
COLUMN GENERATION APPROACHES TO A ROBUST AIRLINE

CREW PAIRING MODEL FOR MANAGING EXTRA FLIGHTS

by

ELVİN ÇOBAN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2008



COLUMN GENERATION APPROACHES

TO A ROBUST AIRLINE CREW PAIRING MODEL FOR MANAGING EXTRA

FLIGHTS

APPROVED BY

Assoc. Prof. Dr. Ş. İlker Birbil ..............................................
(Thesis Supervisor)

Assist. Prof. Dr. Kerem Bülbül ..............................................
(Thesis Co-supervisor)

Assist. Prof. Dr. Güvenç Şahin ..............................................

Assist. Prof. Dr. Hüsnü Yenigün ..............................................

Assist. Prof. Dr. Dilek Tüzün Aksu ..............................................

DATE OF APPROVAL: ..............................................



c©Elvin Çoban 2008

All Rights Reserved



to my family



Acknowledgments

I would like to express my gratitude to my thesis advisor, Associate Professor Ş.

İlker Birbil for his inspiration, enthusiasm, patience, and sincerity. I would like to

thank my thesis co-advisor, Assistant Professor Kerem Bülbül whose enthusiasm has

guided me through all my research. His inspiration and sincerity always motivates

me. Without my advisors’ guidance and support, completion of this thesis would be

impossible. Their motivation and encouragement will always guide me through out my

professional career. I would also like to thank Assistant Professor Hüsnü Yenigün for his

guidance, his friendly attitude and his motivation. I am grateful to Assistant Professor

Güvenç Şahin and Assistant Professor Dilek Tüzün Aksu for their enormous support

and inspiration. I would also like to thank İlker Topçu for sharing his knowledge about

the airline schedule planning.

I am grateful to my colleague and friend, İbrahim Muter for his invaluable support

and guidance through my thesis. I want to thank Duygu Taş for her coordination and

motivation throughout this research. I would also like to thank my dear friend Merve

Peyiç for her trust, motivation and endless friendship. I also want to thank Sarper

Göktürk for his support.

I would like to thank TÜBITAK for providing me financial support throughout my

masters.

Lastly, I am very grateful to my mother Mehbüp Çoban, my father Ali Çoban and

my sister Güler Çoban Çiçek for the concern, caring, endless love and support they

provided throughout my life. Without them, I would not succeed.



COLUMN GENERATION APPROACHES

TO A ROBUST AIRLINE CREW PAIRING MODEL FOR MANAGING EXTRA

FLIGHTS

Elvin Çoban

Industrial Engineering, Master of Science Thesis, 2008

Thesis Supervisor: Assoc. Prof. Dr. Ş. İlker Birbil

Assist. Prof. Dr. Kerem Bülbül

Keywords: robustness, crew pairing, extra flights, column generation, row generation,

column pools.

Abstract

A typical airline crew pairing problem aims at selecting a set of flight sequences
(pairings) for crews such that each flight in the regular schedule is covered by one crew.
In this thesis, we consider the management of potential extra flights that can possibly
be introduced to the regular flight schedule during operation at a later point in time.
Without delaying or canceling any existing flight, we try to handle these extra flights
within the regular schedule and refer to the resulting mathematical model as a robust
airline crew pairing model. The objective function of the robust model involves not only
the regular pairing costs but also the opportunity costs for failing to cover the extra
flights. Due to the large number of variables (pairings), a typical crew pairing model
is usually solved by column generation methods. Before applying column generation
to the proposed robust model, we first discuss several procedures to cover the extra
flights by a given set of feasible pairings. However, these procedures introduce extra
column-dependent constraints to the model. That is, as new columns are added by
column generation to the model, the number of constraints may also increase. Similarly
if a column is removed from the model, then some of these extra constraints may be
deleted. To handle this dynamic change both in the number of constraints and variables
we propose two approaches. The main idea behind these approaches is to generate a
set of pairings (column pool) so that the number of constraints can be fixed. To this
end, we flag the pairings that can be used for covering the extra flights and keep them
in a special pool. We illustrate the proposed column generation approaches on a set of
actual data acquired from a local airline.



DAYANIKLI EKİP EŞLEME PROBLEMİNDE KOLON YÖNETİMİ

Elvin Çoban

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2008

Tez Danışmanı: Doç. Dr. Ş. İlker Birbil

Yrd. Doç. Dr. Kerem Bülbül

Anahtar Kelimeler: dayanıklı, ekip eşleme, kolon türetme, satır türetme, kolon

havuzları

Özet

Klasik ekip eşleme probleminde amaç, uçuş çizelgesinde yer alan uçuşlar kapsayan,

belirli kısıtlar altında en az maliyetli olan ekip eşlemelerinin bulunmasıdır. Son yıllarda

hava yolu şirketleri planlanan çizelgelerini uygulamakta zorlanmaktadırlar. Çizelgeden

sapılmasının nedenlerinden biri çizelgeye eklenen ek uçuşlardır. Çizelgeye yeni ekle-

nen uçuşun kapsanması operasyonel seviyede gerçekleşir. Dayanıklı ekip eşleme prob-

lemimizi çizelgemizde gerçekleşebilecek olan bu ek uçuşları göz önünde bulundurarak

tanımladık. Planlama aşamasında bilinen bu ek uçuşları olabildiğince uçuş rotalarını

çıkarırken ele almaya çalıştık. Bu sayede ek uçuşlar gerçekleştirildikleri zaman, daha

önceden çıkardığımız rotaları en az maliyetle kullanabilmeyi amaçladık. Önerdiğimiz

dayanıklı ekip eşleme problemi modelinde yeni eklenen kolonlar (eşlemeler) satır ve

sütun olarak problemin büyümesine neden olabilmektedir. Biz problemdeki satır ve

sütun büyümelerini de dikkate alarak klasik ekip eşlemesinde de sık kullanılan bir

metod olan kolon türetme metodu ile iki tane çözüm yöntemi önerdik. Bu çözüm

yöntemlerinde amacımız ya kolon türetme metoduna başlamadan önce ya da kolon

türetme metodunu bitirdikten sonra dinamik büyümeye neden olan kısıtları eklemektir.

Etkili kolon türetme metodu için kolon havuzları da tanıttık. Önerdiğimiz yöntemleri

yerel bir firmanın datalarında denedik.



Table of Contents

Abstract vi

Özet vii

1 INTRODUCTION 1
1.1 Contributions of This Research . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 LITERATURE REVIEW 5
2.1 Alternate Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Pairing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Alternate Ways to Solve The Mathematical Model . . . . . . . . . . . . 9

2.3.1 Column Generation . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Crew Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 STATIC AND DYNAMIC APPROACHES 16
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The Column Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Static Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Dynamic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Primal Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 COMPUTATIONAL RESULTS 32
4.1 Feasibility Check for the Swapped Pairings . . . . . . . . . . . . . . . . 32
4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 CONCLUSION 45

Bibliography 48

Appendix 52

A First Problem Flight Data 52

Appendix 54

B Second Problem Flight Data 54

viii



List of Figures

2.1 Airline schedule planning. . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Relation between RMP and pricing subproblem. . . . . . . . . . . . . . 12

3.1 Type A solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Type B solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Constructing column pools. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Flowchart of static model . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 The proposed static approach. . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Backward tagging flight nodes - step 1. . . . . . . . . . . . . . . . . . . 24
3.7 Backward tagging flight nodes - step 2. . . . . . . . . . . . . . . . . . . 24
3.8 Forward search over the flight nodes - step 3. . . . . . . . . . . . . . . . 25
3.9 Type A solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 The treatment of columns in the problem (3.1) by the static approach. 26
3.11 Proposed dynamic approach. . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12 The flowchart of the dynamic approach. . . . . . . . . . . . . . . . . . 29
3.13 Connecting the flight nodes having zero indegree and zero outdegree to

source and sink node, respectively. . . . . . . . . . . . . . . . . . . . . . 30

4.1 Time window controls for feasibility - extra flight. . . . . . . . . . . . . 33
4.2 Time window controls for feasibility - deadhead. . . . . . . . . . . . . . 34
4.3 Total computation time measured for the data set with 42 flight legs vs.

the number of extra flights in the static approach. . . . . . . . . . . . . 41
4.4 Total computation time measured for the data set with 42 flight legs vs.

the number of extra flights in the dynamic approach. . . . . . . . . . . 41
4.5 Total computation time measured for the data set with 96 flight legs vs.

the number of extra flights in the static approach. . . . . . . . . . . . . 42
4.6 Total computation time measured for the data set with 96 flight legs vs.

the number of extra flights in the dynamic approach. . . . . . . . . . . 42
4.7 Total computation time measured for the static and dynamic approach

for the data set with 42 flight legs. . . . . . . . . . . . . . . . . . . . . 43
4.8 Total computation time measured for the static and dynamic approach

(N=500) for the data set with 42 flight legs. . . . . . . . . . . . . . . . 43
4.9 Total computation time measured for the static and dynamic approach

for the data set with 96 flight legs. . . . . . . . . . . . . . . . . . . . . 44
4.10 Total computation time measured for the static and dynamic approach

(N=500) for the data set with 96 flight legs. . . . . . . . . . . . . . . . 44

A.1 One of the feasible Type A solution for the first problem. . . . . . . . . 53
A.2 One of the feasible Type A solution for the first problem. . . . . . . . . 53
A.3 One of the feasible Type A solution for the first problem. . . . . . . . . 53

B.1 One of the feasible Type A solution for the second problem. . . . . . . 55
B.2 One of the feasible Type A solution for the second problem. . . . . . . 55

ix



B.3 One of the feasible Type A solution for the second problem. . . . . . . 55

x



List of Tables

3.1 The notation used in the mathematical model. . . . . . . . . . . . . . . 18

4.1 Maximum elapsed time for duty periods according to duty period’s start-
ing time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Minimum rest periods after each duty period according to previous duty
period’s elapsed time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 The number of Type A solutions found by the static approach. . . . . . 35
4.4 The number of feasible Type A solutions found by the dynamic approach

for varying N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 The number of candidate Type A solutions found by the dynamic ap-

proach for varying N values. . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 The objective function value of the conventional mathematical model. . 37
4.7 The objective function value of the static approach. . . . . . . . . . . . 38
4.8 The number of feasible Type A solutions found by the dynamic approach

for varying N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.9 The pairings and corresponding flight legs chosen by two approaches for

the data set with 42 flight legs and one extra flight. . . . . . . . . . . . 39
4.10 The conventional mathematical model’s objective function value of the

solutions found by the proposed approaches. . . . . . . . . . . . . . . . 40

A.1 Flight data for the first problem. . . . . . . . . . . . . . . . . . . . . . 52

B.1 Flight data for the second problem. . . . . . . . . . . . . . . . . . . . . 54

xi



CHAPTER 1

INTRODUCTION

Since 1950’s Operations Research models have been widely used to solve complex op-

erational and planning problems in the airline industry. With the highly competi-

tive global market and the fierce competition between the airline companies, the crew

scheduling has become a widely studied topic in the literature as the crew costs are

the second major cost component in the airline industry. Building a cost efficient crew

schedule is a challenging problem because of the complex regulations and the large

scale of the problem. The crew scheduling problem is divided into two subproblems:

firstly, a crew pairing problem is solved for constructing a sequence of flights (pairings);

secondly, a crew assignment problem is solved for assigning each crew individually to

the constructed pairings. In this thesis, we focus on the crew pairing problem [4, 7, 9].

The crew pairing problem aims at selecting a set of pairings for crews such that

each flight in the regular schedule is covered by a crew. The conventional mathematical

model of the crew pairing problem is a set partitioning model,

min
∑
p∈P

ypcp

s.t
∑
p∈P

aipyp = 1, ∀i ∈ F,

yp ∈ {0, 1} , ∀p ∈ P,

(1.1)

where F and P are the sets of flights and pairings, respectively. Here, cp is the cost of

pairing p, aip = 1 if the flight leg i is covered by pairing p; 0, otherwise. The decision

variable yp is a binary variable, which is equal to 1 if pairing p is chosen; 0, otherwise.

The objective function of problem (1.1) is the minimization of the total pairing cost,

and the first set of constraints ensures that each flight is covered exactly once [3]. It is

also common to model this problem as a set covering problem, in which each flight can

be covered by more than one pairing. In this case the first set of constraint is replaced

1



with equation (1.2). Due to the large number of variables (pairings), a typical crew

pairing model is usually solved by a column generation approach [21].

∑
p∈P

aipyp ≥ 1,∀i ∈ F (1.2)

There is a substantial cost difference between the actual and the planned costs in the

flight schedules. Unprecedented events like maintenance problems, weather conditions,

crew sickness can cause frequent disruptions resulting in delays or cancellations of

flights. Crews and aircraft schedules are shuffled by these disruptions. Therefore, a

crew recovery problem should be solved. However, the crew recovery problem aims

at finding a good solution as fast as possible because the current flight schedule has

already become operational.

There are two ways for minimizing the difference between the actual and the planned

costs caused by these irregularities in the schedule. One of them is improving the quality

of the recovery procedures at the operational level, and the other one is constructing

more robust schedules at the planning level [7]. In this thesis, we are motivated by

these disruptions and our work focuses on a cost minimization.

We consider an operational problem with the motivation of minimizing the gap

between the actual and planned costs. However, we solve it at the planning level, not

at the operational level.

One of the irregularities faced by the airline companies is the potential extra flights

that will be introduced to the regular flight schedule. These extra flights will be real-

ized during operation at a later point in time [31]. For instance, during summer there

may be an increase in demand for popular holiday destinations, or certain types of

customers like businessmen, sports teams may demand extra flights, which are not in

the regular schedule. Even though many local companies estimate the time interval

for these possible extra flights, they do not handle them at the planning level but at

the operational level. The local companies do not treat these extra flights as regular

flights because they cannot guarantee that these extra flights will be realized in the

schedule. They revise their schedule during operations, if these extra flights are real-

ized. They can even cancel or delay their regular flight schedule in order to cover these

extra flights, and such disruptions increase the operational costs and the gap between

the actual and the estimated cost. Therefore, robust airline crew pairing becomes an

important topic to handle the disruptions in airline industry. In our study, we con-

2



sider disruptions due to the addition of extra flights to the regular flight schedule. We

propose a mathematical model and two solution approaches for solving these proposed

model. These are referred as dynamic and static approaches, respectively. The pro-

posed mathematical model is an extension of the model in [31]. Unlike [31], we consider

column generation as the solution approach in our study. In the proposed dynamic and

static approaches, we try to handle the column-dependent constraints resulting from

the proposed mathematical model. That is, as new columns are added to the model by

column generation, the number of constraints may also increase. Similarly, if a column

is removed from the model, then some of these extra constraints may be deleted. To

implement an effective column generation algorithm, we introduce three column pools

into our models. Moreover, we illustrate the proposed dynamic and static models on a

set of actual data acquired from a local airline.

1.1 Contributions of This Research

Crew scheduling is very important for airline companies due to high costs. In particular

crew pairing requires more attention, since a major cost component for an airline

company comes from the crew costs. The conventional mathematical model for the

crew pairing problem aims at minimizing the total cost of the pairings that cover

the flights in the schedule. However, there can be disruptions in the regular flight

schedule. To prevent an increase in the costs and to achieve a high-level of customer

service, airline companies try to handle these disruptions effectively. One type of the

disruptions is due to the extra flights inserted into the regular flight schedule. These

extra flights are anticipated at the beginning of the schedule. Therefore, we have a

chance to consider these extra flights at the planning level.

When extra flights are handled at the operational level, this may cause disruptions

in the schedule, like delays or even cancellations of the regular flights. Therefore,

we propose a robust airline crew pairing model where the regular pairing costs and

the opportunity costs for failing to cover the extra flights appear in the objective

function. This robust airline crew pairing model is solved at the planning stage. Due

to the large number of pairings, a typical crew pairing model is usually solved by

column generation methods. We also use column generation methods with our robust

airline crew pairing model. However, we need to define some extra column-dependent

constraints in our robust airline crew pairing model for handling the extra flights.

Thus, our model grows dynamically both in the number of constraints and variables.

3



Whenever new columns are added (deleted) to the model by column generation, the

number of constraints may also increase (decrease). For handling this dynamic change

both in the number of constraints and variables we propose two approaches. In the

proposed approaches, we try to fix the number of constraints. We either consider these

extra column-dependent constraints before the column generation by enumerating all

columns causing the dynamic change in the model (static approach) or by ignoring the

extra column-dependent constraints through column generation and considering them

at the end of column generation (dynamic approach).

To sum up, we are motivated by the need for considering the robustness in the

airline crew pairing problem at the planning level and propose a new mathematical

model solved by two proposed approaches based on column generation. We observe

that our model ends up with more flexible pairings in the sense that we can cover the

extra flights as well as the scheduled flights. Whenever these extra flights are realized

at the operational level, the airline company should utilize the pairings constructed at

the planning stage without delaying or canceling the regular flights.

1.2 Outline

The outline of the thesis is as follows. Chapter 2 gives a brief literature review of the

crew pairing problem, robustness and the column generation method. This literature

review is followed in Chapter 3 by the proposed static and dynamic approaches for

handling the extra flights in our flight schedule. A numerical study on a set of actual

data acquired from a local airline company is given in Chapter 4. Chapter 5 contains

the conclusion.

4



CHAPTER 2

LITERATURE REVIEW

The crew scheduling problem can be defined as assigning a group of workers (crews) to

a set of tasks. This problem is realized in different areas such as bus and rail transit,

truck and rail freight transport, or freight and passenger air transportation. Although

these problems appear in different application areas, all crew scheduling problems share

common features like covering all tasks and minimizing costs under the provision of

safety regulations and labor negotiations [7]. In this thesis, we consider the first part

of airline crew scheduling problem, the crew pairing problem.

Before reviewing literature on the crew pairing problem, we define some important

terminology [7]:

• Flight leg: A nonstop flight (also called segment).

• Duty period: A sequence of flights that may be covered without violating the

feasibility rules. The duty period defines a day’s work for a crew. Each duty

period should be followed by a rest time according to the elapsed time passed in

the current duty period completed.

• Sit time: The time between two flight legs in a duty period. For each connection

between two consecutive flight legs there are maximum and minimum sit time

controls.

• Elapsed time: Time that has passed in the current duty period or in the current

pairing.

• Pairing: A sequence of duty periods with overnight rests in between. A crew

starts the duty at its base and returns to its base at the end of the pairing.

• Deadhead flight: A crew flying as passengers.

The increasing popularity of the airline crew scheduling problem in the last few

decades has come from the characteristics of the problem. As there is a fixed schedule

5



of flights, the crew scheduling problem becomes a planning problem. Also airline crews

receive higher salaries than equivalent personnel in other modes of transportation such

as rail or truck. A small improvement in the schedule yields significant cost savings. In

addition, there is a large number of restrictive rules in the airline industry, which makes

the airline crew scheduling problem harder to solve than other scheduling problems

[7]. Airline companies should follow the Federal Aviation Authority work regulations

(FAA), which vary by crew type (pilot or flight attendant), crew size, aircraft type,

type of operation (domestic or international). Other rules are the labor union rules.

The main idea behind these rules is not only minimizing the crew fatigue but also

ensuring the passenger safety. All these rules make the crew scheduling problem more

complex and challenging. [1].

Airline schedule planning, as represented in Figure 2.1, is composed of four main

steps. At the first stage, the timetable is constructed. At this stage of planning, we try

to satisfy the expectations of the marketing department with the availability of fleets

and without violating the constraints on the network, such as; time slots available

for the airline at different airports. From this stage, the number of flight legs to be

operated is given as the input to the fleet assignment stage. At the fleet assignment

stage, we try to assign fleets to the flight legs. The main concern at this stage is to

ensure the feasibility of the timetable according to the available fleet.

Figure 2.1: Airline schedule planning.

At the aircraft routing stage, each aircraft is assigned to flights taking into consid-

eration the time spent at airports as well as the time spent for routine maintenance

checks. If it is impossible to satisfy this main concern, then the timetable may have

to be changed. At the crew scheduling stage, the timetable and the fleets assigned to

the flight legs are available. We then try to schedule the crew members. Both crew

6



pairing and crew assignment(rostering) problems are handled at this stage. Under the

crew scheduling problem, as mentioned previously in Section 1, we try to solve two

subproblems: the crew pairing and the crew assignment problems. The crew pairing

problem aims at selecting a set of flight sequences (pairings) for the crews such that

each flight in the regular schedule is covered by one crew. In the crew assignment

problem, the sequence of pairings is assigned to individual crew members [4].

2.1 Alternate Mathematical Model

The conventional mathematical model for crew pairing can be modeled in two ways: as

a set partitioning problem (1.1) or as a set covering problem (constraint set is replaced

with (1.2)).

When deadheading is permitted in the crew pairing problem, we need to model the

problem as a set covering problem so that some flight legs may be covered more than

once. In the study of Lavoie et al. [24] it is mentioned that the set covering model

may represent the problem structure better since covering a flight leg more than once

may reduce the cost since it provides an advantage of moving crews to another place.

However, some of the airlines do not permit deadheading in their solutions, especially

when solving their daily problems. Therefore, they use set partitioning problems [4].

Both set covering and set partitioning problems are utilized in different application

areas.

For instance, in the study of Kohl [35], the mathematical model used for the crew

pairing problem is a set covering problem which is utilized in Carmen Systems. Carmen

Systems develop optimization systems for crew scheduling problem which are widely

used in major airline companies such as Lufthansa, British Airways, Air France, Al-

italia, and so on. Kohl also includes some extensions of the set covering problem for

crew pairing like including the base constraints for ensuring pairings match with the

distribution of crews or the global constraints for limiting the length of pairings or

the variable crew satisfaction constraints (as each leg does not require same number of

crews) [22].

Both set covering and set partitioning problems are common in Operations Re-

search. However, set covering and set partitioning problems are NP-hard. Therefore,

large-scale problems are not easily solved and long computation times are required

to solve these problems [14]. As a result, there are many heuristics and exact meth-

ods to solve set partitioning and set covering problems. Most of the methods rely on

7



continuous relaxations but these solutions are known to be not only difficult but also

frequently degenerate [2].

2.2 Pairing Generation

For small sized problems, the total generation of all possible columns may be possi-

ble. For large scale problems, however, generating all feasible columns require both

time and computational effort. The computational effort also depends on the network

structure used. There are two different network types: flight network and duty period

network. In the flight network, we have flights represented with arcs showing possible

connections. In the duty period network, we have arcs for duty periods and possible

connections between duty periods [7]. It may seem easier to work on duty period net-

work during pairing generation but in that case we need to spend time on duty period

generation. On the other hand, we do not need to track most of the feasibility rules in a

duty period network that we need to track in a flight network. A detailed study about

working on duty period network including generating the duty periods is found in the

work of Vance et al. [32]. The pairing generation method is similar in both networks.

In this thesis, we focus on the flight network. Therefore, during generation of pairings,

we need to track several criteria for feasibility of the connections. The restrictions

on pairings, such as: the FAA rules, the operational considerations, the contractual

restrictions, and so on, make the pairing generation problem more complex [33].

Most of the solution approaches depend on the partial enumeration of columns and

work on this constructed subset of pairings. One of the previous methods is based on

generating pairings on a subset of flights since covering all flights is difficult [1]. Another

approach used in Carmen Crew Pairing, is limiting the number of possible connections

on the network and constructing a subset of pairings. For instance, according to their

experienced workers, the short connections are considered as more useful [4]. However,

these partial enumerations may lead obtaining local minimums.

In the work of Klabjan et al. a new method is proposed for partial enumeration,

which is based on the generation of random pairings. During enumeration, connections

are chosen randomly. The probability of selecting a connection depends on the length

of the connection. The smaller the connection time, the larger the probability of

selecting this connection. One of the motivations is that low pairing costs may result

in short connections [20]. Also in another method proposed by Klabjan et al., parallel

processing is utilized for pairing generation. The distribution of generated duties across

8



multiple processors on a parallel machine permits the parallel application of complex

rules that should be mandatory during pairing generation [19].

2.3 Alternate Ways to Solve The Mathematical Model

There are different methods used in the literature for optimizing the mathematical

model for the crew pairing problem. Branch-and-price, Langrangian relaxation and

Benders decomposition are the most commonly used techniques. Before reviewing

literature on specific methods to solve the crew pairing problem, a literature review of

common methods is mentioned.

In a branch-and-price algorithm, we try to solve the linear programming relaxations

by column generation but at each iteration we can consider only a subset of columns.

We allow the dynamic column generation in the branch-and-bound tree during branch-

and-price [7]. Restricted master problem(RMP) is the problem in which we consider

only a subset of the columns. In each iteration, RMP is solved and the optimal dual

values are taken. Then, the subproblem is solved by using the dual values for calculating

the reduced costs of new columns (new variables). If there is any column with a negative

reduced cost, we cannot stop as we do not reach the optimal solution. However, if we

are not able to find such a favorable column, we can stop the iterations and conclude

that the optimal solution has been found. One of the computationally intensive parts

of column generation can be stated as solving the subproblem because it needs to scan

many columns [21].

Lagrangian relaxation is another common technique. During the design of La-

grangian relaxation based system, three questions are important: which constraints

should be relaxed, how good dual variables should be computed and how should a

good solution be deduced [12]. If we are able to partition the constraints into easy and

difficult categories, the difficult constraints should be moved to the objective function

with linear penalties. Therefore, we get rid of the difficult constraints in the model and

we also discourage the violation of these constraints by the penalties in the objective

function. With the Lagrangian method, the goal is finding best lower bounds found

by the Lagrangian relaxation over the possible penalties. This problem is nonlinear

and called the Lagrangian dual problem. The subgradient method is commonly used

to solve the dual problem. One of the negative feedbacks about using subgradient

approach is the difficulty to maintain feasibility [6, 21].

Benders decomposition is another common technique. At every iteration, we solve

9



a mixed integer RMP with a single continuous variable and obtain a lower bound for

the optimal solution. Afterwards, we fix the variables according to the RMP result.

The optimal dual values of the linear program provide a Benders cut. This cut is added

to the RMP and the iterations are repeated [21].

Accordingly, in most of the techniques, it is common to solve the LP relaxation of

the mathematical problem and then propose another approach to improve and arrive

at integer solution. For instance, in [8] a combination of the interior point and the

simplex methods is used for optimizing LP for a large-scale crew pairing problem.

One of the specific methods to solve a small number of constraints with a very

large number of columns is the SPRINT method. In the SPRINT method, the linear

program is solved at the beginning using a small subset of columns. Then, the dual

values are used for pricing all columns of the original problem. Then, we check whether

the solution is optimal. If it is not, we should have at least one column with negative

reduced cost. Therefore, the columns with the negative reduced cost are added to

the problem whereas the other columns are randomly selected. This is repeated until

there is no column remaining with negative reduced cost. In this case, the problem is

optimized. Low solution time with good performance is achieved even if the number

of iterations of SPRINT method increases [13]. As an addition, there is an algorithm

called the volume algorithm in which the feasible dual solutions can be found. The

volume algorithm is utilized for finding a feasible dual solution. The feasible dual

solutions found by the volume algorithm provides an approximation to the optimum

value [5]. In [3], the authors utilize the dual solutions found by the volume algorithm

in column generation phase whenever SPRINT method performs poorly. Using the

volume algorithm also results in faster solutions than not only the dual simplex, or the

primal simplex algorithms but also than the interior point algorithm.

Another system developed for solving the crew scheduling problem is proposed in

[1]. This system is called trip reevaluation and control (TRIP). TRIP is based on

iterative pairing generation and solving subproblems. Firstly, an initial solution is

considered. If it is not possible to easily find a feasible initial solution, the authors

suggest modifying the previous period’s solution. Secondly, the set partitioning prob-

lem is solved and an IP solution is found. One of the main ideas is increasing the size

of the subproblem and the number of iterations. The motivation behind this work is

greater the number of iterations and the size of the subproblem, the better the solutions

obtained. Therefore, the author looks if there exists a better subset of pairings that

10



result in a better objective function value. If there is, this subset of pairings is added

to the subproblem and the problem is resolved. However, after some iterations or after

meeting an improvement criteria, iterations are stopped and it is concluded that the

obtained solution is the best found solution until now. However, this solution should be

local minima. Therefore, one of the authors’ major objectives is increasing the speed

of TRIP iteration especially for solving large subproblems. As a result, they can do

more iterations than before in the same time period. With TRIP, the authors conclude

that there is a great improvement in cost such as annual savings of $20 millions. TRIP

has been used by some big airline companies like American Airlines and Continental

Airlines [1].

One popular method for solving the airline crew pairing problem is utilizing a col-

umn generation approach [3].As stated Lagrangian duality is another alternative for

solving the relaxation of the mixed integer problems. Depending on which method

produces the optimal dual solutions more efficiently, during optimization one can use

Lagrangian duality or the column generation. Subgradient algorithm is accompanied

with both Lagrangian duality and the column generation. Subgradient method is de-

tailed in the study of Held et al [18]. Subgradient algorithm is easy to code but besides

its simplicity, slowness and convergence troubles for large problems are reported. The

limitations of the column generation method is also given by Held and Karp [16, 17].

From their study, they conclude that subgradient algorithm should be preferred to any

linear methods.

As the solvers and the computation power improve over time, the dynamic column

generation method becomes an interesting tool for considering all possible pairings

during solving the LP relaxation. The set partitioning or the set covering problem are

referred as the master problem if it is solved considering all possible pairings. In this

thesis, column generation method is used. Therefore, for gaining a brief insight about

a column generation approach, we handle the steps of the method.

2.3.1 Column Generation

The column generation algorithm is studied in detail by Desrosiers and Lubbecke [10,

26]. The column generation method involves three general steps [7]:

1. Solving RMP

2. Solving the pricing subproblem

11



3. Updating the RMP if a new column can be added to the solution

When row and column generation are all conducted simultaneously, as pointed out

by Barnhart et al., combining row and column generation is a challenging topic. The

authors mention that whenever additional rows are added to the model, the pricing

problem’s structure changes. One of the possible ways to handle such dynamic row

and column generation is by doing the pricing over the original set of columns without

considering the additional rows. However, there are cases in which the newly added

row does not also destroy the pricing problem structure such as in the problem of

minimizing the number of vehicles required to satisfy the demands of the customers. If

a constraint for cutting the fractional objective function value is added, then the pricing

problem structure will not change because the newly added constraint has coefficients

of one at each column [6].

Figure 2.2: Relation between RMP and pricing subproblem.

In the first step of column generation, an optimal solution is found to current RMP

which contains only a subset of columns. The primal simplex algorithm for solving

RMP is believed to be the most efficient algorithm. However, there are disadvantages

of using the primal simplex method. One of the disadvantages is the degeneracy that

the LP relaxation will face. Another disadvantage is the optimal extreme point dual

solutions that give misleading information about the reduced costs. Therefore, several

iterations of column generation are done. One of the major benefits of using the primal

simplex method is being able to warm start. Interior point algorithms are also used

but they lack warm start [7].

The volume algorithm mentioned previously is another alternative for producing

dual vectors. The volume algorithm is claimed to overcome the simplex algorithms

and interior point algorithms [5, 3].

As Barnhart et al. refers, there are two main questions: the criteria for selecting

the pairings and how can we find the pairings meeting the criteria. The criteria about

the reduced costs are the most common ones. Such as in [8] the cost of each pairing

divided by the respective reduced cost may be considered as a criterion.

12



We search through the network by multilabel shortest path algorithm to find the

pairings meeting the criteria or enumerate by the brute force approach [7]. Generating

all pairings is an alternative solution. However, it is costly. In [3], partial enumeration

in pricing is done with a criterion based on the reduced costs. A detailed study about

the pricing problem can be found in [30].

Whenever we find a favorable column considering the criteria chosen, we add this

column to the RMP model. We insert the column and update the coefficient matrix

about the coverage of the corresponding flight legs.

2.4 Crew Recovery

Due to some disruptions in the schedule, such as maintenance problems, severe weather

conditions, and so on, an airline schedule rarely operates as planned. One needs to

consider the modification of a crew schedule that has been affected by disruptions.

The resulting model is called the crew recovery problem (CRP). CRP is solved at the

operational level. The objective of CRP is reassigning crews such that a schedule is

maintained with the minimum additional crew costs and the minimum cancellations of

the regular flights [25, 7].

The planning problem differs from CRP in several ways. The major difference is

the time horizon for solving the problems. Barnhart et al. points out the goal of

CRP as finding a good solution in a short time period. The second difference is the

necessity of considering the recent flying history of the active crews in the CRP. Third

difference is including the reserve crews in the CRP. Reserve crews can be defined as

the crews that have a minimum guaranteed pay (measured in flying hours) and have

hour limitations for flying in a month. Another difference is the feasibility rules for

the pairings in each problem. In the planning problem, most airlines try to construct

flexible pairings that may recover the possible disruptions. However, in CRP the rules

on flying times are often pushed to their legal upper bounds. The last and the more

significant difference is the objective functions of the two problems. CRP should have

different objective functions like returning to the original plan as quickly as possible

and minimizing the passenger disruptions or keeping down the additional cost of reserve

crews. Even deciding on the objective function can be difficult in the CRP [7].

In the works of Lettovsky et al.,a new optimization based solution approach is

introduced. The authors provide a computationally inexpensive deadhead selection

heuristic, propose an integer model for the CRP and solve this problem using primal-

13



dual subproblem simplex method [25].

2.5 Robustness

The crew pairing problem is solved at the planning stage. Therefore, all flights are

assumed to have fixed and known departure times. However, at the operational level,

as mentioned previously in Section 1, there may be disruptions in the regular planned

schedule. In US it is reported that at least 25 % of the flight legs were delayed by

15 minutes or more in the summer of 2000 due to the disruptions. Clearly, the crew

pairing problem gains more attention and airline companies try to focus on solving the

robust crew pairing problem to handle the distruptions.

There are three existing approaches for finding the robust crew pairings. In the

first approach, the expected pairing costs are included in the model. The costs are

computed by running Simair (Simulation of Airline Operations), which is a modular

airline simulator used for evaluating plans and recovery policies[27]. The expected

costs are assumed as independent of the other pairings in the schedule. This assumption

holds if we use the push-back recovery procedure. In the push-back recovery procedure,

we delay the flights until all the resources are available. After computing the cost

components, the crew pairing problem is solved and the solution is evaluated again by

Simair [28].

The second approach for the robust airline crew pairing problem is based on max-

imizing the connection times. Both in the works of Ehrgott et al. [11] and Yen et al.

[34], robustness is measured in terms of excess sit connection time above the minimum

sit connection time. The authors define penalty with a penalty factor times the dif-

ference between the connection time and minimum required sit connection time. If we

sum these penalties over all sit connections in a pairing, we define the robustness cost

of a pairing. Then, the model which minimizes the robustness cost is solved. In [34],

a stochastic integer programming model is studied. It is assumed that the connection

time is a random variable in the model. As the model has a large-scale, the authors

propose a heuristic based on follow-on branching rule for solving the model. In [11],

the connection times are assumed to be deterministic and the connection times are

taken with respect to the planned flight schedule.

In the work of Shebalov and Klabjan [29], move-up crews are defined as a resolution

to the disruptions. Move-up crews can be defined as the crews available for swapping

one or more flights when another crew is delayed or has reached the bounds of the fea-

14



sibility rules, such as reaching the limit on the flying time. When the move-up crews

are used in the recovery procedure, besides the traditional objective function of mini-

mizing pairing cost, they consider the maximization of the number of opportunities for

crew swapping. The model proposed is a bicriteria optimization model. A Langrangian

relaxation approach is used for solving the model.

Additionally, in the work of Tekiner et al. [31], a new robust mathematical model

is proposed. Their work can be considered as an extension of the work of Shebalov and

Klabjan [29] in which only the original crews are used for covering the extra flights.

15



CHAPTER 3

STATIC AND DYNAMIC APPROACHES

3.1 Problem Statement

Airline crew pairing problem is one of the challenging scheduling problems. One of the

reasons is the existence of different crew categories in the airline crew pairing problem,

such as; captains, first officers, flight attendants, and so on. Therefore, we need to

solve the crew pairing problem considering this crew category structure as none of the

crew can substitute another crew if they belong to different categories [3, 4].

Moreover, cockpit crews receive higher salaries than cabin crews. Therefore, in our

study we consider crew pairing problem for cockpit crews as solving the crew pairing

problem for cockpit crews and optimizing the solution may decrease the cost of the

airline company more than optimizing the crew pairing problem for cabin crews. As a

result, in the mathematical model we propose, each flight should be covered at least

once. If we consider also the crew pairing problem for the cabin crew, then we will

either increase this right hand side of this coverage constraint of each flight from one

or solve the problem for the required number of cabin crew times.

The crew pairing problem is solved according to the fleet type as each pilot is

commonly licensed to fly only one type of fleet. Therefore, we concentrate on the flight

schedule of the same fleet.

In the study of Tekiner et al. [31], the authors examine several ways of recovery

options for managing extra flights at the planning level. They classify the possible

solutions into two types:

• Type A. Two pairings are selected and swapped for covering the extra flights.

• Type B. One pairing is selected such that there is enough connection time

between two consecutive legs for covering the extra flight.

Nine possible Type A and Type B solutions are proposed, here we only consider

three possible solutions of [31]. We consider two possible Type B solutions and one

16



Type A solution. The method proposed in [31] is different than ours. We only introduce

three types of solutions.

In all solution types we consider, the potential extra flights that can possibly be

introduced to the regular flight schedule do not have exact departure times. According

to estimates done by the airline company, these extra flights are scheduled within a

range of time. As shown in Figure 3.1 and 3.2 the extra flights are shown with two

parallel arrows which represent the time range defined for the extra flights.

The Type A solution is illustrated in Figure 3.1.

Figure 3.1: Type A solution.

Similarly, in Figure 3.2, two Type B solutions are illustrated.

(a) (b)

Figure 3.2: Type B solution.

Difference between the two Type B solutions is the location of the deadhead flight.

Deadhead may appear in the schedule before or after the extra flight.

3.2 Mathematical Model

We propose a new mathematical model for the robust airline crew pairing problem.

The model is an extension of the model proposed in [31]. However, there are some

17



major differences between the two models. One of the main differences is the objective

functions. In the study of Tekiner et al., the objective function is maximization of

the extra flight coverage but we try to minimize the total cost including not only

the regular pairing costs but also the opportunity costs for failing to cover the extra

flights. In [31], a constraint is introduced for not deviating from the objective function

value of the conventional crew pairing model. Therefore, the authors first solve the

conventional mathematical model and then solve the robust mathematical model they

propose. However, we do not solve our problem twice as we include all cost components

in our objective function including the opportunity costs for failing to cover the extra

flights.

The notation used in the proposed mathematical model is given in Table 3.1.

P : set of pairings

F : set of flights

K : set of extra flights

cp : cost of pairing p

dk : opportunity cost of failing to cover extra flight k

aip : 1 if flight leg i is covered by pairing p, 0 otherwise

ākp : 1 if pairing p covers extra flight k as Type B solution, 0 otherwise

āpqk : 1 if pairings p and q cover extra flight k as Type A solution, 0 otherwise

Table 3.1: The notation used in the mathematical model.

Our decision variables are:

yp =





1, if pairing p is chosen,

0, otherwise;

zk =





1, if extra flight k is not covered,

0, otherwise;

xk
(p,q) =





1, if extra flight k is covered by pairing p and pairing q as Type A solution,

0, otherwise.

18



The proposed mathematical model is given as follows;

min
∑
p∈P

ypcp +
∑

k∈K

dkzk +
∑

k∈K

dk(
∑
p∈P

(1− yp)ākp+

∑
p,q∈P

(1− xk
(p,q))āpqk)

s.t
∑
p∈P

aipyp ≥ 1, ∀i ∈ F,

∑
p∈P

ākpyp +
∑

(p,q)∈P

āpqkx
k
(p,q) ≥ 1− zk ∀k ∈ K,

2āpqkx
k
(p,q) ≤ yp + yq, ∀p, q ∈ P, ∀k ∈ K

yp ∈ {0, 1}, p ∈ P

zk ∈ {0, 1}, k ∈ K

xk
(p,q) ∈ {0, 1}, p, q ∈ P, k ∈ K.

(3.1)

The regular pairing cost of a pairing p is defined as

cp = max {fp.TAFB, ndp.mg,
∑

dεp

bd (3.2)

where mg and fp are constants. TAFB represents time away from base. ndp is the

number of duty periods in pairing p whereas bd is the sum of the duty periods’ costs

of pairing p. Pairing cost is, simply, the maximum of three components; sum of costs

of duties in pairing p, some fraction of total elapsed time, and minimum guaranteed

number of minutes per pairing.

In problem (3.1), we try to minimize the total cost which is the summation of

four terms: cost of regular pairings, cost of failing to cover the extra flights, and the

opportunity costs for failing to cover the extra flights with a Type A solution or with a

Type B solution. Our objective function promotes the coverage of the extra flights as

we incur costs of failing to cover the extra flights. The first set of constraints ensures

that each flight leg should be covered at least once. The second set of constraints is for

covering each extra flight with Type A or Type B solutions. The last constraint set is

defined for all feasible Type A solutions. When a feasible Type A solution exists, the

respective extra flight should be covered by the pairings forming the Type A solution.

Finally, we have constraints for defining our decision variables as binary variables.

19



3.3 The Column Pools

Before starting with the dynamic and static models, we explain the column pools and

their impact on solving the problem. As mentioned in Section 1, we have introduced

the column pools for an effective column generation algorithm. The proposed column

pools are illustrated in Figure 3.3.

Figure 3.3: Constructing column pools.

We fill these pools with columns after solving the multilabel shortest path either

at the intermediate iterations or at the beginning of the column generation procedure.

Initially, the buffer pool and the fixed pool are empty. Before solving the LP relaxation,

RMP column pool is filled either with the initial feasible pairings (dynamic approach)

or with all possible columns forming Type A solutions (static approach).

The first column pool is the RMP. During our column generation algorithm, we

send the columns with the most negative reduced cost to this pool as shown in Figure

3.3. Then, we solve the RMP again, since a new column is added to our model and

hence the dual prices are altered. Before searching for another column with negative

reduced cost, we need to update the dual prices; therefore, the reduced costs.

The second column pool is the fixed column pool which holds the columns of the

candidate Type A solutions. In the multilabel shortest path, each column is tagged.

These tags show whether this column can cover the extra flight as a Type A solution

(extra flight or deadhead) or as a Type B solution. In the fixed column pool, all Type

A solution candidates are held even if they have positive reduced costs. Fixed column

pool includes the candidate Type A solutions with the positive reduced costs; so that

20



any column may form feasible Type A solution with another column is preserved. We

want to conclude with as many alternative solutions as possible for covering the extra

flights.

The third column pool is the buffer pool which holds the columns with negative

reduced costs apart from the ones in the fixed column pool. After solving the multilabel

shortest path, we send the column(s) with the minimum reduced cost to RMP pool.

All columns with Type A tags are sent to the fixed column pool. All remaining columns

with negative reduced costs are sent to the buffer column pool.

The main advantage of using the column pools is to do the column generation

effectively without solving the multilabel shortest path at each iteration. Solving the

multilabel shortest path is an expensive and exhaustive process [30]. Therefore, we

construct the column pools, and at every iteration we check the fixed column pool, and

the buffer column pool if there exists a column with negative reduced cost. If there

is, we do not solve the multilabel shortest path which saves us from computational

burden. If there is not, we solve the multilabel shortest path again and update the

column pools. In the buffer column pool, we clean some of the columns with positive

reduced costs [30]. However, the column management is not permitted for the fixed

pool, as we do not want to lose any candidate Type A solutions.

3.4 Static Approach

We call this approach static because whenever we fix all Type A solutions, we also fix

the constraints 2ākpx
k
(p,q) ≤ yp + yq,∀(p, q) ∈ P, ∀k ∈ K. Fixing these constraints are

important because during column generation we do not need to pay special attention

to dynamic growth of rows in the problem (3.1) with newly added variables. Column

generation is applied to the relaxation of the problem (3.1).

In the static approach, we do backward search from each extra flight (Figure 3.7)

and forward search from the source node to sink node (Figure 3.8) to find the candidate

nodes of pairings that may form Type A solutions and to form candidate Type A

solutions for covering the extra flights or the deadheads. For each extra flight, we

first find the nodes which will be visited just before the extra flight or the associated

deadhead. Then from these nodes, we try to find which nodes can be visited before

these tagged nodes. During tagging, we use the information from topological sorting

which is done at the beginning of the static model. We check the topological order of

each node and connect each node with another node in the flight network with a higher

21



topological order.

After tagging all previous candidate nodes as shown in Figure 3.7, regular multilabel

shortest path [30] is modified and solved. A multilabel shortest path algorithm is used

to find new pairings. The labels represent the state of each path in the flight network

with respect to the cost and the rules of the pairing and the duty periods. Besides

the regular multilabel shortest path, we first go over the tagged nodes until the extra

flight or the deadhead is covered, then we update the information about whether the

path can cover the extra flight or the deadhead. Then, we continue solving the regular

multilabel shortest path with the rest of the graph. When the multilabel shortest path

is finished, we check all the paths(pairings) on the sink node coming from the source

node for taking the tagged paths. After, we check whether these tagged paths (Type A

solution candidates) are still feasible after they are swapped. If they are, these pairing

pairs are fixed in the model. Next, we do this backward and forward search for all extra

flights. At the end, we fix all Type A solutions at the beginning of column generation

if the swapped pairings are still feasible. In Figure 3.4 and Figure 3.5, the proposed

static approach is summarized.

In the static approach, the fixed column pool is not required since we fix all feasible

Type A solutions before starting the column generation. The fixed column pool holds

the columns with Type A tags but in the static approach, we fix all feasible Type A

solutions in RMP pool. Therefore, there is no reason for using the fixed column pool

in the static model.

In the following figures, backward and forward search over the network is visualized.

In Figure 3.6, step 1 of tagging is done. The nodes that may be visited just before

the extra flight or its associated deadhead flight are tagged in this step. These nodes

are decided according to their destinations and the feasibility rules. Then, as shown

in Figure 3.7, tagging of all other nodes with different style dashed lines, that have

topological orders less than the tagged nodes, are searched for whether there may be

feasible connections between the previously tagged nodes. After all, as shown in Figure

3.8 the multilabel shortest path is done and we end up with the pairings which are

candidates of Type A solutions.

Suppose all found pairings composed of the flight legs drawn with dashed lines in

Figure 3.9 are feasible and the base for the pairings is C. There are a couple of example

of pairings on the network:

• Pairing 1 consists of flights with topological orders 1 - 4 - 7 - 10.

22



Figure 3.4: Flowchart of static model

23



Figure 3.5: The proposed static approach.

Figure 3.6: Backward tagging flight nodes - step 1.

Figure 3.7: Backward tagging flight nodes - step 2.

• Pairing 2 consists of flights with topological orders 1 - 5 - 18.

• Pairing 3 consists of flights with topological orders 2 - 3 - 6 - 12 - 17.

• Pairing 4 consists of flights with topological orders 5 - 9 - 15 - 18.

24



Figure 3.8: Forward search over the flight nodes - step 3.

• Pairing 5 consists of flights with topological orders 2 - 3 - 6 - 13 - 17.

As shown in Figure 3.9, from the pairings we realize at the end of multilabel shortest

path that there are feasible swappable pairings for covering the extra flight and the

associated deadhead. For example, pairing 4 and pairing 5 form a feasible Type A

solution in Figure 3.9.

Figure 3.9: Type A solutions.

In the static approach, our regular column generation algorithm changes. As shown

in Figure 3.10, after we fix feasible Type A solutions, newly coming columns do not

have coefficient of one in the third constraint set of problem (3.1) which is written for

feasibly swapped Type A solution. We treat Type B solutions as they are different

pairings than their original pairings so we make a copy of each original pairing which

is a Type B solution and update the cost of the pairing according to Type B solution.

Therefore, during the column generation algorithm, we do not consider the dual vari-

ables coming from the third set of constraints. Because whatever the dual variables

respective to the third constraint sets are, as their coefficients are all zero in the dual

mathematical model as we fix Type a solutions constraints at the beginning of column

25



generation. Therefore, we can not cause dual infeasibility during column generation.

Consequently, we calculate the reduced costs considering the first and second constraint

set’s respective dual variables.

Figure 3.10: The treatment of columns in the problem (3.1) by the static approach.

3.5 Dynamic Approach

The dynamic approach is the second approach that we propose for handling extra flights

occurring in our regular flight schedule. We call this approach dynamic because as new

columns are formed during column generation, the ones that are Type A solutions are

formed too. We exclude all Type A solutions from our problem (3.1) and apply column

generation over the relaxation of the remaining problem.

The mathematical model used in dynamic approach is given as follows;

min
∑
p∈P

ypcp +
∑

k∈K

dkzk +
∑

k∈K

dk(
∑
p∈P

(1− yp)ākp)

s.t
∑
p∈P

aipyp ≥ 1, ∀i ∈ F,

∑
p∈P

ākpyp ≥ 1− zk ∀k ∈ K,

yp ∈ {0, 1}, p ∈ P

zk ∈ {0, 1}, k ∈ K.

(3.3)

26



We do not write any set of constraints in problem (3.1) for Type A solutions.

Because if we consider the Type A solutions during iterations, the pricing problem

structure should be changed. With the addition of a new column(variable), a new

constraint may be added to our problem and the dual problem may also change. The

dual problem also grows dynamically both in the number of constraints and variables.

Therefore, the dual variables we use for finding reduced costs are not the same as

considering our previous respective dual problem. Therefore, we write problem (3.1)

including the Type A solutions’ constraints after the column generation. As an ad-

dition, we relax the constraints of defining the decision variables as binary variables

in the column generation. In this approach, column generation method is done over

the model excluding Type A solutions for handling the dynamic change both in the

number of constraints and variables in the problem (3.1).

Figure 3.11: Proposed dynamic approach.

In Figure 3.11, the dynamic approach is summarized. The crosses over some arcs

show that there is no favorable column remaining. Firstly, we start with the initial

pairings and solve the model excluding the constraints of feasible Type A solutions.

We take the dual variables’ values and solve the multilabel shortest path for checking

whether there exists any favorable column. If there exists, we send this column(s) to

RMP. Before solving the model, we check if there are appropriate columns that can be

sent to the fixed column pool or to the buffer column pool. If there are, we update

the column pools with these pairings. We solve the relaxation of the model excluding

variables and constraints of Type A solutions once more. Then, we check if there are

column(s) with negative reduced cost in the fixed column pool or in the buffer column

pool. If there are, we do not solve the multilabel shortest path problem at this iteration.

27



In case none of the pools include a column with negative reduced cost, then we solve

the multilabel shortest path problem and update the column pools according to the

introduced pairings. Our column generation stops if there will be no favorable column

coming from the multilabel shortest path or from the column pools.

When the column generation algorithm ends, we check if the pairings at RMP

column pool including the pairings at the fixed column pool are candidate Type A

solutions. If there are any candidate Type A solutions, we swap these pairings and check

their feasibility when they are swapped. If there are any feasible Type A solutions, we

consider them during solving problem (3.1). At the end, we solve the problem (3.1) by

taking into account all Type A and Type B solutions.

The dynamic approach is only a heuristic because during the multilabel shortest

path, candidate Type A solutions may be dominated by other pairings [30]. Therefore,

we may miss some of the Type A solutions.

In Figure 3.12, proposed dynamic approach is summarized.

3.6 Primal Heuristics

The crew pairing problem is a binary integer programming problem in which all vari-

ables are binary variables (0-1 variables). Therefore, all variables must have integer

values at the end. Most successful algorithms for solving the integer programming

problems incorporate corresponding linear programming (LP) problems, which are re-

ferred as the LP relaxations, because the integer programming problems are much more

difficult to solve than the LP problems. During the column generation method, the

RMP is also a LP relaxation to the mathematical model of the robust airline crew pair-

ing problem. Due to solving the LP relaxations, the solutions of the dynamic and the

static approaches are not guaranteed to be integer. Therefore, we implement a primal

heuristic to result with integer solutions. As an addition, we implement another primal

heuristic to obtain an initial basic feasible set of pairings.

An initial basic feasible set of pairings is necessary found for both the dynamic

approach and the static approach. We need to start with a feasible coverage of all

flight legs in the regular flight schedule and we search for the favorable pairings by the

column generation approach. There are two alternatives to obtain the initial feasible

set of pairings: constructing new set of pairings until all flight legs are covered or taking

the previous period’s feasible pairings and modify them according to the current flight

schedule. The latter way of finding an initial feasible set of pairings will be an extension

28



Figure 3.12: The flowchart of the dynamic approach.

of our study.

Currently, we search the flight network for all nodes having a zero indegree or a zero

outdegree. If we find such nodes, we need to connect the nodes to either sink or source

node. The source and the sink nodes represent the same crew bases. If the indegree of

a node is zero, we connect the node to the source node. As shown in Figure 3.13 the

29



Figure 3.13: Connecting the flight nodes having zero indegree and zero outdegree to
source and sink node, respectively.

nodes shown with a dashed lined rectangle around, have either zero indegree or zero

outdegree. In this figure, the crew base for pairings is City C. Therefore, each legal

pairing should start and end at City C. If a node has an outdegree of zero, we connect

the node to sink node located at City C. In Figure 3.13 these connections shown with

dashed arcs and the flight legs after these connections are shown with two parallel

arcs. The dashed arcs connecting the flight legs to source or sink node correspond to

deadheading. After satisfying the connectivity of these nodes to source or sink nodes,

we solve the multilabel shortest path problem once. With all generated pairings by

the multilabel shortest path problem, we solve the conventional mathematical model

as a set covering model. The optimal solution found forms our initial feasible set of

pairings. We replace some of the pairings in this set to obtain a worse initial feasible set

of pairings. While replacing the pairings in the set of initial feasible pairings with the

other pairings generated by the multilabel shortest path problem, property of coverage

of all flight nodes’ at least once is not violated.

The second primal heuristic is for obtaining integer solutions for the decision vari-

ables. We implement the heuristic proposed by Lan et al. However, as the proposed

mathematical model is slightly different than the conventional mathematical model

of the crew pairing problem, we develop an additional procedure about covering the

extra flights. The heuristics in [23] is for solving the set covering problem by applying

the Meta Heuristics for Randomized Priority Search (Meta-RaPS). A feasible solution

is generated by introducing some random factors. Then, an improvement heuristics

is applied but the selection of priority rules, the penalization of worst columns are

integrated into the heuristic [23].

30



With Meta-RaPS, if the decision variables for our regular pairings are not integers,

we can end up with integer solutions for the decision variables. However, this heuristic

is not enough for making the decision variables of Type A solutions, xk
pq, integer.

Therefore, we propose a new procedure consisting of three steps: checking if all xk
pq is

integer or not, fixing some variables, removing the redundant pairings.

Firstly, we check if there are any noninteger xk
pq variable in the solution. If there

are any, then we fix the missing pairing pair of the variable, whether yp or yq. Because

the only way of the decision variable xk
pq can be noninteger,if its pairing pair is missing.

2āpqkx
k
p,q ≤ yp + yq,∀p, q ∈ P, ∀k ∈ K (3.4)

The constraint 3.4 is not violated when xk
(p,q) = 0.5 and one of the yp and yq is

equal to 1 and the remaining Type A solution pair is equal to 0. Therefore, we fix the

missing pairing value as one and then do this fixing for all missing pairing pairs of the

Type A solutions (for all xk
(p,q) = 0.5). After that, we search if there are redundant

pairings, which are not feasible Type A solutions, caused by the addition of the fixed

pairings which are part of feasible Type A solutions. After removing the redundant

pairings, we end the primal heuristic. To sum up, both of the primal heuristics are

guaranteed to arrive at feasible integer solutions.

31



CHAPTER 4

COMPUTATIONAL RESULTS

4.1 Feasibility Check for the Swapped Pairings

Feasibility rules are vital during construction of the pairings. Each pairing consists of

duty periods which are day-long consecutive flights assigned to crews and each duty

period should end with rest period. Each rest period is decided according to the elapsed

time of the duty period. Considering the duty periods, we have rules for maximum

sit/connect time, minimum sit/connect time and maximum elapsed time. We construct

the duty periods from the flight legs that are sequential in space and time. We also

make the controls if the crew has enough time for resting.

According to the rules of the FAA, Table 4.1 shows the maximum elapsed time for

each duty period. Besides, the minimum rest periods after each duty period according

to the ending duty period’s elapsed time are shown in Table 4.2. Minimum sit times

between flights can not be smaller than 60 minutes, which is the preparation time for

the next flight leg. At the beginning of each duty period there should be 30 minutes

difference other than 60 minutes according to the rules.

Number of Flight Legs

Starting Time 1 - 3 4 - 5 6 or more
05:00-14:00 14 hours 13 hours 12 hours
14:01-17:00 13 hours 12 hours 11 hours
17:01-04:59 12 hours 11 hours 10 hours

Table 4.1: Maximum elapsed time for duty periods according to duty period’s starting
time.

32



Previous Duty Period’s Minimum Rest
Elapsed Time Periods

4 hours or less 8 hours
4-11 hours 10 hours
11-12 hours 12 hours
12-14 hours∗ 14 hours

18 hours or more 20 hours

(∗: if time zone difference is more than 3 hours)

Table 4.2: Minimum rest periods after each duty period according to previous duty
period’s elapsed time.

Besides these duty period rules, we always have location consistency between con-

secutive flight legs, if there are no deadheads in the schedule. Each arrival of a flight

leg will be next flight leg’s departure location. Considering pairings, we have rules for

duty periods in a pairing. In a pairing the first duty period starts and the last duty

period ends at the same location ,which is the crew base. All duties in a pairing, like

flight legs in a duty period, are sequential in space and time. There are minimum

required rests after the duty periods as illustrated in Table 4.2.

For checking whether the pairings can form Type A solutions, we also consider

these feasibility rules during the construction of the duty periods and the pairings. In

Figure 4.1, we see a zoomed section of a candidate Type A solution pair. One of the

pairings includes the flight nodes fn and fl. This pairing is called pairing X and the

other one including flight nodes fna and fla is called pairing Y . Suppose the first pieces

of the pairing (a pairing piece is the partial sequence of flights until the extra flight or

the associated deadhead flight) is called X ′ and Y ′ where the second pieces of these

pairings are called X ′′ and Y ′′, respectively. For Type A pairing solutions we need to

check whether newly formed pairings (X ′ - extra flight - Y ′′ and Y ′ - deadhead - X ′′)

are feasible according to the rules mentioned above.

Figure 4.1: Time window controls for feasibility - extra flight.

33



In Figure 4.1, BE shows the time difference between extra flight and the previous

node of the pairing that should cover the extra flight (which is the last node of X ′

partial pairing). AE shows the time after the extra flight, but this time we consider

the swapped partial pairing’s (Y ′′) first node denoted by fla in this figure. We also

show BE1 and BE2 (also AE1 and AE2) because our extra flight is scheduled to a time

window. Therefore, during feasibility controls we need to consider this time window of

the extra flight.

There are two conditions during the coverage of the extra flight. In the first one,

the extra flight does not violate the feasible duty period connection and in the second

one, current duty period rules are violated either by exceeding the maximum elapsed

time or by the length of the connection. Therefore, we need to finish this duty period

and start a new duty period.

Considering the deadhead flight associated with the extra flight, we go backwards

from flight nodes fl to fna for 60 minutes, which is the preparation time for the next

flight leg. As we do not have exact information about the place and the time of the

deadhead, we assume that it will be in the reverse direction of the extra flight and we

place the deadhead 60 minutes before the flight node fna. Another difference between

feasibility controls of the extra flight and the deadhead is the preparation time, which

is 60 minutes for the extra flight and 30 minutes for the deadhead flight. The insertion

of the deadhead is illustrated in Figure 4.1. Then, we check whether the remaining

time is appropriate for the feasibility of the duty period. If the swapped pairing is still

feasible, we conclude that the pairings X and Y form a feasible Type A solution.

Figure 4.2: Time window controls for feasibility - deadhead.

34



4.2 Experimental Results

We conduct numerical study on a set of actual data acquired from a local airline com-

pany. There are two data sets with 42 and 96 flight legs, respectively. The maximum

number of extra flights goes up to three in all data sets. We conduct the computational

experiments on a machine with Intel(R) Core(TM) 2.13GHz CPU and 1 GB of RAM

running Windows XP.

The number of feasible Type A solutions found by the static and the dynamic

approaches are presented in Table 4.3 and Table 4.4, respectively. The second column

in Table 4.3 and Table 4.4 shows the number of extra flights in each data set.

Number of Number of Number of feasible
flight legs extra flights Type A solutions

1 18
42 2 118

3 128

1 64
96 2 128

3 141

Table 4.3: The number of Type A solutions found by the static approach.

Number of Number of Number of feasible Type A solutions
flight legs extra flights N = 0 N = 10 N = 50 N = 100 N = 500

1 0 10 14 18 18
42 2 0 10 86 98 118

3 0 10 93 106 128

1 10 40 64 64 64
96 2 20 80 128 128 128

3 38 60 136 141 141

Table 4.4: The number of feasible Type A solutions found by the dynamic approach
for varying N .

In Table 4.4, we compare the results within each data set for different number of

extra flights and for varying N values, where N is the number of candidate Type

A solution paths that is promoted during the multilabel shortest path calls. From

the computational results, the importance of N can be observed. In the dynamic

approach, each path may be dominated by other paths. However, by using parameter

N , at least a number of candidate Type A solutions are fixed, and these solutions

are not dominated throughout the iterations. When N is small, we may lose more

35



candidate Type A solutions. As N increases, the chance that the candidate pairings

to form Type A solution are dominated is less. The details about the parameter N

can be found in [30]. After solving the multilabel shortest path, the candidate Type

A solutions are moved to the fixed pool. At the end of the multilabel shortest path,

we obtain many Type A candidate solutions. However, we still can not be sure about

whether these pairings shall form feasible Type A solutions. Therefore, we swap these

pairing pairs and check whether they are feasible.

As mentioned in Section 3, the static approach is an exact method. Therefore, the

number of feasible Type A solutions are at their upper bounds. As the number of extra

flights is increased, the number of feasible Type A solutions also increases. This also

depends on the time ranges of the extra flights. For certain instances, the extra flights

may not be covered by any type of solution.

When we compare Table 4.4 and Table 4.3, as expected, the number of feasible

Type A solutions found by the static approach is the same as the number of solutions

found by the dynamic approach, when N is large (for example, for the data set with

42 flight legs, when N = 500 the number of feasible Type A solutions found by the

dynamic approach is same as the number of feasible Type A solutions found by the

static approach). We also note that the individual pairings forming feasible Type A

solutions obtained by both the static and the dynamic approaches are the same.

In the dynamic approach, the effect of N can be observed in detail from Table 4.5,

in which the columns shown with d and e denote the number of pairings covering the

deadhead and the extra flights, respectively. When we consider only one extra flight,

we write 1 in the second column in the tables. If we have two or three extra flights in

our schedule, we first write the total number of extra flights in the schedule. Then, we

write for which extra flight the results are presented. For example, 3-2 means we have

three extra flights in our schedule and we present the results for the second extra flight

in that row.

When the number of extra flights increases, the decrease in the number of candidate

Type A solutions for a specific extra flight can be observed in Table 4.5. For instance,

consider the results for the data set with 42 flight legs and 1 extra flight; when N is

equal to 10, there are 42 candidate Type A solutions covering the deadhead, but with

two extra flights, there are 40 candidate Type A solutions covering the deadhead for

the first extra flight. This decrease is caused by the number of total candidate Type

A solutions remaining the same but some candidate Type A solutions are held also for

36



the second extra flight. Therefore, if N paths will be held on a flight node, when we

have two extra flights, we hold some paths also for the second extra flight. Therefore,

some of the candidate Type A solutions for the first extra flight cannot be held as

we start holding some candidate Type A solutions for the second extra flight. Such

decrease in the candidate Type A solutions can be also observed from Table 4.5 when

the number of extra flights increases.

Number of Number of Number of feasible Type A solutions
flight legs extra flights N = 0 N = 10 N = 50 N = 100 N = 500

d e d e d e d e d e

42 1 8 4 42 7 93 13 102 15 110 15

42 2-1 8 4 40 7 93 13 102 15 110 15
42 2-2 3 0 7 0 18 7 19 8 21 10

42 3-1 8 4 39 7 88 13 102 15 109 15
42 3-2 3 0 7 0 18 7 119 8 21 10
42 3-3 1 0 2 0 31 7 36 8 40 10

96 1 6 10 82 21 176 33 196 33 233 33

96 2-1 6 10 82 21 176 33 196 33 233 33
96 2-2 6 10 82 21 176 33 196 33 233 33

96 3-1 8 12 82 15 175 32 187 33 223 33
96 3-2 8 12 82 15 175 32 187 33 223 33
96 3-3 18 2 26 5 67 7 69 7 72 11

Table 4.5: The number of candidate Type A solutions found by the dynamic approach
for varying N values.

Moreover, the optimal objective function of the conventional mathematical model

(1.1) is presented in Table 4.6. These results are obtained when there is no extra flight

in our schedule. Table 4.7 presents the objective function found by the static approach.

Table 4.8 gives the objective function values obtained by the dynamic approach. The

results in Table 4.7 and Table 4.8 are not guaranteed to be optimal. Recall that if the

solution is not integer, we implement the primal heuristic mentioned in Section 3.

Number of Optimal objective
flight legs function value

42 4926.75
96 13660.50

Table 4.6: The objective function value of the conventional mathematical model.

37



Number of Number of Objective
flight legs extra flights function value

42 1 4629.75
42 2 -154.25
42 3 -9785.25

96 1 9737.75
96 2 -3533.00
96 3 -16008.30

Table 4.7: The objective function value of the static approach.

Number of Number of Objective function value
flight legs extra flights N = 0 N = 10 N = 50 N = 100 N = 500

42 1 UB 6904.25 7564.75 7607.75 8070.75 7891.25
LB 6904.25 5746.00 2942.75 2611.75 2536.75

42 2 UB 7144.25 7804.75 -4362.50 -6296.25 -11449.80
LB 7144.25 5986.00 -8585.50 -11313.30 -16481.30

42 3 UB 7384.25 8044.75 -6112.25 -8459.50 -14170.00
LB 7384.25 6226.00 -10335.30 -13581.60 -19291.50

96 1 UB 11778.80 9231.75 8102.00 7907.75 7907.75
LB 11296.80 5776.25 686.50 569.25 569.25

96 2 UB 7269.25 -7249.25 -18560.50 -18754.80 -18754.80
LB 7269.25 -7249.25 -19714.50 -19908.80 -19908.80

96 3 UB 5885.25 -2619.75 -21348.50 -22818.50 -23012.80
LB 5885.25 -2619.75 -22502.50 -23972.50 -24166.80

Table 4.8: The number of feasible Type A solutions found by the dynamic approach
for varying N .

In Table 4.8, there are two objective function values for each specific N values for

each extra flight. They are the upper bound (UB), and the lower bound (LB). UB

values of objective function are obtained from the primal heuristics and LB values are

obtained from the linear programming relaxation. From now on, we use UB values as

our objective function value, as the linear programming relaxation is not sufficient to

satisfy the integrality constraints.

The decrease in the objective function values of the dynamic approach is caused by

the increase in the number of feasible Type A solutions as N grows. When the swapping

of the candidate pairs is feasible, they lead to a decrease in the objective function

value. Besides, there is a difference between the objective function values of the static

approach and the dynamic approach, when all feasible Type A solutions are found in

both approaches. When solving the multilabel shortest path, some pruning rules are

implemented [30].Therefore, two approaches generate different columns, and hence the

38



static and the dynamic approaches result in different objective function values. For

instance, in Table 4.9 the solutions obtained with the static approach and the dynamic

approach are presented. Each row illustrates a pairing with the corresponding flight

nodes. We check whether the pairings in the solution of the dynamic (static) approach

are also generated by the static (dynamic) approach. We observe that during the

multilabel shortest path, in the dynamic approach pairing P186 is not generated due

to the pruning rules. The pruning rules used in the multilabel shortest path algorithm

are detailed in [30].

Pairings chosen Pairings chosen
by the static approach by the dynamic approach
P6: 4 7 17 34 P2: 40 29 3 33
P15: 13 37 P11: 26 41
P21: 13 35 21 22 P21: 2 6
P47: 10 16 23 36 P23: 1 32
P130: 40 29 3 33 P24: 9 12
P139: 26 41 P35: 4 7 15 19
P162: 2 6 P41: 8 11
P166: 9 12 P44: 39 31
P172: 14 18 P48: 10 16 21 22
P174: 25 24 P51: 17 34 14 18
P175: 8 11 P59: 25 24
P177: 27 42 P75: 20 30 5 38
P180: 39 31 P83: 27 42
P185: 20 30 5 38 P84: 28 42
P186: 1 32 15 19 P92: 13 37
P187: 28 42 P211: 13 35 23 36

Table 4.9: The pairings and corresponding flight legs chosen by two approaches for the
data set with 42 flight legs and one extra flight.

Table 4.10 shows the costs of the solutions obtained with the static and the dynamic

approaches, when these solutions are plugged into the objective function of the conven-

tional model (1.1).Percentage gap is calculated as the difference between the objective

function value of the static (or the dynamic approach) and the objective function of

the conventional mathematical model, divided by the the objective function of the con-

ventional mathematical model. As illustrated in Table 4.10, the gap increases when

the number of the extra flights increases. In Table 4.3 and Table 4.4, we observe that

the number of feasible Type A solutions increases as the number of extra flights in-

creases. Therefore, both static and dynamic approaches include more pairings in their

solutions. As the objective function value of the problem (3.1) in Section 3 decreases,

39



the total cost of the conventional mathematical model increases with the pairing pairs

forming feasible Type A solutions.

Number of Number of Objective Percentage
flight legs extra flights function value gap

stat. app. dyn. app. stat. app. dyn. app.

42 1 5311.25 13845.80 7.80 181.03
42 2 12951.80 27199.75 162.88 452.08
42 3 19900.50 27713.50 303.92 462.51

96 1 15261.80 34570.30 11.72 153.06
96 2 17662.50 34570.30 29.29 153.06
96 3 22218.80 34705.00 62.65 154.05

Table 4.10: The conventional mathematical model’s objective function value of the
solutions found by the proposed approaches.

To compare the dynamic and static approaches, the total computation time in

both approaches are measured. First of all, the total computation time according to

the number of extra flights are measured. Figure 4.3 and Figure 4.5 present the total

computation time required for the static approach according to the number of extra

flights. As the number of extra flights increases, the total time required to solve the

robust airline crew pairing problem increases. For instance, for the data set for 42 flight

legs the total computation time is 0.500 seconds. when there is only one extra flight.

When we have three extra flights, the total time elapsed is 1.344 seconds. Figure 4.4

and Figure 4.6 represent the total computation time required for the dynamic approach

according to the number of extra flights. In x-axis we have the parameter N . As the

number of extra flights increases in Figure 4.4 and Figure 4.6, the total time required

to solve the robust airline crew pairing problem increases. When there is no extra

flight, which is the same as solving the conventional mathematical model, the total

time required to solve the crew pairing problem is same as N increases.

Figure 4.7 and Figure 4.9 illustrate the relation between the total computation time

required for the dynamic and the static approaches. In the figures, the total computa-

tion time required for the dynamic approach is calculated by taking the averages of the

measurements of the total computation time for different values of N . Therefore, the

dynamic approach is not guaranteed to end with the same number of feasible Type A

solutions. If we want to compare the two approaches when they have the same number

of feasible Type A solutions, we need to consider N = 500 (see Table 4.3 and Table

4.4). Figure 4.8 and Figure 4.10 show the result when N = 500.

40



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Number of Extra Flights

Ti
m

e 
(s

ec
.)

Figure 4.3: Total computation time measured for the data set with 42 flight legs vs.
the number of extra flights in the static approach.

0 20 40 60 80 100
0

0.5

1

1.5

N

Ti
m

e 
(s

ec
.)

 

 
0 Extra Flight
1 Extra Flight
2 Extra Flights
3 Extra Flights

Figure 4.4: Total computation time measured for the data set with 42 flight legs vs.
the number of extra flights in the dynamic approach.

In Figure 4.7 and Figure 4.9, the static approach seems to result in longer total

computation times than the dynamic approach. However, this is the result of con-

sidering the averages of the measurements of the total computation time for different

values of N . When a sufficiently large N value is considered for reaching the same

number of feasible Type A solutions, the static approach may result with shorter total

computation time (see Figure 4.8 and Figure 4.10). Only when the number of extra

flights is two or three for the data set of 96 flight legs, there is a difference between the

static approach and the dynamic approach. The dynamic approach seems to result in

a shorter time, when the extra flight is near to the end of the schedule. However, a

disadvantage of the dynamic approach is to determine the appropriate value of N that

41



0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

Number of Extra Flights

Ti
m

e 
(s

ec
.)

Figure 4.5: Total computation time measured for the data set with 96 flight legs vs.
the number of extra flights in the static approach.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

N

Ti
m

e 
(s

ec
.)

 

 
0 Extra Flight
1 Extra Flight
2 Extra Flights
3 Extra Flights

Figure 4.6: Total computation time measured for the data set with 96 flight legs vs.
the number of extra flights in the dynamic approach.

would be large enough to find all feasible Type A solutions. In the static approach, we

guarantee to find all feasible Type A solutions.

42



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Extra Flights

Ti
m

e 
(s

ec
.)

 

 
The dynamic aproach
The static aproach

Figure 4.7: Total computation time measured for the static and dynamic approach for
the data set with 42 flight legs.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Extra Flights

Ti
m

e 
(s

ec
.)

 

 
The dynamic aproach
The static aproach

Figure 4.8: Total computation time measured for the static and dynamic approach
(N=500) for the data set with 42 flight legs.

43



0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

Number of Extra Flights

Ti
m

e 
(s

ec
.)

 

 
The dynamic approach
The static approach

Figure 4.9: Total computation time measured for the static and dynamic approach for
the data set with 96 flight legs.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

Number of Extra Flights

Ti
m

e 
(s

ec
.)

 

 
The dynamic approach
The static approach

Figure 4.10: Total computation time measured for the static and dynamic approach
(N=500) for the data set with 96 flight legs.

44



CHAPTER 5

CONCLUSION

In this study, we handle the robust airline crew pairing problem at the planning stage for

managing the potential extra flights added to our regular flight schedule. We conclude

that when an extra flight is added, the solution of the robust problem provides the

alternative solutions for covering the extra flights without delaying or canceling any of

the flights in our regular schedule.

A new robust airline crew pairing mathematical model is proposed, which is different

than the conventional model in terms of the constraints and the objective function. As

the number of variables is very large as in the conventional mathematical model, the

column generation technique is used for solving the proposed robust model. However,

we have extra column-dependent constraints in the robust model. Therefore, we also

introduce two different approaches for handling the dynamic growth of the model both

in the number of the constraints and the variables, the static approach and the dynamic

approach, respectively.

We conducted experiments on relatively small and medium sized networks and

reported our results. The dynamic approach is only a heuristic but the static approach

is an exact method. Therefore, for promoting the dynamic approach to conclude with

the all feasible Type A solutions, we need to introduce an auxiliary parameter. As

the value of the parameter increases, the number of feasible Type A solutions may

increase. However, in the static approach all feasible Type A solutions are concluded

without introducing any auxiliary parameter. According to the computational results,

the total time elapsed required for the dynamic approach is affected by the value of

the auxiliary parameter.

Even the auxiliary parameter is large enough to conclude with all feasible Type A

solutions for the small sized network, the static approach results in shorter total com-

putation times than the dynamic approach. The dynamic approach results in better

total computation times when the time range of the extra flight is far away from the

45



source node. As the static approach promotes all candidate Type A solutions, even

for the extra flights having time ranges late in the flight schedule, we may generate

more candidate pairings at the beginning of column generation method in the static

approach. This holds even if these candidates do not form feasible Type A solutions.

We also observe that both approaches may conclude with the same number of feasible

Type A solutions, if appropriate auxiliary parameter value is chosen in the dynamic

approach. For medium sized network, the dynamic approach results in shorter total

computation times than the static approach. Therefore, there is a trade-off between

the total computation times and the number of feasible Type A solutions found. The

dynamic approach seems to result better than the static approach in both the compu-

tational running time and the number of feasible Type A solutions found, if the value of

the auxiliary parameter is carefully assigned. If it is not, then extra trials may become

necessary for checking if all feasible Type A solutions are found.

Besides, in this thesis we do not prevent multiple coverage (double counting) of the

extra flights as one of our aim is providing as much as flexible pairings to the user.

Our feasible Type A solutions may include double counting for the extra flights or the

swapped pairings. However, we had some other feasible Type A solutions that are

previously found but lost when we prevent multiple coverage of the extra flights. In

addition, a pairing may cover more than one extra flight as a Type A solution. For

instance, at the operational level the first extra flight is not realized but the second

extra flight. There is a pairing which is a pairing pair of the feasible Type A solutions

for both of the extra flights. However, as we prevent double counting, the pairing is

assigned for covering the first extra flight. Therefore, during the operational level, the

company cannot benefit from the solutions provided by the robust airline crew pairing

model. Therefore, we do not prevent double counting due to provide flexibility.

In addition, there is only one crew base in our data sets. If multiple crew bases

are considered, as each legal pairing should start and end at the same crew base,

the starting and ending crew bases of each path during the multilabel shortest path

should be tracked. One way of handling the multiple bases is generating copies of the

source node and the sink node for each different crew base. We can solve the multilabel

shortest path for each crew base or we can connect all source and sink nodes to another

artificial source node and sink node. Another way is tracking the starting crew base of

each path (candidate pairing) during the multilabel shortest path.

We can extend this research in several directions. Combining small and medium

46



sized networks to handle the problem of large networks is a further study. Consider-

ing the multiple bases is another extension. We also intend to study other solution

techniques such as combining Lagrangian relaxation with the column generation for

handling the column-dependent constraints.

47



Bibliography

[1] Anbil, R., Gelman, E., Patty, B. and Tanga, R., Recent advances in crew-pairing

optimization at American Airlines, Interfaces, 21, 62-74, 1991.

[2] Anbil, R., Tanga, R. and Johnson, E.L., A global approach to crew pairing opti-

mization, IBM Systems Journal, 31(1), 71-78, 1992.

[3] Anbil, R., Forrest, J.J. and Pulleybank, W.R., Column generation and the airline

crew pairing problem, Documenta Mathematica, 677-686, 1998.

[4] Andersson, E., Kohl, N. and Wedelin, D., Crew pairing optimization, Operations

Research in the Airline Industry, Kluwer Academic Publishers, 228-258, 1997.

[5] Barahona, F. and Anbil, R., The volume algorithm: producing primal solutions

with a subgradient method, Research Report RC 21103, IBM T.J. Watson Re-

search Center, 1997.

[6] Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P. and

Vance, P.H, Branch-and-price: column generation for solving huge integer pro-

grams, Operations Research, 48(3), 316-329, 1998.

[7] Barnhart, C., Cohn, A.M., Johnson, E.L., Klabjan, D., Nemhauser, G.L. and

Vance, P.H, Airline crew scheduling, Handbook of Transportation Science(2nd

edition), Kluwer Academic Publishers, MA, 517-560, 2003.

[8] Bixby, R.E., Gregory, J.W., Lustig, I.J., Marstem, R.E. and Shanno, D.F., Very

large-scale linear programming: a case study in combining interior point and

simplex methods , Operations Research, 40(5), 885-898, 1992.

[9] Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B, Solomon, M.M.

and Soumis, F., Crew pairing at Air France, European Journal of Operational

Research, 245-259, 1997.

48



[10] Desrosiers, J. and Lübbecke, M.E., A primer in column generation, Column Gen-

eration, Springer, 1-32, 2005.

[11] Ehrgott, M. and Ryan, D., Constructing robust crew schedules with bicriteria

optimization, Journal of Multi-Criteria Decision Analysis, 11, 139-150, 2002.

[12] Fisher, M.L., An applications oriented guide to Lagrangian relaxation, Interfaces,

15, 10-21, 1985.

[13] Forrest, J.J., Mathematical programming with a library of subroutines,

ORSA/TIMS Joint National Meeting, 1989.

[14] Garey, M.R. and Johnson, D.S., Computers and intractability: a guide to the

theory of NP-completeness, Series of books in the mathematical sciences, 1979.

[15] Gustaffson, T., A heuristic approach to column generation for airline crew

scheduling, Chalmers University of Technology and Göteborg University, De-

partment of Mathematics, Master Thesis, 1999.

[16] Held, M. and Karp, R.M., The traveling-salesman problem and minimum span-

ning trees, Operations Research, 18, 1138-1162, 1970.

[17] Held, M. and Karp, R.M., The traveling-salesman problem and minimum span-

ning trees: part II, Mathematical Programming, 1, 6-25, 1971.

[18] Held, M., Wolfe, P. and Crowder, H.P., Validation of subgradient optimization,

Mathematical Programming, 6, 62-88, 1974.

[19] Klabjan, D and Schwan, K., Airline crew pairing generation in parallel, Technical

Report TLI/LEC-99-02, Georgia Institute of Technology, 1999.

[20] Klabjan, D, Johnson, E.L. and Nemhauser, G.L., Solving large airline crew

scheduling problems: random pairing generation and strong branching, Com-

putational Optimization and Applications, 20, 73-91, 2001.

[21] Klabjan, D., Large-scale models in the airline industry, Column Generation,

Springer, 163-195, 2005.

[22] Kohl, N., The use of linear and integer programming in airline crew scheduling,

Carmen Systems, Technical Report SE-411 03, Carmen Systems, 1999.

49



[23] Lan, G., DePuy, G.W. and Whitehouse, G.E., An effective and simple heuristic

for set covering problem, European Journal of Operational Research, 176, 1387-

1403, 2007.

[24] Lavoie, S., Minoux, M. and Odier, E., A new approach for crew pairing prob-

lems by column generation with an application to air transportation, European

Journal of Operational Research, 35, 45-58, 1988.

[25] Lettovský, L., Johnson, E.L. and Nemhauser, G.L., Airline crew recovery, Trans-

portation Science, 34(4), 337-348, 2000.

[26] Lubbecke, M. and Desrosiers, J., Selected topics in column generation, Operations

Research, 53(6), 1007-1023, 2005.

[27] Rosenberger, J.M., Schaefer, A.J., Goldsman, D., Johnson, E.L., Kleygwegt, A.J.

and Nemhauser, G.L., SIMAIR: A stochastic model of airline operations, Pro-

ceedings of the 2000 Winter Simulation Conference, 2000.

[28] Schaefer, A.J., Johnson, E., Klegwegt, A and Nemhauser, G., Airline crew

scheduling under uncertainty, Transportation Science, 39(3), 340-348, 2005.

[29] Shebalov, S. and Klabjan, D., Robust airline crew pairing: move-up crews, Trans-

portation Science, 40, 300-312, 2006.

[30] Taş, D., Pricing in column generation for a robust airline crew pairing problem,

Master Thesis, Industrial Engineering, Sabanci University, 2008.

[31] Tekiner, H., Birbil, Ş.İ. and Bülbül, K., Robust Crew Pairing for Managing Ex-

tra Flights, Computers and Operations Research, DOI:10.1016/j.cor.2008.07.005,

2008.

[32] Vance, P.H., Barnhart, C., Johnson, E.L. and Nemhauser, G.L.,Airline crew

scheduling: a new formulation and decomposition algorithm, Operations Re-

search, 45(2), 1997.

[33] Vance, P.H., Atamtürk, A., Barnhart, C., Gelman, E., Johnson, E., Kr-

ishna, A., Mahidhara, D., Nemhauser, G. and Rebello, R., A heuristic branch-

and price approach for the airline crew pairing problem, 1997, http://citeseer.

ist.psu.edu/vance97heuristic.html.

50



[34] Yen, J. and Birge, J., A stochastic programming approach to the airline crew

scheduling problem, Technical Report, University of Washington, 2000.

[35] Carmen Systems, http://www.carmen.se/airlines/, July 2008.

51



Appendix A

First Problem Flight Data

Flight ID Or-Des DT-AT Flight ID Or-Des DT-AT
1 IST - ESB 07:00 - 08:00 22 ADB - IST 19:20 - 20:20
2 IST - ADB 06:00 - 07:00 23 IST - ESB 17:00 - 18:00
3 ADB - ESB 10:05 - 11:20 24 ADB - IST 22:00 - 23:00
4 IST - ADA 08:25 - 09:40 25 IST - ADB 20:00 - 21:00
5 ADB - ESB 19:20 - 20:40 26 IST - ESB 19:00 - 20:00
6 ADB - IST 09:00 - 10:00 27 IST - ESB 22:00 - 23:00
7 ADA - IST 11:00 - 12:00 28 IST - ESB 22:00 - 23:00
8 IST - ADA 14:25 - 15:50 29 ESB - ADB 07:45 - 09:05
9 IST - ADB 09:00 - 10:00 30 ESB - ADB 17:00 - 18:20
10 IST - ADB 11:00 - 12:00 31 ESB - IST 08:00 - 09:00
11 ADA - IST 16:50 - 18:05 32 ESB - IST 11:00 - 12:00
12 ADB - IST 11:00 - 12:00 33 ESB - IST 14:00 - 15:00
13 IST - ESB 11:00 - 12:00 34 ESB - IST 17:00 - 18:00
14 IST - ADA 19: 00 - 20:00 35 ESB - IST 13:00 - 14:00
15 IST - ADB 13:00 - 14:00 36 ESB - IST 21:00 - 22:00
16 ADB - IST 13:00 - 14:00 37 ESB - IST 20:00 - 21:00
17 IST - ESB 13:00 - 14:00 38 ESB - IST 22:00 - 23:00
18 ADA - IST 21:15 - 22:30 39 IST - ESB 05:00 - 06:00
19 ADB - IST 15:00 - 16:00 40 IST - ESB 05:30 - 06:30
20 IST - ESB 15:00 - 16:00 41 ESB - IST 23:05 - 24:05
21 IST - ADB 17:00 - 18:00 42 ESB - IST 24:00 - 00:55

Table A.1: Flight data for the first problem.

52



Figure A.1: One of the feasible Type A solution for the first problem.

Figure A.2: One of the feasible Type A solution for the first problem.

Figure A.3: One of the feasible Type A solution for the first problem.

53



Appendix B

Second Problem Flight Data

Flight ID Or-Des DT-AT Flight ID Or-Des DT-AT
1 IST - ESB 04:00 - 05:05 49 IST - ADB 16:00 - 17:05
2 IST - ESB 05:10 - 06:15 50 ADB - IST 18:05 - 19:10
3 ESB - IST 04:15 - 05:20 51 IST - ADB 17:00 - 18:05
4 ESB - IST 05:30 - 06:35 52 ADB - IST 19:05 - 20:10
5 IST - ESB 06:40 - 07:45 53 IST - ADB 21:45 - 22:50
6 ESB - IST 06:00 - 07:05 54 ADB - IST 23:50 - 00:55
7 ESB - IST 07:00 - 08:05 55 ESB - ADB 05:45 - 07:00
8 ESB - IST 07:30 - 08:35 56 ADB - ESB 08:00 - 09:15
9 IST - ESB 07:00 - 08:05 57 ESB - ADB 15:00 - 16:15
10 ESB - IST 08:00 - 09:05 58 ADB - ESB 17:15 - 18:30
11 IST - ESB 09:00 - 10:05 59 ESB - ADB 20:50 - 22:05
12 IST - ESB 10:00 - 11:05 60 ADB - ESB 23:10 - 00:25
13 ESB - IST 09:00 - 10:05 61 ESB - AYT 04:15 - 05:15
14 IST - ESB 11:00 - 12:05 62 AYT - ESB 06:15 - 07:15
15 ESB - IST 11:00 - 12:05 63 ESB - AYT 19:00 - 20:00
16 IST - ESB 13:00 - 14:05 64 AYT - ESB 21:00 - 22:00
17 ESB - IST 12:00 - 13:05 65 IST - AYT 06:25 - 07:40
18 IST - ESB 14:00 - 15:05 66 AYT - IST 08:40 - 09:55
19 ESB - IST 13:00 - 14:05 67 IST - AYT 09:30 - 10:45
20 ESB - IST 14:00 - 15:05 68 AYT - IST 11:45 - 13:00
21 ESB - IST 15:00 - 16:05 69 IST - AYT 12:45 - 14:00
22 IST - ESB 15:00 - 16:05 70 AYT - IST 15:00 - 16:15
23 ESB - IST 16:00 - 17:05 71 IST - AYT 15:30 - 16:45
24 IST - ESB 16:00 - 17:05 72 AYT - IST 17:55 - 19:10
25 IST - ESB 16:15 - 17:20 73 IST - AYT 17:00 - 18:15
26 ESB - IST 17:00 - 18:05 74 AYT - IST 19:15 - 20:30
27 IST - ESB 17:00 - 18:05 75 IST - AYT 18:30 - 19:45
28 IST - ESB 18:00 - 19:05 76 AYT - IST 20:45 - 22:00
29 IST - ESB 19:00 - 20:05 77 IST - AYT 21:55 - 23:10
30 ESB - IST 19:00 - 20:05 78 AYT - IST 00:15 - 01:30
31 ESB - IST 20:00 - 21:05 79 IST - ADA 06:20 - 07:50
32 IST - ESB 20:00 - 21:05 80 ADA - IST 08:50 - 10:20
33 IST - ADB 05:00 - 06:05 81 IST - ADA 15:00 - 16:30
34 ADB - IST 07:05 - 08:10 82 ADA - IST 17:30 - 19:00
35 IST - ADB 06:00 - 07:05 83 IST - ADA 17:20 - 18:50
36 ADB - IST 08:05 - 09:10 84 ADA - IST 19:55 - 21:35
37 IST - ADB 06:40 - 07:45 85 IST - ADA 12:15 - 13:45
38 ADB - IST 08:45 - 09:50 86 ADA - IST 14:45 - 16:25
39 IST - ADB 07:00 - 08:05 87 IST - ADA 14:00 - 15:30
40 ADB - IST 09:05 - 10:10 88 ADA - IST 16:30 - 18:00
41 IST - ADB 09:00 - 10:05 89 IST - ADA 19:30 - 21:00
42 ADB - IST 11:05 - 12:10 90 ADA - IST 22:00 - 23:30
43 IST - ADB 11:00 - 12:05 91 IST - ADA 09:15 - 10:45
44 ADB - IST 13:10 - 14:15 92 ADA - IST 11:45 - 13:15
45 IST - ADB 13:00 - 14:05 93 IST - ADA 21:35 - 23:05
46 ADB - IST 15:05 - 16:10 94 ADA - IST 01:30 - 03:00
47 IST - ADB 14:00 - 15:05 95 ESB - ADA 17:30 - 18:30
48 ADB - IST 16:10 - 17:15 96 ADA - ESB 19:30 - 20:30

Table B.1: Flight data for the second problem.

54



Figure B.1: One of the feasible Type A solution for the second problem.

Figure B.2: One of the feasible Type A solution for the second problem.

Figure B.3: One of the feasible Type A solution for the second problem.

55


