments
Thanks to my instructor Esra Erdem for her guidance and
contributions.

References
Bacchus, F., & Kabanza, F. (2000). Using temporal logic to

express search control knowledge for planning. Artificial
Intelligence, 116, 123–191.

Blanchette, M., Kunisawa, T., & Sankoff, D. (1996). Para-
metric genome rearrangement. Gene-Combis, 172, 11–
17.

Blanchette, M., Kunisawa, T., & Sankoff, D. (1999). Gene

order breakpoint evidence in animal mitochondrial phy-
logeny. Journal of Molecular Evolution, 49, 193–203.

Bylander, T. (1994). The computational complexity of
propositional STRIPS planning. Artificial Intelligence,
69, 165–204.

Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L.,
Warnow, T., & Wyman, S. (2000). An empirical compar-
ison of phylogenetic methods on chloroplast gene order
data in Campanulaceae. In D. Sankoff and J. Nadeau
(Eds.), Comparative genomics, 99–122. Kluwer.

Cosner, M., Raubeson, L., & Jansen, R. (2004). Chloro-
plast DNA rearrangements in Campanulaceae: phyloge-
netic utility of highly rearranged genomes. BMC Evolu-
tionary Biology, 4.

Cui, L., Leebens-Mack, J., Wang, L., Tang, J., Rymarquis,
L., Stern, D., & dePamphilis, C. (2006). Adaptive evo-
lution of chloroplast genome structure inferred using a
parametric bootstrap approach. BMC Evolutionary Biol-
ogy, 6, 13.

Erdem, E., & Tillier, E. (2005). Genome rearrangement
and planning. Proc. of AAAI (pp. 1139–1144).

Felsenstein, J. (2009). PHYLIP (phylogeny inference pack-
age) version 3.6. Distributed by the author.

Gabaldon, A. (2003). Compiling control knowledge into
preconditions for planning in the situation calculus.
Proc. of IJCAI (pp. 1061–1066).

Moret, B., Wyman, S., Bader, D., Warnow, T., & Yan, M.
(2001). A new implementation and detailed study of
breakpoint analysis. Proc. of PSB’01 (pp. 583–594).

Nielsen, C. (2001). Animal evolution: Interrelationships of
the living phyla. Oxford University Press.

Pednault, E. (1989). ADL: Exploring the middle ground
between STRIPS and the situation calculus. Proc. of
KR’89 (pp. 324–332).

Rintanen, J. (2000). Incorporation of temporal logic control
into plan operators. Proc. of ECAI (pp. 526–530).

Sankoff, D., & Blanchette, M. (1998). Multiple genome re-
arrangement and breakpoint phylogeny. Journal of Com-
putational Biology, 5, 555–570.

Tesler, G. (2002). GRIMM: genome rearrangements web
server. Bioinformatics, 18, 492–493.

64

Prime Number Generation: Writing a parallel program on a multi core
machine that implements Miller-Rabin Primality Testing

Emre Kaplan EMREKAPLAN@SABANCIUNIV.EDU
Barış Altop ALTOP@SABANCIUNIV.EDU

Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey

1. Introduction
Multi-core machines bring the parallel computing to
agenda in today’s computing. Parallel computing algo-
rithms were designed to solve problems using as much pro-
cessing units as possible and running independent compu-
tations concurrently. Various applications need big prime
numbers because of the underlying cryptographic opera-
tions. For instance, in order to use RSA infrastructure we
will need big prime numbers like 512, 1024 even 2048 bits
long to operate. Hence we need mechanisms to produce
and verify such big prime numbers. In this project, we
implemented and tested the algorithms (see Section 2 for
details) listed below:

1. Miller-Rabin Probabilistic Primality Test (mra,)

2. Solovay-Strassen Probabilistic Primality Test (sol,)

3. Miller-Rabin Deterministic Primality Test (mrd,)

4. Fermat Probabilistic Primality Test (fer,)

2. Algorithms
2.1 Brief Discussion on Algorithms

All those algorithms take the big number say n as the input
and tries to conclude if n is a prime or composite number.
Probabilistic algorithms require additional input parameter,
k as the number of repetitions of the primality test. Prob-
abilistic algorithms conclude “Composite” with 100% as-
surance while can conclude “Prime” with a probability de-
pends on the number of repetitions. That is, probability to
conclude “Prime” for a composite number n is bounded by
ε which is the error probability of the algorithm. In Miller
Rabin and Solovay-Strassen algorithms as k gets larger, the
probability of concluding “Prime” when n is composite (i.e
ε) decreases. In Miller Rabin Algorithm, ε < 4−k while in
Solovay-Strassen Algorithm ε < 2−k. Hence the success
of probabilistic algorithms depends on the k value.

In the case of probabilistic algorithms, test is repeated for
k times. Since each test is independent from each other,

Algorithm 1 Prime Number Generation
while (notPrime)
{
p := GeneratePrimeCandidate(bitLength)
notPrime = PrimalityTestingAlgorithm(p); // primality test-
ing algorithm returns true if the number p is prime, false
otherwise
}

we can run them on different computing units, like mul-
tiple processors or multi-core processors, of a machine
in parallel. Algorithms mentioned can be easily con-
verted into parallel ones by exploring Parallel Libraries
such as gmplib (gml,) or Microsoft’s Task Parallel Li-
brary (msp,). These libraries create multiple threads as
the number of processors in the machine (or number of
cores in a multi-core CPU) and share the iteration load
among those worker threads allowing concurrent itera-
tions running at the same time. Note that, with single
core, machine can do one iteration per unit time which
needs k ∗ unit time where parallelized version with 2
cores needs only (k/2) ∗ unit time. In general, we ex-
pect to see the time it needs to complete a job in par-
allel can be estimated by the formula: (k/# of cores) ∗
unit time≈Time required for single core/# of cores

2.2 Prime Generation and Testing

We implemented a basic prime-candidate number genera-
tion algorithm which builds a random big number of the
given bit length. It checks and returns the candidate if the
number is odd and is not divisible by any of the numbers in
I = [3, 10]. For every prime-candidate, chosen primal-
ity testing algorithm runs and decide if the number is a
“Prime” or “Composite”. This process continues until a
prime number is found. Pseudo code for the prime genera-
tion algorithm and prime candidate generation algorithm is
given in Algorithm 1 and Algorithm 2 respectively.

Due to space limitations, details of primality testing algo-
rithms are skipped in this paper but can be found in (mra, ;

65

Algorithm 2 Generate Prime Candidate Algorithm
GeneratePrimeCandidate(bitLength) // bitLength: set the
bit length of the random big number
{
while (number p is not a candidate)
{
p := random odd big number of length bitLength
if(p not satisfies divisibility rules for basic numbers in I =
[3, 10]) // so it is not divisible by these numbers
return p;
}
}

Algorithm Complexity

Miller Rabin O(k ∗ log3n)
Miller Rabin Deterministic O((logn)4)

Solovay Strassen O(k ∗ log3n)
Fermat O(k×log2n×loglogn×logloglogn)

Table 1. Complexity Table

sol, ; mrd, ; fer,).

2.3 Complexity Analysis

Probabilistic algorithms runs for k times to conclude
“Prime” but can can stop iterating whenever any of the it-
erations reports “Composite”. Hence their worst case com-
plexity depends on the k value. Table 1 shows the worst
case complexity of the algorithms implemented.

3. Results
3.1 Implementation & Test Environment

We implemented the following algorithms in Microsoft C#
language on .NET 4.0 platform. Visual Studio 2010 Beta 2
is used in implementation. For the BigInteger operations,
GNU MP Bignum Library (gml,) is used. This library has
been coded in C/C++ and even some parts in assembly and
claims to be the fastest library on the planet. For the .NET
wrapper (emi,) is used. Note that .NET wrapper is also
based on (gml,).

Our test environment is a Core 2 Quad 2,40GHz desktop
machine. The algorithms were implemented in C# so that
the test machine is installed with Windows 7 and .NET 4.0
beta which has native support for parallel library.

3.2 Test Results

For each algorithm and number of cores pair, we generate
50 prime numbers for each bit length of 512, 1024 and 2048
using probabilistic verification algorithms. We measure the
time it takes to generate and verify a prime under different

Figure 1. Average prime generation times vs algorithms and the
number of cores

number of cores and algorithms. The average prime gener-
ation times (including verification times) is given in Figure
1.

In Figure 1, it is seen that time to generate primes is domi-
nant over the prime verification which we parallelized. Fig-
ure 1 also concludes that parallelizing verification algo-
rithms is not the best way to speed up the prime number
generation.

In prime generation, we generate a prime candidate and try
to verify it with the primality testing algorithms. Each itera-
tion consists of two phases: generate a prime candidate and
verification. The iterations continues until a prime found.

Since the focus of this paper is to present the effect of par-
allelism over the prime verification algorithms, we also cal-
culate the time it takes to verify the prime number for each
algorithm. Results are the average time of 50 tests. Net
effect of parallelism over the prime verification algorithms,
the average verification times is shown in Figure 2.

Parallelism of the algorithms are focused on distributing
verification tests (i.e the number of repetitions of the algo-
rithms) to all the processors in the machine. Probabilis-
tic algorithms needs to do k tests to conclude. When it is
parallelized, the tests will be distributed among all the pro-
cessing units available. One can expect to see each core in
a n-core machine executes k/n verification tests in contrast
to the serial execution of a single core machine. This dou-
bles the speed in a dual-core machine while it speeds up
to 4 times in quad core machines compared to single core
machines. In our tests, each probabilistic test is repeated
k = 40 times before concluding to prime. k = 40 is the
number which provides 80 bits of security.

In Figure 2, the effect of parallelism is observed. Speed
up is≈ n times in n-core machine. Because of the general
overheads, such as partitioning/merging data, scheduling
tasks to the run time, synchronization, delegate invocations,

66

Figure 2. Average verification times vs algorithms and the number
of cores

Figure 3. Average prime generation times in MR Deterministic vs
bit length and the number of cores

etc. n cores is not exactly n times faster.

Deterministic verification algorithms on the other hand
needs much longer time to conclude a prime. Since the
Miller Rabin Deterministic Algorithm takes too much time,
we lowered the number of primes to be generated to 5, and
discarded verifying 2048 bits long numbers. Verification
time is so high in deterministic algorithms and dominates
the prime generation time so we only show the average
prime generation times per test in Figure 3.

When we use deterministic algorithms, net effect of paral-
lelism can be easily observed. The speed up is as expected.
Unfortunately, these numbers show that deterministic algo-
rithms has no practical usage. When we compare the time
it takes to verify a prime using a deterministic algorithm
and a probabilistic version, we see a great speed up. For
instance, on a single core it takes ≈ 128 ms for MR prob-
abilistic to generate and verify a 512 bits prime. It takes
≈ 447314 ms to generate a 512 bits prime and verify it us-
ing MR deterministic algorithm on a single core, showing
that probabilistic verification is≈ 3500 times faster than the
deterministic algorithm.

4. Conclusion
In this paper, we implemented and presented various pri-
mality testing algorithms. Our aim is to do a comparison of
these algorithms with respect to their average processing
times under different number of processors. We see that
number of repetitions (i.e k in the algorithms) is the key
factor in determining the performance of the probabilistic
algorithms. On the other hand, deterministic algorithm is
very inefficient. The most reliable and fast enough algo-
rithm is Miller Rabin Probabilistic Test. We choose Miller
Rabin Algorithm because it has higher accuracy. In Miller
Rabin Algorithm, ε < 4−k while in Solovay-Strassen Al-
gorithm it is ε < 2−k as discussed in (cry,). For the digital
signatures, error probability should be ε < 2−80 so repeat-
ing Miller Rabin test for 40 times is enough for today’s
security demands. (cry,).

The performance of the Miller Rabin Probabilistic Algo-
rithm is as expected and suitable for use in practice al-
though it is deterministic version, is very slow with no prac-
tical usage.

To sum up, Miller Rabin Probabilistic Algorithm is the best
choice for the usage. The key factor in both performance
and the accuracy of the algorithm is the k parameter for the
probabilistic algorithms and can be chosen as 40 for Miller
Rabin test.

References
Cryptography in c and c++ by michael welschenbach.

Gmplib .net wrapper http://www.emilstefanov.net/projects/gnumpdotnet.

Gnu multiple precision arithmetic library
http://www.gmplib.org.

Microsoft task parallel library
http://msdn.microsoft.com/en-us/concurrency.

Miller rabin deterministic primality test miller, gary l.
(1976), "riemann’s hypothesis and tests for primality",
journal of computer and system sciences 13 (3) 300-317.

Miller rabin primality test rabin, michael o. (1980), "prob-
abilistic algorithm for testing primality", journal of num-
ber theory 12 (1): 128-138.

Solovay, robert m.; strassen, volker (1977), "a fast monte-
carlo test for primality", siam journal on computing 6
(1): 84-85.

Thomas h. cormen, charles e. leiserson, ronald l. rivest,
and clifford stein. introduction to algorithms, second
edition. mit press and mcgraw-hill, 2001. isbn 0-262-
03293-7. pages 889-890 of section 31.8, primality test-
ing.

67

Table1 presents some results about p53. The first column
stands for a substitution in a given position while the second
column describes the effect of that substitution. The last
column shows the predictions made by SIFT using the
profile matrix created in the prior steps. According to the
profile matrix, p53 was found as a highly conserved protein
(%57). The substitutions V216A, Q5H, P151S and R175H
have been observed in sporadic cancer types. Based on the
conservation values for those positions, SIFT predicted those
variations as being damaging. Those predictions are also
consistent with the information provided from UniProt.
P151S, R175H and S241F were found as SNP-related
substitutions, two of which being located in a highly
conserved position. Their substitution probabilities are 0.0
for the associated SNPs thus, SIFT predicted those
substitutions as damaging to the protein, i.e. rendering it
nonfunctional. One of those SNPs was found to be located in
a position which is not verified as conserved. Hence, SIFT
was not able to make a prediction for that position.
Creating the multiple sequence alignment profile takes about
3-5 minutes in normal PC for the dataset with 7 sequences. It
will have relatively longer running time, if we consider
datasets with about 1000 sequences. Therefore, this
implementation must be improved in terms of time
complexity. On the other hand, the implementation has a
memory complexity of O (N2), which cannot be improved, as
the dynamic programming requires the NxN matrices to hold
the scoring tables.

In the original CLUSTALW implementation, the calculation
procedure used to obtain distance values from the score
values is slightly different from ours. The authors of
CLUSTALW normalize the number of matching positions
by the number of positions compared during the alignment.
Meanwhile, in our implementation, it is decided that it is
better if the alignment scores were normalized with the

highest scores obtained from the pairwise alignment. This
leads to the differences in the distance and weight values.
Similarly, for the creation of the distance matrix, UPGMA
method is implemented, while in the original CLUSTALW
application, Neighbor-Joining (NJ) method is used for the
generation of the guide tree,. The sample calculations given
in the CLUSTALW paper are carried out using the NJ
method. This also may lead to differences in the calculated
distance values.

5. Conclusion

SIFT Algorithm for nsSNP/protein relation and
CLUSTALW algorithm as a subroutine for SIFT, were
implemented in Python. For the initial part of the SIFT
algorithm BLAST from the Biopython was adopted and
MSA step of SIFT was accomplished via implementation of
CLUSTALW. The predictions and calculations of SIFT
algorithm was again written in Python Programming
Language.
The results obtained, were constructed based on the profile
matrix without any structural insights. The main concern for
the algorithm was the conservation profiles of each position.
Highly conserved regions usually have both functional and
structural importance. Important sites in biological units,
especially in proteins, are low-tolerated to substitutions and
preserve a residue-conserved behavior. Therefore, using an
evolutionary profile is fairly simple but gives accurate results
based on conservation. SIFT tries to make use of this
behavior for predicting the effects of amino acid
substitutions. In our dataset, we used UniProt database for
validation of the results. For p53, the findings of SIFT
algorithm are well supported by UniProt.

References

Altschul, S. F., T. L. Madden, et al. (1997). "Gapped BLAST
and PSI-BLAST: a new generation of protein
database search programs." Nucleic Acids
Research 25(17): 3389-3402.

Dayhoff, M. O., Schwartz, R. M., Orcutt, B. C. (1978). "A
model of evolutionary change in proteins." Atlas
of Protein Sequence and Structure 5 (3): 345–352.

Henikoff, S. and L. Comai (2003). "Single-nucleotide
mutations for plant functional genomics." Annual
Review of Plant Biology 54: 375-401.

Henikoff, S. and J. G. Henikoff (1992). "Amino-Acid
Substitution Matrices from Protein Blocks."
Proceedings of the National Academy of Sciences
of the United States of America 89(22): 10915-
10919.

Krawczak, M., E. V. Ball, et al. (2000). "Human gene
mutation database - A biomedical information and
research resource." Human Mutation 15(1): 45-51.

Ng, P. C. and S. Henikoff (2001). "Predicting deleterious
amino acid substitutions." Genome Research
11(5): 863-874.

Ng, P. C. and S. Henikoff (2002). "Accounting for human
polymorphisms predicted to affect protein
function." Genome Research 12(3): 436-446.

Ramensky, V., P. Bork, et al. (2002). "Human non-
synonymous SNPs: server and survey." Nucleic
Acids Research 30(17): 3894-3900.

Saitou, N. and M. Nei (1987). "The Neighbor-Joining
Method - a New Method for Reconstructing
Phylogenetic Trees." Molecular Biology and
Evolution 4(4): 406-425.

Thompson, J. D., D. G. Higgins, et al. (1994). "Clustal-W -
Improving the Sensitivity of Progressive Multiple
Sequence Alignment through Sequence
Weighting, Position-Specific Gap Penalties and
Weight Matrix Choice." Nucleic Acids Research
22(22): 4673-4680.

Yue, P., E. Melamud, et al. (2006). "SNPs3D: Candidate
gene and SNP selection for association studies."
Bmc Bioinformatics 7: -.

68

Predicting the effects of non-synonymous S1P variants on protein function using SIFT

Ceren Tüzmen ctuzmen@ku.edu.tr
Beytullah Özgür bozgur@ku.edu.tr
Bora Karasulu bkarasulu@ku.edu.tr

Department of Computational Science and Engineering
Koc University, Sariyer, 34450
Istanbul, TURKEY

Polymorphisms are defined as variations between the
genomes of two randomly selected individuals. Among all
kinds, the simplest and the most frequent forms are the
Single Nucleotide Polymorphisms (SNPs). Non-synonymous
variants of SNPs constitute more than 50% of the mutations
which are involved in human inherited diseases(Krawczak,
Ball et al., 2000). A non-synonymous single nucleotide
polymorphism (nsSNP) when found in a coding gene may
result an amino acid substitution, thus may render the
resultant protein product nonfunctional. This fact establishes
the significance of non-synonymous SNPs in human health
and its potent effects on individuals.
Various algorithms are developed to be used in SNP
discovery and in understanding its impact on the function of
the corresponding protein. Some methods(Ramensky, Bork
et al., 2002) concentrate only on human proteins, therefore
cannot be applied on data belong to other organisms, while
some other(Yue, Melamud et al., 2006) use loads of data to
analyze SNP/protein function relationships. ‘Sorting
Tolerant From Intolerant’ (SIFT) has been primarily applied
to human genes, however it is applicable to any organism
such as bacteria, plants and other animals(Ng and Henikoff,
2001; Henikoff and Comai, 2003). Instead of considering the
position of the substitution, i.e. whether the replacement is
likely to destroy the hydrophobic core of a protein,
electrostatic interactions, interactions with ligands or other
important features of a protein, SIFT simply focuses on
sequence homology and predicts the effects of all possible
substitutions (insertions and deletions -indels- are not
included). It assumes important positions in the protein
sequence are conserved throughout the evolution, thus
cannot tolerate mutations. Hence, nsSNP in those positions
can be affecting the phenotype and the protein function.
SIFT is a multi-step algorithm which considers sequence
homology for classification of amino acid substitutions(Ng
and Henikoff, 2001; Ng and Henikoff, 2002). It was
developed by a group at the Fred Hutchinson Cancer Center,
and our group implemented the algorithm using Pyhton.
Within SIFT a multiple sequence alignment tool is used for
aligning the homologous sequences. In our implementation,
CLUSTALW(Thompson, Higgins et al., 1994), the most
popular MSA tool, is used which sacrifices speed and
accuracy, yet uses less memory.

Given a protein sequence, SIFT generates a dataset by
aligning homologous protein sequences provided by PSI-
BLAST(Altschul, Madden et al., 1997). CLUSTALW is
used as an MSA tool for aligning homologs of the given
protein. In the second step, SIFT probes each position in the

alignment and calculates all probabilities for each 20 amino
acid at that position.
These probabilities are normalized, then, by the probability
of the most frequent amino acid in that position and this
information are recorded in a scaled probability matrix. If
the nsSNP at a given position has a scaled probability value
(or namely a SIFT score) smaller than a pre-defined
threshold, then SIFT predicts that nsSNP as deleterious to
the host organism. Generally, a highly conserved position is
intolerant to most substitutions whereas for positions with
low degree of conservations, the case is the other way
around. They mostly are able to tolerate substitutions.
(Figure1)
SIFT also supplies a measure of confidence within the
prediction by calculating a conservation value at each
position in the alignment. With this information in hand,
SIFT is able to distinguish between neutral and deleterious
substitutions by preventing false positive errors which are
the false predictions that are found to be deleterious
substitutions although they are neutral substitutions.

CLUSTALW

CLUSTALW is a multiple sequence alignment tool, which
is based on progressive-pairwise alignment (using dynamic
programming). The homologous protein sequences from
PSI-BLAST constitute the input data. It aligns each
sequence pairwise using full dynamic programming and
calculates the distance matrix in which the information
regarding how closely sequences are related with each other
are stored. Upon generation of the distance matrix, a
phylogenetic guide tree is formed using Neighbor Joining
(NJ) method(Saitou and Nei, 1987) or Unweighted Pair
Group Method with Arithmetic mean (UPGMA) method. In
this tree, closely related sequences are found under the same
node or consecutive nodes.

Figure 1-A flowchart for SIFT

69

Within CLUSTALW, progressive alignment is based on
solid scoring rules. For scoring, a weight matrix, i.e. a
residue-specific score matrix such as BLOSUM(Henikoff
and Henikoff, 1992)or PAM(Dayhoff, 1978) is used. Weight
matrices are based only on observed alignments, yet no
estimations are made for instance by comparing closely
related proteins. In CLUSTALW, specific gap opening and
gap extension penalty rules are applied. For example, gap
opening penalty is reduced for the new gaps in the regions of
the sequences, which are observed to have gap-openings in
the previous alignments. Another penalty rule is that the gap
opening penalty (GOP) is reduced in the hydrophilic regions
and GOP is increased at the regions near to the ones already
having a gap (for decreasing close gap openings). Actually,
the gap opening and gap extension penalties are changed
throughout the progressive alignment process based on the
weight matrix, similarity of the sequences, lengths of the
sequences, and existence of the gaps during early alignments.

SIFT Algorithm for nsSNP/protein relation and
CLUSTALW algorithm as a subroutine for SIFT, are
implemented in Python Programming Language.
In our CLUSTALW implementation, for a given sample data
set, preliminary pairwise alignments are calculated by
subtracting percent identities from 1.0, where percent
identities are calculated as number of matching positions in
the pairs divided by the length of the shorter sequence.
Progressive alignment is carried out using full dynamic
programming which uses a scoring function (e.g.
BLOSUM62), user input Gap opening (GOP) and extension
penalties (GEP). Using the scores of the pairwise alignment,
a distance matrix is generated which shows how close the
sequence pairs are related.
Distances are calculated by normalizing the alignment score
of the given pair by the maximum alignment score of all
sequence pairs in the dataset and then, subtracting from 1.0.
Successively, a phylogenetic guide tree is created using the
UPGMA method and the weight of each sequence is
calculated. The sequences are pairwise aligned using full
dynamic programming. After the guide was created, it is
used for the progressive alignment. In the progressive

alignment, sequences are aligned in the order that was
defined in the guide tree and the alignment profiles are
created using variant scoring functions based on the per cent
identities of the sequences calculated during pairwise
alignment. Afterwards, following the order of the guide tree,
the alignment profiles are aligned using pairwise alignments
of the sequences found in the profiles. The gap positions
which were newly created in the alignment with the highest
score are applied to the other sequences in the profile. The
gaps from the previous alignments are kept constant during
the new alignments.
Our SIFT implementation uses BLAST from Biopyhton
NCBI class for creating a dataset and CLUSTALW manually
for multiple alignment of those divergent homologs. It, then,
constructs a profile matrix, which contains the probability of
20 amino acids for each position of the alignment. The
matrix construction part is the most time-consuming part of
the algorithm since it works with complexity of O(N*L)
where N is the number of aligned sequences and L is the
length of the alignment including the gaps. The remaining
parts of the algorithm basically perform assignments for
predictions.

4. Results and Discussion

Homologs of p53 were used as a test-set, a protein which is
involved in many genetic diseases, such as cancer. 200
homologous sequences were used in order to construct the
profile matrix. Median conservation value was calculated as
2.44. A score below a confident score of 3.25 was set by the
SIFT algorithm, which presents the divergence of the
constructed profile. Using biological feature of each residue,
candidate residues were defined and possible effects of the
substitutions for those positions were determined. A cutoff
probability score of 0.05 was adopted from original SIFT
implementation. If the calculated probability for mutation is
under this threshold, this mutation is predicted as being
deleterious. Our SIFT algorithm was modified such that it
also retrieves information from the UniProt about a given
protein sequence. After the required information is
processed from the UniProt file, the sequence variations, the
effects of a substitution and, if there is an SNP for that
position, the reference id for that dbSNP are all retrieved.

Substitution According to UniProt According to SIFT

V216A In sporadic cancers; somatic mutation Position is Highly Conserved
Probably damaging...
Probability : 0.0

Q5H In a sporadic cancer; somatic mutation Position is Highly Conserved
Probably damaging...
Probability: 0.012

L43S In a sporadic cancer; somatic mutation Position is Not Conserved
Not known
Probability 0.0

P151S In LFS; germline mutation and in sporadic cancers;
somatic mutation. dbSNP:rs28934874

Position is Highly Conserved
Probably damaging...
Probability : 0.0

R175H In LFS; germline mutation and in sporadic cancers;
somatic mutation. dbSNP:rs28934578

Position is Highly Conserved
Probably damaging...
Probability : 0.0

S241F In LFS; germline mutation and in sporadic cancers;
somatic mutation. dbSNP:rs28934573

Position is Not Conserved
Not known
Probability 0.0

Table 1- Substitutions, their effects and predictions made by SIFT

70

Table1 presents some results about p53. The first column
stands for a substitution in a given position while the second
column describes the effect of that substitution. The last
column shows the predictions made by SIFT using the
profile matrix created in the prior steps. According to the
profile matrix, p53 was found as a highly conserved protein
(%57). The substitutions V216A, Q5H, P151S and R175H
have been observed in sporadic cancer types. Based on the
conservation values for those positions, SIFT predicted those
variations as being damaging. Those predictions are also
consistent with the information provided from UniProt.
P151S, R175H and S241F were found as SNP-related
substitutions, two of which being located in a highly
conserved position. Their substitution probabilities are 0.0
for the associated SNPs thus, SIFT predicted those
substitutions as damaging to the protein, i.e. rendering it
nonfunctional. One of those SNPs was found to be located in
a position which is not verified as conserved. Hence, SIFT
was not able to make a prediction for that position.
Creating the multiple sequence alignment profile takes about
3-5 minutes in normal PC for the dataset with 7 sequences. It
will have relatively longer running time, if we consider
datasets with about 1000 sequences. Therefore, this
implementation must be improved in terms of time
complexity. On the other hand, the implementation has a
memory complexity of O (N2), which cannot be improved, as
the dynamic programming requires the NxN matrices to hold
the scoring tables.
In the original CLUSTALW implementation, the calculation
procedure used to obtain distance values from the score
values is slightly different from ours. The authors of
CLUSTALW normalize the number of matching positions
by the number of positions compared during the alignment.
Meanwhile, in our implementation, it is decided that it is
better if the alignment scores were normalized with the

highest scores obtained from the pairwise alignment. This
leads to the differences in the distance and weight values.
Similarly, for the creation of the distance matrix, UPGMA
method is implemented, while in the original CLUSTALW
application, Neighbor-Joining (NJ) method is used for the
generation of the guide tree,. The sample calculations given
in the CLUSTALW paper are carried out using the NJ
method. This also may lead to differences in the calculated
distance values.

5. Conclusion

SIFT Algorithm for nsSNP/protein relation and
CLUSTALW algorithm as a subroutine for SIFT, were
implemented in Python. For the initial part of the SIFT
algorithm BLAST from the Biopython was adopted and
MSA step of SIFT was accomplished via implementation of
CLUSTALW. The predictions and calculations of SIFT
algorithm was again written in Python Programming
Language.
The results obtained, were constructed based on the profile
matrix without any structural insights. The main concern for
the algorithm was the conservation profiles of each position.
Highly conserved regions usually have both functional and
structural importance. Important sites in biological units,
especially in proteins, are low-tolerated to substitutions and
preserve a residue-conserved behavior. Therefore, using an
evolutionary profile is fairly simple but gives accurate results
based on conservation. SIFT tries to make use of this
behavior for predicting the effects of amino acid
substitutions. In our dataset, we used UniProt database for
validation of the results. For p53, the findings of SIFT
algorithm are well supported by UniProt.

References

Altschul, S. F., T. L. Madden, et al. (1997). "Gapped BLAST
and PSI-BLAST: a new generation of protein
database search programs." Nucleic Acids
Research 25(17): 3389-3402.

Dayhoff, M. O., Schwartz, R. M., Orcutt, B. C. (1978). "A
model of evolutionary change in proteins." Atlas
of Protein Sequence and Structure 5 (3): 345–352.

Henikoff, S. and L. Comai (2003). "Single-nucleotide
mutations for plant functional genomics." Annual
Review of Plant Biology 54: 375-401.

Henikoff, S. and J. G. Henikoff (1992). "Amino-Acid
Substitution Matrices from Protein Blocks."
Proceedings of the National Academy of Sciences
of the United States of America 89(22): 10915-
10919.

Krawczak, M., E. V. Ball, et al. (2000). "Human gene
mutation database - A biomedical information and
research resource." Human Mutation 15(1): 45-51.

Ng, P. C. and S. Henikoff (2001). "Predicting deleterious
amino acid substitutions." Genome Research
11(5): 863-874.

Ng, P. C. and S. Henikoff (2002). "Accounting for human
polymorphisms predicted to affect protein
function." Genome Research 12(3): 436-446.

Ramensky, V., P. Bork, et al. (2002). "Human non-
synonymous SNPs: server and survey." Nucleic
Acids Research 30(17): 3894-3900.

Saitou, N. and M. Nei (1987). "The Neighbor-Joining
Method - a New Method for Reconstructing
Phylogenetic Trees." Molecular Biology and
Evolution 4(4): 406-425.

Thompson, J. D., D. G. Higgins, et al. (1994). "Clustal-W -
Improving the Sensitivity of Progressive Multiple
Sequence Alignment through Sequence
Weighting, Position-Specific Gap Penalties and
Weight Matrix Choice." Nucleic Acids Research
22(22): 4673-4680.

Yue, P., E. Melamud, et al. (2006). "SNPs3D: Candidate
gene and SNP selection for association studies."
Bmc Bioinformatics 7: -.

71

