
SABANCI UNIVERSITY
Orhanlı-Tuzla, 34956 Istanbul, Turkey
Phone: +90 (216) 483-9500
Fax: +90 (216) 483-9550
http://www.sabanciuniv.edu

http://algopt.sabanciuniv.edu/projects
July 25, 2010

A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the
Job Shop Total Weighted Tardiness Problem

Kerem Bülbül
Sabancı University, Manufacturing Systems and Industrial Engineering, Orhanlı-Tuzla, 34956 Istanbul, Turkey

bulbul@sabanciuniv.edu

Abstract: In this paper, we study the job shop scheduling problem with the objective of minimizing the total
weighted tardiness. We propose a hybrid shifting bottleneck - tabu search (SB-TS) algorithm by replacing the re-
optimization step in the shifting bottleneck (SB) algorithm by a tabu search (TS). In terms of the shifting bottleneck
heuristic, the proposed tabu search optimizes the total weighted tardiness for partial schedules in which some
machines are currently assumed to have infinite capacity. In the context of tabu search, the shifting bottleneck
heuristic features a long-term memory which helps to diversify the local search. We exploit this synergy to
develop a state-of-the-art algorithm for the job shop total weighted tardiness problem (JS-TWT). The computational
effectiveness of the algorithm is demonstrated on standard benchmark instances from the literature.

Keywords: job shop; weighted tardiness; shifting bottleneck; tabu search; preemption; transportation problem.

1. Introduction The classical job shop scheduling problem with the objective of minimizing the
makespan is one of the archetypal problems in combinatorial optimization. From a practical perspective,
job shops are prevalent in shops and factories which produce a large number of custom orders in a
process layout. In this setting, each order visits the resources on its prespecified route at most once.
The fundamental operational problem a dispatcher faces here is to decide on a processing sequence
for each of the resources given the routes and processing requirements of the orders. In the classical
case described as Jm//Cmax in the common three field notation of Graham et al. (1979), the objective is
to minimize the completion time of the order that is finished latest, referred to as the makespan. This
objective tends to maximize throughput by minimizing idle time in the schedule. There is a vast amount
of work on minimizing the makespan in a job shop, and virtually all types of algorithms developed
for combinatorial optimization problems have been tried on this problem. See Jain and Meeran (1999)
for a somewhat outdated but extensive review on Jm//Cmax. On the other hand, the literature on due
date related objectives in a job shop is at best scarce. Such objectives are typically associated with
customer satisfaction and service level in a make-to-order environment and either penalize or prohibit
job completions later than a quoted due date or deadline. In this work, we study the job shop scheduling
problem with the objective of minimizing the total weighed tardiness, described in detail in the following.

We consider a job shop with m machines and n jobs. The route of a job j through the job shop is
described by an ordered set M j = {oi j|i ∈ {1, . . . ,m}}, where operation oi j is performed on machine i for a
duration of pi j time units, referred to as the processing time of oi j. The kth operation in M j is represented
by o[k] j. The start and completion times of operation oi j are denoted by Si j and Ci j, respectively, where
these are related by Ci j = Si j + pi j. The ordered set M j specifies the operation precedence constraints
of job j, and if okj appears later than oi j in M j, then Ckj ≥ Ci j + pkj must hold in a feasible schedule.
Moreover, no operation of job j may be performed earlier than its ready time r j ≥ 0, and we have
Si j ≥ r j, ∀oi j ∈M j. The completion time C j of job j refers to the completion time of the final operation of
job j, i.e., C j = maxoi j∈M j Ci j. A due date d j is associated with each job j, and we incur a penalty per unit
time of w j if job j completes processing after d j. Thus, the objective is to minimize the total weighted
tardiness

∑
j w jT j over all jobs, where the tardiness of job j is calculated as T j = max(0,C j − d j). Also note

that all ready times, processing times and due dates are assumed to be integer in this paper. All machines
are available continuously from time zero onward, and a machine can execute at most one operation at

1

2 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

a time. The set of all operations to be performed on machine i are represented by Ji. An operation must
be carried out to completion once started, i.e., preemption is not allowed. Under these definitions and
constraints, the non-preemptive job shop scheduling problem with the objective of minimizing the total
weighted tardiness (JS-TWT) is described as Jm/r j/

∑
j w jT j and is formulated below:

(JS-TWT) min
n∑

j=1

w jT j (1)

s.t.
C[1] j ≥ r j + p[1] j j = 1, . . . , n, (2)
C[k] j − C[k−1] j ≥ p[k] j j = 1, . . . ,n, k = 2, . . . , |M j |, (3)
C[|M j |] j − T j ≤ d j j = 1, . . . , n, (4)

Ci j − Cik ≥ pi j or Cik − Ci j ≥ pik ∀oi j, okj ∈ Ji, (5)
T j ≥ 0 j = 1, . . . , n. (6)

The constraints (2) and (3), referred to as the operation precedence constraints, ensure that the first
operation of job j, j = 1, . . . , n, starts no earlier than its ready time r j, and job j, j = 1, . . . ,n, follows
its processing sequence M[1] j, . . .M[|M j |] j through the job shop, respectively. The relationship between
the completion time of the final operation of job j, j = 1, . . . , n, and its due date d j is established by
constraints (4). The machine capacity constraints (5) prescribe that no two operations executed on the
same machine overlap. JS-TWT is strongly NP-hard because the strongly NP-hard single-machine
scheduling problem 1/r j/

∑
w jT j (see Lenstra et al. (1977)) may be reduced to JS-TWT by setting m = 1.

The literature on our problem JS-TWT is limited. To the best of our knowledge, there is a single
paper by Singer and Pinedo (1998) which designs an optimal algorithm for this problem. The optimal
objective values for the standard benchmark test suite in Section 3 are from this paper. In an early study,
Vepsalainen (1987) compare a number of dispatch rules and conclude that their proposed dispatch
rule Apparent Tardiness Cost (ATC) beats alternate rules. Pinedo and Singer (1999) present an SB
heuristic for JS-TWT. However, the subproblem definition and the related optimization techniques,
the re-optimization step, and the other control structures in their SB heuristic are different than those
proposed in this paper. We will point out the specific differences in the relevant sections. Building on
this work, Singer (2001) develops an algorithm geared toward larger instances of JS-TWT with up to 10
machines and 100 jobs, where a time-based decomposition technique is applied and the subproblem for
each time window is solved by the shifting bottleneck heuristic of Pinedo and Singer (1999). The next
three papers by Kreipl (2000), De Bontridder (2005), and Essafi et al. (2008) all incorporate metaheuristics
in their effort to solve JS-TWT effectively. In the large step random walk of Kreipl (2000), the initial
solution is obtained by applying the Shortest Processing Time (SPT) dispatch rule. A neighboring
solution is defined according to the neighborhood generator of Suh (1988) which we also adopt for
our use after some modifications as discussed in detail in Section 2.3. The defining property of this
neighborhood is that several adjacent pairwise interchanges on different machines are carried out in
one move. The algorithm of Kreipl (2000) alternates between intensification and diversification phases.
For diversification purposes, only the critical path of the job with the most adverse impact on the
objective function is taken into account while constructing the neighborhood of the current solution.
The intensification phase considers all critical paths. The total weighted tardiness problem in a job shop
with generalized precedence relationships among operations is solved through a tabu search algorithm
by De Bontridder (2005). Similar to Kreipl (2000), the neighborhood of a given solution in this work
consists of adjacent pairwise interchanges of operations. These adjacent pairwise interchanges are
identified based on the solution of a maximum flow problem that calculates the optimal operation start
and completion times given the operation execution sequences of the machines. In a recent paper,
Essafi et al. (2008) apply an iterated local search algorithm to improve the quality of the chromosomes in
their genetic algorithm. Swapping the execution order of two adjacent operations on a critical path for
any job leads to a new solution in the neighborhood. Combined with a design of experiments approach
for tuning the parameter values in their algorithms, these authors develop a powerful method for
solving JS-TWT effectively. The algorithms by Pinedo and Singer (1999), Kreipl (2000), De Bontridder
(2005), and Essafi et al. (2008) form the state-of-the-art for JS-TWT, and we benchmark our proposed

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 3

algorithms against these in our computational study in Section 3.

In other related research, Mattfeld and Bierwirth (2004) propose a genetic algorithm for various tardi-
ness related objectives. Armentano and Scrich (2000) suggest a tabu search algorithm for the unweighted
version of JS-TWT, where a dispatch rule yields the initial solution that is improved by applying a tabu
search method. The neighborhood of the current solution is formed by applying a single adjacent pair-
wise interchange to a pair of operations that are located on the critical path of a tardy job. In addition,
there is a stream of literature on so-called complex job shops that incorporate features such as parallel
machines, batching machines, sequence-dependent setups, re-entrant product flows, etc., in a job shop
setting with the objective of minimizing the total weighted tardiness of customer orders. For instance,
see Mason et al. (2002).

Before proceeding with the details of our solution approach, we briefly summarize our contributions
in this paper. We propose a hybrid algorithm that substitutes the classical re-optimization step in the
SB framework by tabu search. One of our main insights is that embedding a local search algorithm into
the SB heuristic provides a powerful tool for diversifying any local search algorithm. In the terminology
of the tabu search, the tree control structure in the SB algorithm, discussed in Section 2.4, may be
regarded as a long-term memory that helps us to guide the search into previously unexplored parts of
the feasible region. From the perspective of the SB heuristic, we apply tabu search both to feasible full
schedules for JS-TWT and to partial schedules in which some machines are currently assumed to have
infinite capacity. This is a relatively unexplored idea in SB algorithms. One excellent implementation
of this idea is supplied by Balas and Vazacopoulos (1998) for the classical job shop scheduling problem.
Furthermore, we underline that there is no random element incorporated into our algorithms, and by
simply putting more effort into the tree search in the SB heuristic, we can ensure that progressively
improved solutions are constructed. In our opinion, combined with the repeatability of results, this is
an important edge of our approach over existing algorithms for JS-TWT built on random operators, e.g.,
those by Kreipl (2000), De Bontridder (2005), and Essafi et al. (2008).

Another significant contribution of our work is a new approach for solving a generalized single-
machine weighted tardiness problem that arises as a subproblem in the SB heuristic. The original
subproblem definition is due to Pinedo and Singer (1999) and Pinedo (2008), but our proposed solution
method for this problem derives from our earlier work on the single-machine earliness/tardiness (E/T)
scheduling problem in Bulbul et al. (2007) and yields both a lower bound and a feasible solution for the
subproblem.

As pointed out earlier in this section, all local search algorithms designed for JS-TWT up until now base
their neighborhood definitions on a single adjacent pairwise interchange, except for Kreipl (2000) who
perform up to three adjacent pairwise interchanges, each on a different machine. In this paper, we adapt
an insertion-type neighborhood definition by Balas and Vazacopoulos (1998), originally developed for
Jm//Cmax, to JS-TWT. A move in this neighborhood may reverse several disjunctive arcs simultaneously
(see Section 2.3) and generalizes adjacent pairwise interchanges. We argue that this neighborhood
definition and Kreipl’s neighborhood definition have complementary properties. We are not aware of
such a dual neighborhood definition in the context of our problem, and the computational results attest
to the advantages.

In Sections 2.1 through 2.4, we explain the ingredients of our state-of-the-art SB heuristic for JS-TWT
in detail. Our computational results are presented in Section 3 followed by our concluding remarks in
Section 4.

2. Solution Approach The basic framework of our solution approach for JS-TWT is defined by the
shifting bottleneck heuristic originally proposed by Adams et al. (1988) for Jm//Cmax. The SB algorithm
is an iterative machine-based decomposition technique. The fundamental idea behind this general
scheduling heuristic is that the overall quality of a schedule is determined by the schedules of a limited
number of machines or workcenters. Thus, the primary effort in this algorithm is spent in prioritizing the
machines which dictates the order in which they are scheduled and then scheduling each machine one by
one in this order. The essential ingredients of any SB algorithm are a disjunctive graph representation of
the problem, a subproblem formulation that helps us both to identify and schedule the machines in some
order defined by an appropriate machine criticality measure, and a rescheduling step that re-evaluates
and modifies previous scheduling decisions. In the following sections, we introduce and examine each

4 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

of these steps in detail in order to design an effective SB method for JS-TWT.

2.1 Disjunctive Graph Representation The SB heuristic is a machine-based decomposition ap-
proach, and the disjunctive graph establishes the relationship between the overall problem and the
subproblems. The disjunctive graph representation was first proposed by Roy and Sussman (1964) and
is illustrated in Figure 1. In this figure, the job routes are given by M1 = {o11, o21}, M2 = {o22, o12, o32}, and
M3 = {o13, o23, o33}.

w2 = 1

o11

o22 o12 o32

o23 o33

o21 V1

V2

V3o13

S T

r1 = 2

r2 = 5

r3 = 3

p11 = 2 p21 = 3

p22 = 4 p12 = 1 p32 = 3

p33 = 1p23 = 6p13 = 5

d1 = 20

w1 = 2

d2 = 10

w3 = 3

d3 = 22

Figure 1: Disjunctive graph representation for JS-TWT.

In the disjunctive graph G(N,A), the node set N is given by N = {S,T}⋃(∪n
j=1M j)

⋃
(∪n

j=1{V j}), where S
and T are the dummy source and sink nodes which mark the start of operations in the job shop at time zero
and the completion of all operations, respectively. Node V j, j = 1, . . . , n, is referred to as the terminal node
for job j and is associated with the completion of all operations of job j. In addition to these, we have one
node per operation oi j ∈ ∪n

j=1M j. The arc set A = AC ∪AD is composed of two types of arcs, where the set
of arcs AC = (∪n

j=1{(S, o[1] j)})
⋃

(∪n
j=1{(o[k−1] j, o[k] j)|k = 2, . . . , | M j |})

⋃
(∪n

j=1{(o[|M j |] j,V j)})
⋃

(∪n
j=1{(V j,T)}, and

AD = ∪m
i=1{(oi j, oik)|oi j, oik ∈ Ji, oi j , oik} are referred to as the conjunctive and disjunctive arcs, respectively.

The conjunctive arcs help us model the operation precedence constraints (2)-(3) and are depicted by
solid lines in Figure 1. The disjunctive arcs correspond to the machine capacity constraints (5) and are
illustrated by dashed lines in Figure 1. All arcs originating at an operation node oi j are of length pi j, and
the length of an arc (S, o[1] j) emanating from S is set to r j in order to account for the ready time constraints
(2).

Any semi-active feasible schedule for JS-TWT is associated with a graph G′(N,AC∪AS
D) obtained from

the disjunctive graph G, where we add exactly one arc in each pair of disjunctive arcs (oi j, oik), (oik, oi j) to a
set AS

D while discarding the other one. This is equivalent to deciding whether oi j precedes oik on machine
i or vice versa and is also referred to as fixing (or orienting) a pair of disjunctive arcs. We also assume
that all redundant disjunctive arcs implied by transitivity relationships are removed from AS

D. Thus,
one conjunctive arc and at most one disjunctive arc originate at an operation node oi j in G′. The graph
G′ is associated with a feasible semi-active schedule for JS-TWT if and only if it is acyclic. Moreover,
the operation and job completion times are determined by the longest paths in G′, where LPG′(n1,n2)
represents the length of the longest path from node n1 to node n2 in G′. Then, the completion time Ci j(G′)
of operation oi j ∈ (∪n

j=1M j) is given by Ci j(G′) = LPG′(S, oi j) + pi j. Similarly, the completion time of job j in
G′ is computed as C j(G′) = LPG′ (S,V j), and the objective value corresponding to the schedule associated
with G′ is computed as

∑n
j=1 w j max(0,C j(G′) − d j). The longest paths in G′ from S to every other node

in the network are computed by first topologically sorting the nodes and then processing them one by
one in this order. This algorithm runs in O(nm) time because all nodes in G′ have at most two outgoing
arcs, except for the dummy source node S with n outgoing arcs. Finally, note that if AS

D is missing both
arcs in one or several disjunctive pairs then G′ corresponds to a relaxation in which several operations
may be performed in parallel on a machine. For instance, in Figure 2(a) machines 2 and 3 are already
scheduled and the corresponding disjunctive arcs are fixed as illustrated by the thick dashed blue arcs.
However, all disjunctive arcs between the operations on machine 1 are absent from Figure 2(a), and in
the schedule corresponding to this figure operations o11, o12, o13 may be simultaneously executed on
machine 1 if necessary. The associated Gantt chart in Figure 2(b) reveals that the operations o11 and o13

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 5

overlap during the time interval [3, 4] on machine 1.

p12 = 1

o11

o22 o12 o32

o23 o33

o21 V1

V2

V3o13

S T

r1 = 2

r2 = 5

r3 = 3

p11 = 2 p21 = 3

p22 = 4 p32 = 3

p33 = 1p23 = 6p13 = 5

d1 = 20

w1 = 2

d2 = 10

w3 = 3

d3 = 22
p22 = 4

p23 = 6

p32 = 3
w2 = 1

(a) Disjunctive arcs (o22, o23), (o23, o21), and (o32, o33) are fixed.
The others are deleted.

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

o33

2 4 6 8 10 12 14 16 18 t

o22 o12 o32

0

job 1

job 2

job 3

o11 o21

o13 o23

(b) Corresponding Gantt chart.

Figure 2: Disjunctive graph representation for JS-TWT.

The SB heuristic starts with no machine scheduled, i.e., we initially have G′(N,AC∪ ∅). In other words,
all machines are assumed to have infinite capacity and may perform as many operations as desired
simultaneously. Then, at each iteration of the SB heuristic we identify a currently unscheduled machine
that has the most adverse effect on the objective function in some sense by solving an appropriate single-
machine subproblem. For this machine, the sequence of operations is generated and the corresponding
arcs are inserted into AS

D. These steps are repeated until all machines are scheduled and G′ corresponds to
a semi-active schedule. The disjunctive graph has several roles in this process. First, given any selection
AS

D ⊆ AD of disjunctive arcs we determine the earliest start and completion times of the operations in the
single-machine subproblems by the head and tail calculations in G′. As a byproduct, we also obtain the
objective value associated with the schedule corresponding to G′. Second, if we detect a cycle in G′ we
conclude that the current selection of disjunctive arcs AS

D is not feasible.

2.2 Single-Machine Subproblems A fundamental issue in any SB algorithm is to define an ap-
propriate single-machine subproblem. Initially, the capacity constraints of all machines are relaxed by
removing all disjunctive arcs. Then, the algorithm proceeds by scheduling one machine at each iteration
until all machines are scheduled. The major issue at hand here is the order in which the machines are
scheduled. It has been observed by many authors that the ultimate quality of the solution depends on
this order to a large extent. For instance, see Aytug et al. (2002). The basic rationale of the SB framework
mandates that given the set of currently scheduled machinesMS ⊂ M, whereM denotes the set of all
machines, we evaluate the impact of scheduling each unscheduled machine i ∈ (M\MS) on the overall
objective. We designate the machine deemed most critical according to some machine criticality measure
as the next bottleneck machine. The common school of thought is that deferring the scheduling deci-
sions on the current bottleneck machine any further would ultimately degrade the objective even more
significantly. Thus, the objective of the single-machine subproblem is to capture the effect of scheduling
a currently unscheduled machine on the overall objective function accurately. In our SB algorithm, the
machine criticality measure is the objective value of the subproblem developed and discussed in detail
in the sequel. At each iteration of our SB heuristic, one subproblem is set up and solved per unscheduled
machine i ∈ (M\MS), and the machine with the largest subproblem objective value is specified as the
current bottleneck machine ib. Then, ib is added toMS and the required disjunctive arcs for ib are inserted
into AS

D before proceeding with the next iteration of the SB heuristic. The interested reader is referred to
Aytug et al. (2002) for alternate machine criticality measures.

In developing the subproblem in the shifting bottleneck heuristic for JS-TWT, we follow the presen-
tation in the well-known book by Pinedo (2008) in Section 7.3 and propose an effective solution method
for the resulting generalized single-machine weighted tardiness problem. Assume that a subset of the
machinesMS has already been scheduled at the start of some iteration, and the corresponding job com-
pletion times C j(G′(MS)), j = 1, . . . , n, are available through the longest path calculations on a graph
G′(MS) = G′(N,AC ∪ AS

D(MS)), where the set of disjunctive arcs AS
D(MS) is constructed according to the

schedules of the machines inMS. Our goal is to set up a single-machine subproblem for each machine
i ∈ (M\MS) that computes a measure of criticality and an associated schedule for this machine if it were
to be scheduled next. Clearly, the overall objective value does not decrease if the disjunctive arcs for a
newly scheduled machine are inserted into G′(MS). Thus, while solving the single-machine subproblems
we would like to refrain from increasing the job completion times any further. To this end, we observe

6 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

that if an operation oi j to be performed on machine i is not completed by a local due date dk
i j, then we

delay the completion of job k at a cost of wk per unit time. The local due date dk
i j depends on the longest

path from oi j to Vk in G′(MS) and is determined as dk
i j = max(dk,Ck(G′(MS))) − LPG′(MS)(oi j,Vk) + pi j, if

there is a path from oi j to Vk in G′(MS). Otherwise, we set dk
i j = ∞. Consequently, the objective function

of the subproblem for machine i in the shifting bottleneck heuristic is given by

∑

oi j∈Ji

hi j(Ci j) =
∑

oi j∈Ji

n∑

k=1

wk max(0,Ci j − dk
i j), (7)

where Ci j is the completion time of operation oi j in the subproblem, and hi j(Ci j) is the associated cost
function. We observe that hi j(Ci j) =

∑n
k=1 wk max(0,Ci j − dk

i j) is the sum of n piecewise linear convex cost
functions which implies that it is piecewise linear and convex. For instance, in Figure 2(a) machines 2
and 3 are already scheduled. The length of the longest paths from S to V j, j = 1, . . . , 3, are computed as
18, 13, and 16, respectively. Based on these values, the cost functions for the subproblem of machine 1
are calculated and depicted in Figure 3.

1664 8 10 12 14 182

w1 = 2

h11(C11)

d1
11 = 17

C11

(a) For operation o11.

h12(C12)

2 64 8 10 12 14 16 18

d2
12 = 10

w2 = 1

d3
12 = 18

w2 + w3 = 4

C12

(b) For operation o12.

w1 + w3 = 5

2 64 8 10 12 14 16 18

w1 = 2

d3
13 = 15d1

13 = 11

C13

h13(C13)

(c) For operation o13.

Figure 3: The subproblem cost functions for the operations on machine 1. See Figure 2(a).

The analysis in this section allows us to formulate the single-machine subproblem of machine i ∈
(M\MS) in the SB heuristic as a generalized single-machine weighted tardiness problem 1/r j/

∑
j h j(C j),

where the ready time of job j on machine i is given by the length of the longest path from S to oi j in
G′(MS). For the subproblem of machine 1 in Figure 2(a), the ready times of the operations o11, o12, and
o13 are determined as 2, 9, and 3, respectively. This problem is a generalization of the stronglyNP-hard
single-machine weighted tardiness problem 1/r j/

∑
w jT j(Lenstra et al. (1977)). Therefore, Pinedo (2008)

proposes to solve 1/r j/
∑

j h j(C j) by a generalization of the ATC dispatching rule due to Vepsalainen
(1987). Note that Pinedo and Singer (1999) develop the single-machine subproblem in their shifting
bottleneck algorithm for JS-TWT by taking a slightly different perspective; however, their subproblem
solution approach is also based on the ATC rule. In contrast, we adapt the algorithms by Bulbul et al.
(2007) originally developed for the single-machine weighted E/T scheduling problem to our generalized
single-machine weighted tardiness problem.

Bulbul et al. (2007) propose a two-step heuristic in order to solve the single-machine weighted E/T
scheduling problem 1/r j/

∑
j(ε jE j + w jT j), where E j stands for the earliness of job j and ε j is the corre-

sponding earliness cost per unit time. In the first step, each job j is divided into p j unit jobs, and these
unit jobs are assigned over an appropriate planning horizon H by solving a transportation problem TR
as defined below:

(TR) min
∑

j

∑
t∈H

t≥rj+1

c jtX jt (8)

∑
t∈H

t≥r j+1

X jt = p j ∀ j, (9)

∑

j
t≥r j+1

X jt ≤ 1 ∀t ∈ H, (10)

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 7

X jt ≥ 0 ∀ j, ∀t ∈ H, t ≥ r j + 1, (11)

where X jt is set to 1 if a unit job of job j is processed in the interval (t − 1, t] at a cost of c jt, and 0
otherwise. Moreover, if the cost coefficients c jt are chosen carefully, then the optimal objective value of
TR provides a tight lower bound on the optimal objective value of the original problem. Clearly, the
schedule obtained from the optimal solution of this transportation problem incorporates preemptions;
however, the authors observe that more expensive jobs are scheduled more or less contiguously and close
to their positions in the optimal non-preemptive schedule while inexpensive jobs are preempted more
frequently. Thus, in the second step the information provided in the optimal solution of this preemptive
relaxation is exploited in devising several primal heuristics with small optimality gaps for the original
non-preemptive problem.

The success of the approach outlined above relies essentially on the cost coefficients. The key to
identifying a set of valid cost coefficients is to ensure that the cost of a non-preemptive schedule in the
transportation problem is no larger than that in the original non-preemptive problem. This property
does immediately lead to the result that the optimal objective value of TR is a lower bound on that
of the original non-preemptive problem because the set of all feasible non-preemptive schedules is a
subset of the set of all preemptive schedules. Bulbul et al. (2007) propose the cost coefficients below for
1/r j/

∑
j(ε jE j + w jT j):

c jt =

ε j

p j

[
(d j − p j

2) − (t − 1
2)
]
, if t ≤ d j, and

w j

p j

[
(t − 1

2) − (d j − p j

2)
]
, if t > d j.

(12)

We generalize the cost coefficients in (12) for our problem, where ci jt stands for the cost of processing
one unit job of operation oi j on machine i during the time interval (t − 1, t]:

ci jt =

n∑

k=1
t>dk

i j

wk

pi j

[
(t − 1

2
) − (dk

i j −
pi j

2
)
]
. (13)

Our single machine subproblems 1/r j/
∑

j h j(C j) in the SB heuristic are regular, i.e., the objective is
non-decreasing in the completion times. This implies that no job will ever finish later than max j r j + P,
where P denotes the sum of the operation processing times on the associated machine, in an optimal non-
preemptive solution. Therefore, it suffices to define the planning horizon H as H = {k|k ∈ Z, min j r j +1 ≤
k ≤ max j r j + P}while solving the lower bounding problem TR. Next, we show that the optimal objective
value of TR yields a valid lower bound for 1/r j/

∑
j h j(C j) with the cost coefficients given in (13). The

structure of the proof follows that of Theorem 2.2 in Bulbul et al. (2007). For brevity of notation, we omit
the machine index i in the derivations.

Theorem 2.1 For an instance of 1/r j/
∑

j h j(C j) with n operations, where h j(C j) =
n∑

k=1
wk max(0,C j − dk

j),

the optimal objective value z∗TR of the transportation problem (8)-(11) with the cost coefficients c jt =
n∑

k=1
t>dk

j

wk
p j

[
(t − 1

2) − (dk
j −

p j

2)
]

for j = 1, . . . , n, t ∈ H, solved over a planning horizon H = {k|k ∈ Z, min j r j + 1 ≤

k ≤ max j r j + P} provides a lower bound on the optimal objective value z∗ of 1/r j/
∑

j h j(C j).

Proof. Any non-preemptive optimal schedule for 1/r j/
∑

j h j(C j) is also feasible for TR if each job is
divided into p j consecutive unit jobs. The proof is then completed by showing that any non-preemptive
optimal schedule incurs no larger cost in TR than that in the original non-preemptive problem.

In the following analysis, we investigate the cost incurred by any job j in a non-preemptive optimal
schedule. A job j which completes at time C j incurs a cost zk

j in TR with respect to each of the due

dates dk
j , k = 1, . . . , n. If C j ≤ dk

j , then zk
j = 0. Otherwise, we need to distinguish between two cases. If

C j ≥ dk
j + p j, then we have

zk
j =

wk

p j

C j∑

t=C j−p j+1

[
(t − 1

2
) − (dk

j −
p j

2
)
]

= wk(C j − dk
j),

8 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

which is identical to the cost incurred by job j in the original non-preemptive problem with respect to
dk

j . On the other hand, if p j ≥ 2 and C j = dk
j + x, where 1 ≤ x ≤ p j − 1, then

zk
j =

wk

p j

dk
j +x∑

t=dk
j +1

[
(t − 1

2
) − (dk

j −
p j

2
)
]

= wkx
[

x + p j

2p j

]
< wkx = wk(C j − dk

j),

because x < p j. Thus, the total cost z j accumulated by job j in TR is

z j =

n∑

k=1

zk
j =

t∑

t=C j−p j+1

c jt ≤
n∑

k=1

wk max(0,C j − dk
j) = h j(C j)

for all possible values of C j in the planning horizon H. The desired result z∗TR ≤
∑

j z j ≤ z∗ follows by
summing over all jobs. �

In the optimal solution of the transportation problem for machine i, jobs (operations on machine i)
may be preempted at integer points in time. Thus, upon solving the transportation problem we need to
apply a heuristic to its optimal solution to construct a feasible schedule for the original non-preemptive
problem 1/r j/

∑
j h j(C j). This feasible solution then dictates which disjunctive arcs are fixed for the next

iteration of the SB heuristic. For this step, we directly use the heuristics proposed by Bulbul et al. (2007).
Three of these heuristics rely on statistics compiled from the completion times of the unit jobs in the
optimal solution of TR. In the LCT (last completion time) Heuristic, jobs are sequenced in non-decreasing
order of the completion times of their last unit jobs. In the ACT (average completion time) and MCT
(median completion time) Heuristics, jobs are sequenced in non-decreasing order of the average and
median completion time of their unit jobs, respectively. Finally, the Switch Heuristic seeks a non-
preemptive schedule by shuffling around the unit jobs while it greedily attempts to limit the increase
in cost with respect to the optimal transportation solution. In all cases, once a job processing sequence
is available jobs are scheduled as early as possible while observing the ready times since the single-
machine subproblem is regular. The best of four possible sequences is employed to fix the disjunctive
arcs between the operations on machine i.

Theoretically, the lower bound based on TR is only computed in pseudo-polynomial time because
the planning horizon H depends on the sum of the operation processing times. In addition, the SB
heuristic is an iterative approach which implies that this lower bounding problem is solved many times
during the course of the heuristic. Thus, using this computationally expensive solution method for
our subproblems needs some justification. First, we point out that the planning horizon in TR may be
reduced considerably by a simple observation. Since all cost coefficients in TR are non-negative and
jobs may be preempted at integer points in time, no unit job will be ever be assigned to a time period
larger than tmax, where tmax is the optimal objective value of 1/r j, pmtn/Cmax. This problem may be
solved in O(n log n) time by sorting the operations in non-decreasing order of their ready times and then
scheduling any unit job that is available as early as possible. A similar reasoning for the planning horizon
is applied by Runge and Sourd (2009) in order to compute a valid lower bound for a preemptive single-
machine E/T scheduling problem based on the transportation problem. Second, very large instances of
the transportation problem can be solved very effectively by standard solvers and the single-machine
instances derived from JS-TWT in our computational study do not have more than 20 jobs.1 Third,
in our computational study in Section 3 we demonstrate that the proposed solution method for the
subproblems is viable. Forth, by scaling down the due dates, ready times, and the processing times in
an instance of JS-TWT appropriately, we can decrease the time expended in solving the transportation
problems in the SB heuristic significantly at the expense of losing some information for extracting a good
job processing sequence from the subproblems. This idea is further developed in Section 3, and our
numerical results indicate that this approach does not lead to a major loss in solution quality while it
reduces the computation times.

Finally, we discuss an issue inherent in our subproblem definition. In the SB heuristic, the goal of the
subproblem definition is to predict the effect of scheduling one additional machine i ∈ (M\MS) on the

1Instances of JS-TWT with 10 machines and 15 operations per machine are already regarded as very large instances for this
problem. The most famous standard benchmark problem set consists of instances with 10 machines and 10 operations per machine.
For more details, see Section 3.

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 9

overall objective function. To this end, we associate a cost function hi j(Ci j) with each operation oi j on
machine i which is an estimate of the cost of completing operation oi j at time Ci j after the disjunctive arcs
on machine i are fixed. Then, an estimate of the total increase in the overall objective after scheduling
machine i is given by the sum of these individual effects

∑
oi j∈Ji

hi j(Ci j). In some cases, this subproblem
definition may lead to a “double-counting” as illustrated by the instance in Figure 4.

1

o11

o23 o33

o21 V1

V2

V3o13

S T

w1 = 2

o31

o12 o22 o32

d1 = 7

d2 = 6

d3 = 5

w2 = 4

w3 = 6

0

0

0

2

2

2

4

3

5 1

1

1

1

(a) Operation processing sequence on machine 3 is fixed.

o32

2 4 6 8 100

o12 o22

d2d3 d1

o11 o21 o31

o13 o23 o33

job 1

job 2

job 3

(b) Current schedule.

Figure 4: Double counting in the subproblems.

In Figure 4(a), the job processing sequence on machine 3 is fixed, and the corresponding schedule is
depicted in Figure 4(b) with an objective value of 12. In the subproblem for machine 2, all ready times
are 2, and the cost functions are plotted in Figure 5(a). The optimal solution of this subproblem yields
C23 = 5, C22 = 9, C21 = 14 with an objective value of 32. Thus, the optimal solution of the subproblem
estimates that the overall objective will increase from 12 to 12+32=44 after the disjunctive arcs (o23, o22)
and (o22, o21) are fixed. However, the resulting schedule in Figure 5(b) bears a total cost of only 38. Further

h21(C21)

2 64 8 10 12 14

hi j(Ci j)

Ci j

w1 = 2

w1 + w2 = 6

w1 + w2 + w3 = 12

h23(C23)

h22(C22)

(a) Cost functions for the subproblem of
machine 2.

o31

2 4 6 8 100

o12

d2d3 d1

o22 o32

12 14 16

job 1

job 2

job 3 o13 o23 o33

o11 o21

(b) Schedule after the disjunctive arcs on machine 2
are fixed.

Figure 5: Double counting in the subproblems.

analysis reveals that in the subproblem we shift operation o22 to the right for 3 units of time (C22 = 6 in
Figure 4(b)) at a cost of 6 per unit time, and operation o21 is pushed later for 7 units of time (C21 = 7 in
Figure 4(b)) at a cost of 2 per unit time, resulting in a total cost of 32. However, if we investigate the
resulting overall schedule in Figure 5(b) in detail after the disjunctive arcs on machine 2 are fixed, we
conclude that the cost of pushing o21 later is already partially incorporated in the cost of delaying o22 for
3 units of time. Thus, the cost of shifting o21 for 3 units of time at a cost of 2 per unit time is counted
twice in the subproblem objective. Summarizing, we emphasize that the operation cost functions in the
subproblems may fail to take into account complicated cross effects from fixing several disjunctive arcs
simultaneously. We do not have an immediate remedy for this issue and leave it as a future research
direction. However, our numerical results in Section 3 attest to the reasonable accuracy of the bottleneck
information and the job processing sequences provided by our subproblems.

There is one additional complication that may arise while solving the subproblems in any SB heuristic.
Fixing the disjunctive arcs according to the job processing sequences of the scheduled machines may
introduce directed paths in the disjunctive graph between two operations on a machine that is yet to be

10 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

scheduled. Such paths impose start-to-start time lags between two operations on the same machine, and
ideally they have to be taken into account while solving the single-machine subproblems. These so-called
delayed precedence constraints (DPCs) have been examined in detail by several researchers, mostly in
the context of the SB algorithms developed for Jm//Cmax. For instance, see Dauzere-Peres and Lasserre
(1993) and Balas et al. (1995). In this paper, our subproblem definition generalizes the strongly NP-
hard single-machine weighted tardiness problem, and we are not aware of any previously existing
good algorithm for its solution, even in the absence of DPCs. Thus, we solve the subproblems without
accounting for the DPCs, and then check whether the solution provided causes any infeasibility. This task
is accomplished by checking for directed cycles while updating the disjunctive graph G′(MS) according
to the operation sequence of the latest bottleneck machine. If necessary, feasibility is restored by applying
local changes to the job processing sequence on the bottleneck machine. Moreover, in our computational
study we observe that only a few DPCs have to be fixed per instance solved which further justifies our
approach.

2.3 Rescheduling by Tabu Search The last fundamental component of an SB heuristic is reschedul-
ing which completes one full iteration of the algorithm. The goal of rescheduling is to re-optimize the
schedules of the previously scheduled machines given the decisions for the current bottleneck machine.
It is widely observed that the performance of an SB algorithm degrades considerably if the rescheduling
step is omitted. For instance, see Demirkol et al. (1997). In classical SB algorithms, such as that in
Pinedo and Singer (1999), rescheduling is accomplished by removing each machine i ∈ (MS \ {ib}), where
ib is the current bottleneck machine, from the set of scheduled machines MS, and then updating the
job processing sequence on this machine before adding it back toMS. To this end, all disjunctive arcs
associated with machine i are first removed from the disjunctive graph G′(MS), and a single-machine
subproblem is defined for machine i in the usual way. Then, the disjunctive arcs for machine i are
inserted back into the disjunctive graph as prescribed by the solution of the subproblem. Generally, SB
algorithms perform several full cycles of rescheduling until no further improvement is achieved in the
overall objective function.

The re-optimization step of the shifting bottleneck procedure may be regarded as a local search
algorithm, where the neighborhood is defined by the set of all schedules that may be obtained by
changing the job processing sequence on one machine only as discussed by Balas and Vazacopoulos
(1998). Intrinsically, all local search algorithms visit one or several local optima on their trajectory,
and their ultimate success depends crucially on their ability to escape from the neighborhood of the
current local optimum with the hope of identifying a more promising part of the feasible region. This
is often referred to as diversification while searching for the best solution in the current neighborhood is
known as intensification. For diversification purposes, a powerful strategy and a recent trend in heuristic
optimization is to combine several neighborhoods. If the diversification procedures in place do not
allow us to escape from the region around the current local optimum given the current neighborhood
definition, then switching to an alternate neighborhood definition may just achieve this goal. Motivated
by this observation, and following suit with Balas and Vazacopoulos (1998) we replace the classical
rescheduling step in the SB heuristic discussed in the preceding paragraph by a local search algorithm.
However, while Balas and Vazacopoulos (1998) employ a guided local search algorithm based on the
concept of neighborhood trees for diversification purposes, we instead propose a tabu search algorithm.
We also note that Balas and Vazacopoulos (1998) design a shifting bottleneck algorithm for Jm//Cmax
while we solve JS-TWT.

From a practical point of view, JS-TWT is a substantially harder problem to solve compared to the
classical job shop scheduling problem Jm//Cmax. However, in both problems the concept of a critical path
plays a fundamental role. In Jm//Cmax, the objective is to minimize the length of the longest path from a
dummy source node S to a dummy sink node T, while in JS-TWT the objective is a function of n critical
paths from S to V j, j = 1, . . . ,n. (See Figure 1.) Therefore, local search algorithms or metaheuristics
designed for JS-TWT generally rely on neighborhoods originally proposed for Jm//Cmax as pointed out
in Section 1 while they take the necessary provisions to deal with the dependence of the objective on
several critical paths with varying degrees of importance. The local search component based on tabu
search incorporated into our SB algorithm features two contributions compared to the existing literature.
First, we adapt a neighborhood generation mechanism proposed by Balas and Vazacopoulos (1998) for
Jm//Cmax to JS-TWT. This neighborhood generator reverses the directions of one or several disjunctive

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 11

arcs on a given machine simultaneously, and thus is more general than the previous neighborhood def-
initions applied to JS-TWT. Up to date, all neighborhood generators employed for JS-TWT reverse the
direction of a single disjunctive arc by applying an adjacent pairwise interchange to the job processing
sequence of one of the machines. Second, the neighborhood generation scheme of Kreipl (2000) for
JS-TWT, originally due to Suh (1988), is used together with the neighborhood described above after
some improvements. Thus, a degree of diversification is directly built into our neighborhood genera-
tion mechanism. Our main motivation here is that these two neighborhood generation schemes have
complementary properties. The neighborhood generator by Balas and Vazacopoulos (1998) applies a
general interchange procedure to the job processing sequence of one machine only while the neighbor-
hood by Kreipl (2000) may apply several adjacent pairwise interchanges simultaneously, each to the job
processing sequence of a distinct machine.

Before we describe our neighborhood generation scheme in detail, a discussion of some of the basic
properties of the critical paths in the disjunctive graph is in order. Given a set of currently scheduled
machinesMS, any longest path from S to T or V j, j = 1, . . . , n, in G′(N,AC ∪AS

D) is composed of blocks of
arcs, where we refer to an arc on any longest path as a critical arc. The arcs in each block either belong to
the operations of the same job or the operations performed on the same machine. For instance, in Figure
2(a) the longest path from S to V1 is given by an ordered set of arcs {(S, o22), (o22, o23), (o23, o21), (o21,V1)},
where (S, o22) and (o21,V1) each form a block of their own that belong to the set of conjunctive arcs
pertaining to jobs 2 and 1, respectively, and the arcs (o22, o23), (o23, o21) in the middle block are included
in the set of disjunctive arcs on machine 2. Clearly, in an ideal situation we would like the critical paths
from S to V j, j = 1, . . . , n, to consist only of conjunctive arcs; this is the best we can achieve. Thus,
the basic goal of a local search algorithm for JS-TWT is to modify the critical paths as to avoid the
disjunctive arcs as much as possible while accounting for the different contributions of the critical paths
to the objective function. In the context of Jm//Cmax, Matsuo et al. (1988) recognized that if (oi j, oik) is a
disjunctive arc on a critical path from S to T, then an adjacent pairwise interchange of the operations
oi j and oik on machine i may reduce the makespan only if either the job-predecessor of oi j or the job-
successor of oik is also on the critical path. In other words, if a critical path from S to T is described
by {. . . , (okj1 , oi j1), (oi j1 , oi j2), (oi j2 , oi j3), (oi j3 , oi j4), (oi j4 , ol j4), . . .}, then an update to the sequence of operations
oi j1 , oi j2 , oi j13, oi j4 on machine i needs to involve at least one of the operations oi j1 or oi j4 as a necessary
condition for reducing the makespan. The interested reader is referred to Balas and Vazacopoulos (1998)
for a more in-depth discussion. For JS-TWT, we can apply this observation directly for identifying
moves that may decrease the length of a critical path from S to V j, j = 1, . . . , n, because the rationale is
the same whether we are interested in the length of the critical path from S to T or any other node in
the network. Next, given these observations we introduce the neighborhoods we employ in the tabu
search for reducing the total weighted tardiness in the current disjunctive graph G′(N,AC ∪ AS

D) during
the re-optimization step of our SB algorithm. In our descriptions, we follow the notation in Kreipl (2000).
We denote the immediate job predecessor and immediate job successor of operation oi j by pm(oi j) and
sm(oi j), respectively. That is, (pm(oi j), oi j) and (oi j, sm(oi j)) are members of the set of conjunctive arcs AC.
Furthermore, the immediate machine predecessor and the immediate machine successor of operation oi j
(if they exist) are represented by pj(oi j) and sj(oi j), respectively, i.e., AS

D contains (pj(oi j), oi j) and (oi j, sj(oi j)).

In the generalized interchange (GI) neighborhood, adapted from Balas and Vazacopoulos (1998), we
first identify the block structure for one critical path per job. Then, for each block of the form
{(oi j1 , oi j2), (oi j2 , oi j3), . . . , (oi jb−1 , oi jb)} composed of disjunctive arcs on some machine i on the critical path
from S to V j, j = 1, . . . , n, we identify one neighboring solution by moving operation oi jk , k = 1, . . . , b − 1,
right after oi jb in the job processing sequence of machine i. This is referred to as a forward interchange.
Similarly, a backward interchange is performed by moving an operation oi jk , k = 2, . . . , b, right before oi j1
in the job processing sequence of machine i as illustrated in Figure 6. The original disjunctive graph
is depicted on the left in Figure 6(a), where the relevant part of the critical path from S to V j is indi-
cated by the bold red lines. The disjunctive graph G′′ modified due to a backward interchange on oi j1
and oi jk is in Figure 6(b). Note that the forward and backward interchanges reverse the directions of
several disjunctive arcs simultaneously in the current disjunctive graph G′, and they always involve at
least one of the operations oi j1 or oi jb , where pm(oi j1) and sm(oi jb) are also located on the critical path.
Balas and Vazacopoulos (1998) extend the necessary condition for reducing the makespan for adjacent
pairwise interchanges stated in the preceding paragraph to the GI neighborhood; and thus, both forward
and backward interchanges fulfill the necessary condition for reducing the length of a critical path from

12 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

oi jk+1

oib sm(oib)

pj(oi j1)

pm(oi j1) oi j1 sm(oi j1)

oi jk−1

oi jkpm(oi jk) sm(oi jk)

(a) Current disjunctive graph G′.

pj(oi j1)

oi jkpm(oi jk) sm(oi jk)

pm(oi j1) oi j1 sm(oi j1)

oi jk−1

oib sm(oib)

oi jk+1

(b) Modified disjunctive graph G′′.

Figure 6: Backward interchange in the GI neighborhood.

S to V j, j = 1, . . . , n. A forward or backward interchange corresponds to a feasible neighboring solu-
tion given the set of currently scheduled machinesMS if and only if the modified disjunctive graph is
acyclic. Note that the number of forward and backward interchanges for a block of size b is 2(b− 1), and
updating and checking for cycles for each of these interchanges would be computationally costly in an
iterative local search algorithm. Therefore, only those forward and backward interchanges that satisfy
the conditions in Propositions 2.1 and 2.2 below, respectively, are included in the neighborhood of the
current solution. Propositions 2.1 and 2.2 are straightforward extensions of Propositions 2.2 and 2.3 in
Balas and Vazacopoulos (1998). We only provide a proof for Proposition 2.2 because the corresponding
proof in Balas and Vazacopoulos (1998) is omitted.

Proposition 2.1 If a critical path in G′(N,AC ∪AS
D) from S to one of the terminal nodes V j contains oi jk , oib, and

sm(oib), then a forward interchange on oi jk and oib leads to an acyclic disjunctive graph G′′ if either there is no path
from sm(oi jk) to V j or the following condition is satisfied:

LPG′(oib,V j) ≥ LPG′(sm(oi jk),V j). (14)

Proposition 2.2 If a critical path in G′(N,AC∪AS
D) from S to one of the terminal nodes V j contains pm(oi j1), oi j1 ,

and oi jk , then a backward interchange on oi j1 and oi jk leads to an acyclic disjunctive graph G′′ if either pm(oi jk) = S
or the following condition is satisfied:

LPG′ (S, oi j1) + pi j1 ≥ LPG′ (S, pm(oi jk))) + ppm(oi jk). (15)

Proof. By contradiction. Suppose that moving oi jk before oi j1 creates a cycle C. Then, C contains either
(oi jk , oi j1) or (oi jk , sm(oi jk)). If (oi jk , sm(oi jk)) ∈ C, then there must exist a path in G′ from sm(oi jk) to oi jk , contrary
to the assumption that G′ is acyclic. If (oi jk , oi j1) ∈ C, then there exists a path from oi j1 to pm(oi jk) in G′. This
would imply LPG′(S, pm(oi jk)) ≥ LPG′ (S, oi j1) + pi j1 , resulting in LPG′(S, pm(oi jk)) + ppm(oi jk) > LPG′(S, oi j1) + pi j1
which contradicts (15). �

The condition (14) is based on the lengths of the longest paths from oib and sm(oi jk) to V j while the
condition (15) requires the lengths of the longest paths from S to oi j1 and pm(oi jk). The latter come for
free as a byproduct of the forward pass performed in the current disjunctive graph G′ from S to T in
the topological order of the nodes in order to determine the operation and job completion times and the
objective value associated with G′. However, we need to carry out a backward pass from T to S in G′

for the tail calculations from all nodes to a terminal node. Fortunately, by keeping one distance label per
terminal node on each node, this can be accomplished effectively for all terminal nodes in one backward
pass through G′.

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 13

Algorithm 1: Creating the MAI neighborhood.
input : Disjunctive arc (oi j, oik) is on the critical path from S to V j. All start and completion times

below refer to those in the current disjunctive graph G′.

1 Swap oi j and oik in the operation processing sequence of machine i;
2 nint = 1 ; // Keep track of the number of adjacent pairwise interchanges.

/* Go up the predecessor chain of oik for possible reductions in the critical path

length. */

3 if pm(oik) , S then // oik is not the first operation of job k
4 if Cpm(oik) > Si j then /* After swapping oi j and oik, the longest path from S to oik is

through pm(oik). */

5 while (nint = 1) and (pm(oik) , S) do // At most one interchange in this loop

6 if (pj(pm(oik)) , ∅) and (Spm(oik) = Cpj(pm(oik))) then /* The longest path from S to

pm(oik) goes through its machine predecessor. */

7 Swap pm(oik) and pj(pm(oik)) in the operation processing sequence of machine g , i;
8 nint = nint + 1;
9 else /* Look further up in the predecessor chain of oik. */

10 Set pm(oik) = pm(pm(oik))
11 end
12 end
13 end
14 end
15 Compute an estimate C̄ik for the completion time of oik after a maximum of two interchanges

performed so far;

// Check whether the starting time of sm(oi j) is affected.

16 if sm(oi j) , V j then // oi j is not the last operation of job j.
17 if Ssm(oi j) < C̄ik + pi j then // The estimated starting time of oi j is C̄ik.

18 if (sj(sm(oi j)) , ∅) and (Csm(oi j) = Ssj(sm(oi j))) then /* The longest path from S to the

machine successor of sm(oi j) goes through sm(oi j). */

19 Swap sm(oi j) and sj(sm(oi j)) in the operation processing sequence of machine h , i, g;
20 nint = nint + 1;
21 end
22 end
23 end

Identifying the members of the multiple adjacent interchange (MAI) neighborhood of Kreipl (2000) for
JS-TWT, originally due to Suh (1988), starts similarly by identifying the block structure of one critical path
per job. Then, given a disjunctive arc (oi j, oik) on some critical path, regardless of whether pm(oi j) or sm(oik)
are also located on the critical path, the neighboring solution in the MAI neighborhood is determined
by following the procedure in Algorithm 1 that is illustrated in Figure 7. We start by swapping the
sequence of the operations oi j and oik on machine i (primary interchange) in Step 1 and perform at most
two additional adjacent pairwise interchanges (secondary interchanges) in Steps 7 and 19. We emphasize
once again that these interchanges all occur on distinct machines in contrast to the interchanges in the GI
neighborhood which are carried out on the same machine. Thus, these two neighborhoods complement
each other and facilitate escaping from local optima during the tabu search algorithm presented later in
this section. We also note that our implementation differs slightly from that by Kreipl (2000) in Steps
15 and 17 of Algorithm 1. After performing up to two adjacent pairwise interchanges in Steps 1-14, we
first estimate the completion time of operation oik after these swaps in Step 15 in order to provide more
accurate information in Step 17 for the last potential adjacent pairwise interchange. See Algorithm 2.
In our preliminary experiments, we observed that the condition Ssm(oi j) < C̄ik + pi j in Step 17 performs
better than the original condition Ssm(oi j) < Cik in Kreipl (2000), where the current completion time Cik of
operation oik in G′ is used as an estimate of the completion time of oi j after Steps 1-14 are completed. For
the MAI neighborhood, we do not have a result similar to those in Propositions 2.1 and 2.2 for the GI

14 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

neighborhood, but moving to a neighboring solution in the MAI neighborhood never leads to a cycle in
the modified disjunctive graph in our entire set of experiments in Section 3. Therefore, we conjecture
that a move in the MAI neighborhood is guaranteed to produce an acyclic disjunctive graph.

m/c h

pm(oik)pj(pm(oik))

pm(pm(oik))

oik

sm(oi j)

oi j

pj(pm(pm(oik)))

sj(sm(oi j))

m/c i

m/c g

(a) Current schedule.

m/c h

oik oi j

sm(oi j) sj(sm(oi j))

pm(oik)pj(pm(oik))

pm(pm(oik))pj(pm(pm(oik)))

m/c i

m/c g

(b) Step 1: oi j and oik are swapped on machine i.

m/c h

pm(pm(oik)) pj(pm(pm(oik)))

pm(oik)

oik oi j

sm(oi j) sj(sm(oi j))

pj(pm(oik))

m/c i

m/c g

(c) Step 7: pm(pm(oik)) and pj(pm(pm(oik))) are swapped on ma-
chine g.

m/c h

pm(pm(oik)) pj(pm(pm(oik)))

pm(oik)

oik oi j

sj(sm(oi j)) sm(oi j)

pj(pm(oik))

m/c i

m/c g

(d) Step 19: sm(oi j) and sj(sm(oi j)) are swapped on ma-
chine h.

Figure 7: The multiple interchange neighborhood described in Algorithm 1.

Algorithm 2: Calculating C̄ik in Step 15 of Algorithm 1.

1 if swap occurred in Step 7 of Algorithm 1 then
2 ocur = ogk ; // ocur represents the operation currently under consideration.

3 else
4 ocur = oik;
5 end
6 if pm(ocur) , S then /* C̄ik is initialized to the earliest starting time of ocur as

determined by the conjunctive arcs. */

7 C̄ik = Cpm(ocur);
8 else
9 C̄ik = rk;

10 end
11 repeat

/* The current value of C̄ik is the earliest starting time of ocur as determined by

its operation predecessor. The next if-statement accounts for the machine

predecessor of ocur. */

12 if (ocur = ogk) or (ocur = oik) then /* ogk and oik are swapped with their machine

predecessors. */

13 C̄ik = max(C̄ik,Cpj(pj(ocur))); // Cpj(pj(ocur)) = 0 if pj(pj(ocur)) does not exist.

14 else
15 C̄ik = max(C̄ik,Cpj(ocur)); // Cpj(ocur) = 0 if pj(ocur) does not exist.

16 end
17 C̄ik = C̄ik + pocur ; // C̄ik is the estimated completion time of ocur.

18 if ocur , oik then
19 ocur = sm(ocur); // Move to the next operation in the predecessor chain of oik.

20 end
21 until ocur = oik;

Finally, Algorithm 3 presents our tabu search method employed in the re-optimization step of our SB
approach for JS-TWT. Given a current solution xk at some iteration of the tabu search, the neighborhood
generator N(xk) in Step 5 may take three different forms. If N(xk) = NGI(xk) or N(xk) = NMAI(xk), then
only the GI or MAI neighborhoods are invoked, respectively. If N(xk) = NG/MAI(xk) = NGI(xk)∪NMAI(xk),
then both types of neighborhoods are calculated around the current solution xk. In Section 3, we
observe that the combined neighborhood leads to significantly improved performance. For the combined

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 15

Algorithm 3: Re-optimization by tabu search in the SB algorithm for JS-TWT.
input : Current disjunctive graph G′, the associated operation and job completion times, the tail

lengths from every node to all terminal nodes, and the objective function value.

1 x0 is the initial solution defined by G′, z(x0) is the associated objective value;
2 x∗ = x0 is the current best solution, z∗ = z(x0) is the current best objective value;
3 Initialize the tabu list as TL = ∅, terminate = f alse, set the iteration counter k = 0;
4 while do not terminate do
5 Identify all solutions in the neighborhood N(xk) of xk. Determine the priority of each x ∈ N(xk)

depending on the critical path(s) it belongs to;
6 Evaluate at least lTS

1 and at most uTS
1 solutions in N(xk) in non-increasing order of their priorities.

Pick the next solution x′;
7 if (x′ is not available) or (z∗ is not improved over the last uTS

2 iterations) then
8 terminate = true;
9 else

10 Update x∗, z∗ if necessary. Update the tabu list TL;
11 xk+1 = x′, k = k + 1;
12 end
13 end

neighborhood, we exclude solutions in NMAI(xk) resulting from only the primary interchange performed
in Step 1 of Algorithm 1. Recall that if neither pm(oi j) nor sm(oik) are part of the critical path, then such
a swap cannot decrease the critical path length as discussed earlier in this section. On the other hand,
adjacent pairwise interchanges that may potentially lead to reductions in the critical path length are
already part of the GI neighborhood.

In contrast to the classical makespan minimization problem in a job shop, a disjunctive arc may
participate in several different critical paths in JS-TWT, and each of these critical paths may contribute
differently to the overall objective function. Thus, we prioritize the interchanges in the current neigh-
borhood in Step 5 before we evaluate each of these solutions by longest path calculations. To this end,
a weight is assigned to each critical path, and the priority of an interchange is determined by the sum
of the weights of the critical paths it affects. We experimented with several different weight functions
for the critical paths and concluded that the best performing one for a critical path from S to V j is given

by: U j =

{
1, if C j(G′) > d j, and
0, otherwise

}
. Alternate measures involve assigning an equal weight to each

critical path, regardless of whether the corresponding job is tardy or not, or accounting for the tardiness
weight of the corresponding job. In Step 6, we evaluate at least lTS

1 and no more than uTS
1 solutions in

the neighborhood in non-increasing order of their priorities, where uTS
1 is set to a fixed percentage of

the size of the neighborhood. We stop exploring the neighborhood if a move that improves on z(xk) is
identified. We implement a first-improve neighborhood search strategy instead of a best-improve strategy
that would traverse the entire neighborhood before selecting the next solution due to the computational
burden imposed by a potentially large number of neighboring solutions. The best move among those
evaluated is picked as the next solution x′, provided that it is either not a tabu move or it is a tabu move
that exceeds the aspiration criterion which is defined as the best objective value achieved so far. The
stopping criterion based on uTS

2 in Step 7 is a function of the number of disjunctive arcs fixed in the
current disjunctive graph G′. The rationale here is that the size of the search neighborhoods and the
complexity of the problem increases steeply as more machines are scheduled during the course of the
SB heuristic. The exact forms of lTS

1 , uTS
1 , and uTS

2 will be defined in our numerical study. An important
enhancement is left out in the description in Algorithm 3. Once the while-loop in Steps 4-13 terminates
under the weight function U j, j = 1, . . . , n, described above, we continue the search by setting U j = 0 for
all j for a fixed number of iterations (5 iterations seems to work well in practice) starting from the current
best solution x∗ before re-invoking the tabu search with the original weight function. This procedure
helps to diversify the search around x∗, and if two successive executions of the while-loop with the
original weight function do not improve z∗, then the re-optimization step is completed. Finally, we
explain the details regarding the tabu moves and the tabu list. For a forward interchange performed

16 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

on oi jk and oi jb in a block of disjunctive arcs {(oi j1 , oi j2), . . . , (oi jk−1 , oi jk), (oi jk , oi jk+1), . . . , (oi jb−1 , oi jb)}, a backward
interchange on oi jk+1 and oi jk is added to the tabu list. Similarly, for a backward interchange performed on
oi j1 and oi jk , a forward interchange on oi jk and oi jk−1 is inserted into the tabu list. For any adjacent pairwise
interchange on oi jk and oi jk+1 carried out either in the MAI neighborhood or as part of a forward or a
backward interchange on adjacent operations in the GI neighborhood, three reverse moves are included
in the tabu list: a forward interchange on oi jk+1 and oi jk , a backward interchange on oi jk+1 and oi jk , and
a primary interchange on oi jk+1 and oi jk in the MAI neighborhood. Note that secondary interchanges in
the MAI neighborhood are not checked against the tabu list. In our tabu search algorithm, the length
of the tabu list is not fixed, but a tabu tenure is associated with each tabu move inserted into the list.
That is, a move is deleted from the list after a fixed number of iterations. The tabu tenure is a function
of the number of disjunctive arcs in G′ at the time the move is added to the tabu list. We conclude this
section by pointing out that the number of parameters in our tabu search algorithm is kept minimal
which is a significant advantage. Note that one of the major criticisms against metaheuristics is that their
performance generally depends on a large number of parameters that need to be tuned properly which
is a hard and time consuming endeavor.

2.4 Tree Search The SB procedure as described in this paper in its original form up until here
terminates in m iterations since a new bottleneck machine is added to the set of scheduled machines
MS at each iteration. While this method yields reasonably good results frequently and fairly quickly,
many researchers have observed that changing the sequence in which the machines are scheduled leads
to greatly improved results in general. For instance, both Adams et al. (1988) and Pinedo and Singer
(1999) run a search over the set of possible orders in which the machines may be scheduled in their SB
heuristics for Jm//Cmax and JS-TWT, respectively. In both cases, a partial enumeration tree is constructed
over this search space due to the prohibitively large number of permutations of m machines even for
small m. We follow suit with these authors and pick different orders in which the machines are added
toMS. Our computational results in Section 3 indicate that the extra effort is well-spent.

Each node vx(Ms) of the enumeration tree corresponds to an ordered set MS and the associated
disjunctive graph G′(N,AC ∪ AS

D) in the SB heuristic, where the order inMS prescribes the sequence of
scheduling the machines in the SB heuristic. At the root node, MS = ∅ and AS

D = ∅. A child node is
obtained by appending a machine i ∈ (M \MS) toMS and inserting the necessary disjunctive arcs for
machine i into AS

D as a result of solving the associated single-machine subproblem. Node vx(Ms) is at
level | Ms | of the tree, and the relationship between the level and the number of children of vx(Ms) is
expressed by a vector β = (β0, . . . , βm−1), where βl represents the maximum number of children for a node
at level l of the tree. Thus, for a tree node vx(Ms) we rank the machines inM \MS in non-increasing
order of their respective subproblem objective function values and create a child node for each of the β|MS |
most critical machines. The vector β is generally selected such that the number of children are decreasing
with l. This is in alignment with the fundamental idea of the SB heuristic that the earlier scheduling
decisions matter more and is also followed by Adams et al. (1988). In contrast, Pinedo and Singer (1999)
set βl, l = 1, . . . ,m− 1, to a constant. The size of the partial enumeration tree is a major determinant of the
overall running time of the SB heuristic, and we cannot generally afford more than two or three children
per node.

We follow a depth-first-search (DFS) strategy in our partial enumeration. Our primary incentive
here is to get a feasible solution for JS-TWT early during the search procedure. The objective value
of the current best feasible schedule is then employed in our fathoming rule which further restricts
the size of the search tree and reduces the running time. To this end, we define an m × m matrix F,
where Fil, i = 1, . . . ,m, l = 1, . . . ,m, is an estimate of the increase in the objective function if machine i is
scheduled in lth order in the SB heuristic. Whenever machine i is appears in lth order inMS at a node
vx(Ms), we update Fil as

Fil = min(Fil,∆), (16)

where ∆ represents the difference of the objective values associated with vx(Ms) and its parent node.
Then, a conservative estimate of the lowest objective function value that may be obtained by extending
the schedule associated with vx(Ms) to a feasible schedule for JS-TWT is given by

z(vx(Ms)) = z(vx(Ms)) +
∑

i∈M\Ms

(
min

|MS |+1≤l≤m
Fil

)
, (17)

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 17

where z(vx(Ms)) is the objective value associated with vx(Ms). Given the best available objective value
z∗ for JS-TWT, we fathom vx(Ms) if z(vx(Ms)) ≥ z∗. For the reliability of the estimate in (17), we only
apply the fathoming rule if each machine i ∈ (M \MS) has been scheduled at least ltree

1 times at one of
the levels | MS | +1, . . . ,m, before. Moreover, we do not invoke the fathoming rule at levels smaller
than a predetermined threshold value ltree

2 . The exact values of these parameters of ltree
1 and ltree

2 are
specified in Section 3. To the best of our knowledge, this control structure for fathoming nodes in
the partial enumeration tree which incorporates an estimate of the impact of scheduling the currently
unscheduled machines is novel for SB algorithms. A short description of how a node is processed in the
partial enumeration tree is given in Algorithm 4. The lower bound in Step 10 is computed based on the
operation and job completion times in G′(N,AC) with all machine capacity constraints relaxed during the
initialization step of the SB heuristic. Also note that the DFS is implemented as a stack, i.e., according to
the last-in-first-out principle.

Algorithm 4: Processing a node in the partial enumeration tree in the SB heuristic.
input : Pick the first unprocessed node in the DFS stack. Assume that the information associated

with the parent node vx(MS) is available, and machine ib ∈ (M\MS) is to be scheduled next.

1 MS =MS ∪ {ib}. The operation processing sequence on ib is retrieved from the corresponding
subproblem previously solved while processing the parent node. Update G′(N,AC ∪ AS

D)
accordingly;

2 Determine the longest paths and retrieve the associated operation and job completion times, the tail
lengths from every node to all terminal nodes, and the objective function value;

3 Apply re-optimization by tabu search. Update the best known overall objective value z∗ and the
best schedule x∗ if appropriate;

4 Update Fib |MS | per (16);
5 if current node is not to be fathomed per (17) then
6 Set up and solve one single-machine subproblem for each machine i ∈ (M\MS);
7 Sort the subproblem objectives in non-increasing order of their criticality;
8 Create one child node for the min(β|MS |, | M \MS |) most critical machines, and add these in

non-decreasing order of criticality to the DFS stack; /* Ensure that more critical child

nodes are processed first in later iterations. */

9 end
10 Terminate the SB heuristic if z∗ is equal to the lower bound on the optimal objective value of JS-TWT;

We conclude this section by discussing the synergy between the tree search described above and the
tabu search applied during the re-optimization step. At any leaf node of the search tree, the tabu search
is applied to a feasible schedule for JS-TWT that results from a distinct order of scheduling the machines.
Thus, we may also think of the tree search over the sequence of scheduling the machines as a long-term
memory in the context of tabu search. This helps us to further diversify the tabu search, leading to
significant gains in solution quality in many cases. In addition, we can directly control the running
time of the SB algorithm by controlling the size of the tree which is determined by the vector β and the
fathoming parameters. Our entire framework relies on a deterministic mechanism, and thus we can
guarantee that the SB algorithm will not terminate with a worse solution if we expand the search tree,
barring rare corner cases resulting from fathoming. In our opinion, combined with repeatability this is a
significant advantage of our approach in comparison to other (meta-)heuristics based on random search
operators.

3. Computational Study We designed our computational experiments with several goals in mind.
In the first part of our study, we demonstrate that there exists a synergy between the tabu search in
Section 2.3 employed during the re-optimization step in our SB-TS heuristic and the tree search in
Section 2.4. In addition, we provide evidence that the combined generalized interchange/multiple adjacent
interchange (G/MAI) neighborhood in the tabu search performs on average better than both the GI and
MAI neighborhoods put into use individually. The GI neighborhood appears to be superior to the
MAI neighborhood in general. These results should prompt more research on neighborhood generators
for JS-TWT (and for Jm//Cmax) that reverse several disjunctive arcs in a single move as well as on

18 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

integrated neighborhoods with complementary properties. Furthermore, if the subproblem definition is
appropriate and the associated solution procedure is effective, then we expect to come across high-quality
solutions early during the SB-TS heuristic. Results pointing in this direction are provided. In the second
part of our study, we focus on the single-machine subproblems solved in the SB-TS algorithm. We study
the quality of the solutions obtained from the subproblems by comparing them to the corresponding
optimal solutions. One potential drawback of our subproblem definition stems from the fact that the
planning horizon in the transportation problem depends on the sum of the operation processing times.
As mentioned in Section 2.2, we argue that this issue may be partially addressed by scaling the down
the original due dates, ready times, and the processing times appropriately, and then applying SB-TS to
the scaled instance. The resulting job processing sequences of the machines are then fed back into the
original instance. We develop this idea in more detail in this section, and our numerical results indicate
that this approach does not lead to a major loss in solution quality while reducing computation times.
In the final part of our study, we compare our algorithms against existing approaches in the literature
based on standard benchmark instances for JS-TWT. SB-TS can also solve classical makespan instances
with no modifications required, and we present a limited set of results for well-known hard instances of
Jm//Cmax.

The standard set of benchmark instances for JS-TWT with 10 machines and 10 jobs are due to
Pinedo and Singer (1999) who modify 22 well-known instances of Jm//Cmax by adding due dates and
unit tardiness weights for their purposes. For job j, the due date is set as d j = r j + b f ∗

∑m
i=1 pi jc, where f is

referred to as due date tightness factor, and assumes one of the values 1.3, 1.5, or 1.6. The unit tardiness
weights are set to 1, 2, and 4 for 20%, 60%, and 20% of the jobs, respectively, in line with the distribution
of customer order priorities observed in practice. The optimal solutions for these instances are obtained
by Singer and Pinedo (1998); however, it appears that in this paper the branch-and-bound algorithm was
either stopped prematurely or the due dates were inadvertently set too tight because solutions better than
those reported by Singer and Pinedo (1998) appear in subsequent research. Kreipl (2000), De Bontridder
(2005), and Essafi et al. (2008) all demonstrate the quality of their algorithms on this set of instances, and
we follow suit. In addition, Essafi et al. (2008) create a new set of benchmark instances for JS-TWT based
on the instances created by Lawrence (1984) and frequently used for Jm//Cmax. These instances cover a
range of sizes from 5 × 10 (m × n) to 10 × 30, and Essafi et al. (2008) adapt these instances to JS-TWT by
following the procedure described above. We also present results for this new set of instances.

The algorithms we developed were implemented in Visual Basic (VB) under Excel. The
transportation problems were solved by IBM ILOG CPLEX 9.1 through the VB interface pro-
vided by the IBM ILOG OPL 3.7.1 Component Libraries. The numerical experiments were per-
formed on a single core of an HP Compaq DX 7400 computer with a 2.40 GHz Intel Core
2 Quad Q6600 processor and 3.25 GB of memory running on Windows XP. The Excel/VB en-
vironment was selected for ease and speed of development at the expense of computational
speed. The integer operation benchmarks Standard Performance Evaluation Corporation (1996) and
Standard Performance Evaluation Corporation (2007) published by the Standard Performance Evalua-
tion Corporation indicate that our workstation is about 6.4 times faster than the Dell XPS P90c computer
used by Pinedo and Singer (1999) in order to solve their benchmark instances for JS-TWT. On the other
hand, based on our comparisons for simple but intensive computing tasks, an equivalent C program is
about 6.75 times faster than the corresponding Excel/VB code. That is, we reckon that our implemen-
tation environment is approximately as slow as that of Pinedo and Singer (1999). This point should be
taken into account while evaluating the times reported in our study.

A typical and well-deserved criticism against approaches based on metaheuristics argues that the
number of parameters used in such algorithms is too many, and the performance depends crucially on
an extensive parameter tuning. Thus, as a design goal we refrain from parametrizing too much and
set the values of most of our parameters once and for all at the beginning for all instances. In Step 6
of Algorithm 3, we explore at least lTS

1 = 30 solutions in the neighborhood of the current solution xk,
unless this number exceeds the size of the neighborhood, and do not evaluate more than 60% of the
total number solutions in the neighborhood as long as this number uTS

1 is larger than 30. In Step 7,
we terminate the tabu search if the best known solution does not improve for uTS

2 successive iterations,
where uTS

2 is determined as 0.3 times the number of disjunctive arcs present in the current disjunctive
graph G′. Similarly, the tabu tenure of a reverse move added to the tabu list is calculated as 0.75 times the
number of disjunctive arcs in G′. The values of these parameters were determined by some preliminary

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 19

runs during the development process, but no experimental design was applied. The dependence of uTS
2

and the tabu tenure on the number of disjunctive arcs in G′ reflects the extra effort required to escape
local optima as more machines are scheduled. The parameters controlling the size of the search tree are
determined by the number of machines in an instance and are given separately for each set of instances
in the sequel.

3.1 Tree Search, Tabu Search, and Neighborhood Generators In our first set of experiments, we
solve 22 instances of size 10 × 10 due to Pinedo and Singer (1999) using three types of neighborhoods
for different tree sizes. The results are reported in Table 1. The table consists of three parts, one for each
possible value of f = 1.3, 1.5, and 1.6. The instance names are listed in the first column and the associated
optimal objective values from Singer and Pinedo (1998) are given in the next column. The associated
value of f is appended to the name of the instance. As discussed in Section 2.4, the size of the search tree
for identifying a good sequence of scheduling the machines in the SB heuristic is controlled by a parameter
β = (β0, . . . , βm−1), where βl represents the maximum number of children for a node at level l of the tree.
In our experiments, β assumes one of five possible values (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (2, 2, 2, 1, 1, 1, 1, 1, 1, 1),
(3, 2, 2, 2, 2, 2, 1, 1, 1, 1), (3, 2, 2, 3, 2, 2, 1, 1, 1, 1), and (3, 2, 2, 3, 3, 2, 1, 1, 1, 1). Moreover, the values of the
parameters ltree

1 and ltree
2 which control the fathoming rule in (17) are set to 3 and 5, respectively. For each

value of β, the SB-TS algorithm is run three times on a given instance by selecting the neighborhood
generator in the tabu search as GI, MAI, or the combined neighborhood G/MAI. The objective function
values for each combination of the possible values of β and the neighborhood generator are presented in
columns 6-15 in Table 1. For these experiments, re-optimization is invoked each time a new machine is
scheduled. This is referred to as full re-optimization and indicated by “RF” attached to β in the column
headers of Table 1. In addition, in order to set the baseline and illustrate the synergy between the tabu
search and the tree search we first obtain a feasible solution for JS-TWT by selecting only one bottleneck
machine at each level and then apply tabu search to this feasible solution. These results are reported in
columns 3-5 under “(1,1,1,1,1,1,1,1,1,1)-RL,” where “RL” stands for “re-optimization at a leaf node only.”
In all tables in this section, we designate an optimal solution obtained by a heuristic by appending a
“*” to the associated objective value. Furthermore, objective values which are strictly better than those
reported by Singer and Pinedo (1998) appear in bold. The average optimality gap over 22 associated
instances and the number of instances solved to optimality are presented in rows with headers “Avg.
Gap(%)” and “# Opt.,” respectively. A row with the header “Avg. T.(sec.)” provides the average time
elapsed until the best solution is identified in a given run in real seconds over 22 associated instances.
Note that a positive objective value obtained by SB-TS for an instance with zero optimal objective value
has to be excluded from the computation of the average optimality gap. Thus, as an alternate measure we
calculate the sum of the weighted tardiness values for 22 instances and compute the gap of this number
with respect to the corresponding sum of the optimal objective values. This performance measure is
labeled as “Total Gap(%).”

The results reveal several important observations and trends. First, the combined neighborhood
G/MAI is superior to both the GI and MAI neighborhoods for all instances and across all performance
measures when these neighborhoods are used in isolation. These results verify our claims in Section 2.3
that the GI and MAI neighborhoods feature complementary properties and combining them incorporates
a degree of diversification directly into the neighborhood definition. Furthermore, the GI neighborhood
consistently outperforms the MAI neighborhood for f = 1.3. For instances with looser due dates, the
picture is more mixed. Second, we observe that the sequence of scheduling the machines in the shifting
bottleneck heuristic has a significant effect on the solution quality. Trying out different orders is crucial
to the overall success of the SB-TS algorithm. The trade-off between solution quality and solution time
is clearly illustrated as we move from (1,1,1,1,1,1,1,1,1,1)-RL toward (3,2,2,3,3,2,1,1,1,1)-RF in Table 1.
Note that the tree parameters are selected such that the search tree under the setting (1,1,1,1,1,1,1,1,1,1)-
RF is a subset of the search tree under the setting (2,2,2,1,1,1,1,1,1,1)-RF, and so on, and the solution
quality improves from left to right in Table 1. However, the benefits of using a larger tree level off
from (3,2,2,2,2,2,1,1,1,1)-RF to (3,2,2,3,2,2,1,1,1,1)-RF and then to (3,2,2,3,3,2,1,1,1,1)-RF. That is, the tree
parameters provide us with a powerful tool to trade-off solution quality and solution time given the
deterministic nature of SB-TS, and the tree search may be regarded as a long-term memory from the
perspective of tabu search. The results under (1,1,1,1,1,1,1,1,1,1)-RL clearly state that generating an initial
feasible solution for JS-TWT and then applying the proposed tabu search yields poor solutions.

20 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

Ta
bl

e
1:

Eff
ec

to
ft

he
tr

ee
pa

ra
m

et
er

s
an

d
th

e
ne

ig
hb

or
ho

od
ge

ne
ra

to
rs

on
th

e
pe

rf
or

m
an

ce
of

th
e

SB
-T

S
he

ur
is

ti
c.

(1
,1

,1
,1

,1
,1

,1
,1

,1
,1

)-
R

L
(1

,1
,1

,1
,1

,1
,1

,1
,1

,1
)-

R
F

(2
,2

,2
,1

,1
,1

,1
,1

,1
,1

)-
R

F
(3

,2
,2

,2
,2

,2
,1

,1
,1

,1
)-

R
F

(3
,2

,2
,3

,2
,2

,1
,1

,1
,1

)-
R

F
(3

,2
,2

,3
,3

,2
,1

,1
,1

,1
)-

R
F

In
st

an
ce

O
pt

.
M

A
I

G
I

G
/M

A
I

M
A

I
G

I
G

/M
A

I
M

A
I

G
I

G
/M

A
I

M
A

I
G

I
G

/M
A

I
M

A
I

G
I

G
/M

A
I

M
A

I
G

I
G

/M
A

I

ab
z0

5
1.

3
14

05
25

54
22

52
24

67
20

82
19

57
20

24
15

69
14

62
16

08
15

63
14

62
14

87
14

45
14

62
14

62
14

45
14

62
14

62
ab

z0
6

1.
3

43
6

93
7

12
19

93
0

10
71

67
8

57
8

51
6

52
1

44
9

44
7

44
9

43
6*

44
7

44
9

43
6*

43
6*

43
6*

43
6*

la
16

1.
3

11
70

14
30

17
83

13
67

15
70

15
19

13
37

12
50

11
69

*
12

50
11

69
*

11
69

*
11

69
*

11
69

*
11

69
*

11
69

*
11

69
*

11
69

*
11

69
*

la
17

1.
3

90
0

10
17

12
27

12
19

10
73

13
53

10
17

10
73

93
6

89
9*

89
9*

89
9*

89
9*

89
9*

89
9*

89
9*

89
9*

89
9*

89
9*

la
18

1.
3

92
9

15
18

11
77

10
61

15
21

96
3

97
4

93
6

96
3

96
3

92
9*

92
9*

92
9*

92
9*

92
9*

92
9*

92
9*

92
9*

92
9*

la
19

1.
3

94
8

14
67

17
23

14
41

20
83

12
26

14
40

13
32

12
26

11
29

11
46

10
36

95
5

11
46

10
36

95
5

11
11

10
24

95
5

la
20

1.
3

80
9

11
17

14
40

92
2

98
7

11
36

87
8

86
3

92
9

80
5*

80
5*

80
5*

80
5*

80
5*

80
5*

80
5*

80
5*

80
5*

80
5*

la
21

1.
3

46
4

89
8

12
83

11
40

60
4

91
2

46
3*

52
4

46
3*

46
3*

46
3*

46
3*

46
3*

46
3*

46
3*

46
3*

46
3*

46
3*

46
3*

la
22

1.
3

10
68

18
38

22
07

17
96

10
84

12
68

13
44

10
84

10
84

10
84

10
84

10
84

10
84

10
84

10
84

10
84

10
84

10
84

10
84

la
23

1.
3

83
7

15
81

19
97

12
69

12
20

10
95

97
0

11
11

10
12

87
7

97
1

87
7

87
7

97
0

87
7

87
7

92
9

87
7

87
7

la
24

1.
3

83
5

11
63

10
86

85
7

97
9

10
91

10
51

85
5

94
6

83
9

85
5

83
5*

83
5*

83
9

83
5*

83
5*

83
5*

83
5*

83
5*

m
t1

0
1.

3
13

68
18

06
17

10
17

86
17

67
18

14
17

77
17

67
16

85
16

38
16

53
13

63
*

13
63

*
13

97
13

63
*

13
63

*
13

97
13

63
*

13
63

*
or

b0
1

1.
3

25
68

44
66

36
08

36
08

32
52

29
33

29
14

32
52

26
05

29
14

28
39

25
68

*
26

30
28

39
25

68
*

26
30

27
63

25
68

*
26

30
or

b0
2

1.
3

14
12

18
56

20
77

19
90

24
18

17
74

18
42

16
63

16
71

16
59

14
08

*
14

08
*

14
08

*
14

08
*

14
08

*
14

08
*

14
08

*
14

08
*

14
08

*
or

b0
3

1.
3

21
13

40
39

40
88

34
06

33
71

34
08

32
23

28
46

30
79

27
19

22
22

21
76

21
86

22
22

21
76

21
15

22
21

21
76

21
15

or
b0

4
1.

3
16

23
27

50
23

16
25

02
24

82
19

77
19

99
16

76
19

63
19

99
16

76
18

44
16

52
16

76
18

44
16

52
16

76
18

06
16

52
or

b0
5

1.
3

15
93

22
90

23
88

21
74

18
40

20
44

20
98

18
40

15
93

*
17

61
17

38
15

93
*

16
67

15
93

*
15

93
*

15
93

*
15

93
*

15
93

*
15

93
*

or
b0

6
1.

3
17

92
40

08
36

51
35

27
33

71
33

34
30

77
22

53
20

59
20

90
19

82
18

44
17

90
*

19
82

18
43

17
90

*
19

82
17

94
17

90
*

or
b0

7
1.

3
59

0
10

03
10

03
10

03
83

8
79

8
73

5
62

6
67

2
62

6
61

6
65

8
61

6
61

6
65

7
61

6
61

6
64

2
61

6
or

b0
8

1.
3

24
29

43
48

48
41

43
07

38
93

42
50

28
98

25
41

30
24

25
80

25
41

26
24

25
03

25
03

26
61

25
03

25
03

26
61

24
53

or
b0

9
1.

3
13

16
25

64
24

53
20

47
16

61
16

39
15

71
16

61
15

92
15

71
13

16
*

15
76

13
16

*
13

16
*

13
16

*
13

16
*

13
16

*
13

16
*

13
16

*
or

b1
0

1.
3

16
79

23
53

19
59

20
79

22
30

28
10

24
44

18
77

21
57

18
95

18
13

19
37

18
01

18
09

18
01

18
01

18
09

17
59

18
01

To
ta

lG
ap

(%
)

66
.1

8
67

.9
0

51
.6

7
46

.3
6

41
.3

5
29

.5
9

17
.0

8
16

.0
1

12
.4

9
6.

54
4.

65
2.

08
4.

50
3.

37
1.

47
3.

91
2.

78
1.

30
A

vg
.G

ap
(%

)
65

.0
6

74
.6

2
53

.4
9

47
.8

1
40

.7
8

27
.2

0
16

.1
4

14
.6

9
10

.3
3

5.
90

4.
33

1.
74

4.
08

3.
12

1.
29

3.
42

2.
47

1.
20

#
O

pt
.

0
0

0
0

0
1

0
3

3
7

10
11

8
11

12
10

12
12

A
vg

.T
.(s

ec
.)

3.
93

3.
87

4.
34

6.
26

6.
91

8.
00

25
.1

5
26

.7
4

31
.5

3
13

9.
88

16
7.

00
18

0.
39

22
3.

60
19

1.
29

28
2.

63
30

4.
84

26
7.

63
35

6.
19

ab
z0

5
1.

5
69

22
5

22
1

18
6

16
6

11
0

75
11

4
96

75
75

75
70

75
75

70
69

*
69

*
69

*
ab

z0
6

1.
5

0
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
la

16
1.

5
16

6
28

4
33

6
28

3
32

2
27

0
23

9
16

8
16

9
17

8
16

6*
16

8
16

6*
16

6*
16

8
16

6*
16

6*
16

6*
16

6*
la

17
1.

5
26

0
30

4
39

7
28

9
26

0*
26

8
26

8
26

0*
26

0*
26

0*
26

0*
26

0*
26

0*
26

0*
26

0*
26

0*
26

0*
26

0*
26

0*
la

18
1.

5
34

15
0

35
1

20
0

83
74

34
*

36
60

34
*

34
*

34
*

34
*

34
*

34
*

34
*

34
*

34
*

34
*

la
19

1.
5

21
29

7
43

4
21

6
56

11
0

20
8

56
54

10
4

42
52

23
42

42
23

42
21

*
23

la
20

1.
5

0
87

14
3

57
1

14
1

1
1

1
1

1
1

1
1

1
1

1
1

la
21

1.
5

0
86

52
78

12
14

12
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
la

22
1.

5
19

6
50

9
49

2
50

4
60

4
24

5
34

0
19

6*
19

6*
19

6*
19

6*
19

6*
19

6*
19

6*
19

6*
19

6*
19

6*
19

6*
19

6*
la

23
1.

5
2

55
54

2*
16

20
2*

2*
2*

2*
2*

2*
2*

2*
2*

2*
2*

2*
2*

la
24

1.
5

82
32

8
23

4
16

2
13

8
11

5
13

1
10

7
94

10
6

82
*

82
*

82
*

82
*

82
*

82
*

82
*

82
*

82
*

m
t1

0
1.

5
39

4
58

2
78

4
74

2
79

4
63

8
43

3
49

5
42

7
43

3
44

4
42

7
39

4*
44

4
42

7
39

4*
39

4*
42

7
39

4*
or

b0
1

1.
5

10
98

21
58

20
34

18
35

19
70

17
00

13
26

18
19

17
00

13
26

14
42

12
38

13
26

13
81

12
38

12
02

13
30

12
38

12
02

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 21

(1
,1

,1
,1

,1
,1

,1
,1

,1
,1

)-
R

L
(1

,1
,1

,1
,1

,1
,1

,1
,1

,1
)-

R
F

(2
,2

,2
,1

,1
,1

,1
,1

,1
,1

)-
R

F
(3

,2
,2

,2
,2

,2
,1

,1
,1

,1
)-

R
F

(3
,2

,2
,3

,2
,2

,1
,1

,1
,1

)-
R

F
(3

,2
,2

,3
,3

,2
,1

,1
,1

,1
)-

R
F

In
st

an
ce

O
pt

.
M

A
I

G
I

G
/M

A
I

M
A

I
G

I
G

/M
A

I
M

A
I

G
I

G
/M

A
I

M
A

I
G

I
G

/M
A

I
M

A
I

G
I

G
/M

A
I

M
A

I
G

I
G

/M
A

I

or
b0

2
1.

5
29

2
92

0
12

11
69

0
44

2
42

2
41

3
33

0
34

5
32

2
29

2*
29

2*
32

2
29

2*
29

2*
32

2
29

2*
29

2*
29

2*
or

b0
3

1.
5

91
8

29
81

25
48

25
78

18
72

15
71

12
75

10
21

12
20

10
98

99
1

92
8

96
8

99
1

92
8

95
2

99
1

92
8

92
8

or
b0

4
1.

5
35

8
92

4
12

23
10

11
35

8*
63

1
97

7
35

8*
44

8
35

8*
35

8*
35

8*
35

8*
35

8*
35

8*
35

8*
35

8*
35

8*
35

8*
or

b0
5

1.
5

40
5

12
42

11
54

10
59

60
0

55
7

53
1

52
9

54
7

40
5*

40
5*

44
1

40
5*

40
5*

44
1

40
5*

40
5*

44
1

40
5*

or
b0

6
1.

5
42

6
11

87
10

14
76

9
11

80
10

34
77

5
53

6
56

9
77

5
52

4
52

0
42

6*
52

4
42

6*
42

6*
52

4
42

6*
42

6*
or

b0
7

1.
5

50
23

8
27

0
26

4
13

4
20

5
14

1
13

2
14

4
50

*
50

*
50

*
50

*
50

*
50

*
50

*
50

*
50

*
50

*
or

b0
8

1.
5

10
23

22
06

17
51

15
19

19
06

17
67

10
23

*
15

39
14

14
10

23
*

12
92

13
99

10
23

*
12

05
13

40
10

23
*

12
05

13
40

10
23

*
or

b0
9

1.
5

29
7

10
62

98
4

10
86

52
5

39
4

30
6

30
6

37
4

29
7*

29
7*

33
4

29
7*

29
7*

33
0

29
7*

29
7*

33
0

29
7*

or
b1

0
1.

5
34

6
10

92
13

00
11

31
74

7
91

8
67

2
57

5
55

3
61

5
53

7
42

4
42

4
45

8
42

4
42

4
45

8
42

4
42

4

To
ta

lG
ap

(%
)

16
2.

81
16

3.
90

12
7.

76
89

.3
1

72
.0

8
42

.6
4

33
.2

9
34

.7
4

18
.9

7
16

.3
6

13
.1

1
6.

06
12

.8
3

10
.5

2
3.

88
11

.1
7

10
.0

7
3.

03
A

vg
.G

ap
(%

)
35

8.
58

42
3.

50
18

9.
44

12
6.

51
13

5.
07

87
.7

8
34

.5
3

38
.5

3
31

.4
6

12
.6

3
13

.4
5

3.
33

10
.8

7
9.

79
2.

71
9.

63
4.

56
2.

03
#

O
pt

.
1

1
2

3
1

4
6

5
11

13
10

15
13

11
15

15
14

17
A

vg
.T

.(s
ec

.)
8.

99
9.

45
12

.0
4

10
.6

9
12

.4
5

11
.1

3
41

.2
5

45
.1

3
30

.1
1

13
4.

54
19

5.
79

10
6.

31
18

6.
22

23
1.

90
15

5.
68

26
0.

79
31

9.
30

26
0.

67

ab
z0

5
1.

6
0

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

ab
z0

6
1.

6
0

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

la
16

1.
6

0
0*

48
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
la

17
1.

6
65

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

65
*

la
18

1.
6

0
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
la

19
1.

6
0

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

la
20

1.
6

0
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
la

21
1.

6
0

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

la
22

1.
6

0
87

82
4

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
la

23
1.

6
0

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

la
24

1.
6

0
50

16
0*

21
18

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
m

t1
0

1.
6

14
1

18
4

18
4

18
4

18
4

62
6

28
7

18
4

18
6

18
4

17
6

18
4

15
5

17
6

18
4

15
5

17
6

18
4

15
5

or
b0

1
1.

6
56

6
15

24
13

34
86

2
11

69
87

5
11

13
10

46
87

5
88

1
83

6
82

9
77

6
83

6
61

9
77

6
82

1
61

9
61

9
or

b0
2

1.
6

44
34

6
35

4
23

4
86

13
2

94
86

10
4

58
58

58
52

58
58

52
58

58
52

or
b0

3
1.

6
42

2
11

64
13

11
78

2
77

9
64

5
10

13
60

2
60

5
54

6
53

3
53

3
46

1
53

3
53

3
46

1
53

3
46

1
46

1
or

b0
4

1.
6

66
14

3
25

9
14

3
96

96
66

*
90

66
*

66
*

66
*

66
*

66
*

66
*

66
*

66
*

66
*

66
*

66
*

or
b0

5
1.

6
16

3
29

5
27

5
27

9
33

0
45

8
30

3
18

1
21

1
19

3
18

1
19

3
18

1
18

1
19

3
18

1
18

1
19

3
18

1
or

b0
6

1.
6

31
77

5
13

67
65

2
30

4
38

8
27

5
84

69
67

38
38

31
*

38
38

31
*

37
38

31
*

or
b0

7
1.

6
0

34
12

0*
6

16
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

0*
0*

or
b0

8
1.

6
62

1
13

12
17

02
12

82
10

25
10

72
13

25
88

3
79

5
84

3
71

6
71

6
70

1
67

5
71

6
67

2
67

5
71

6
67

2
or

b0
9

1.
6

66
23

9
29

0
23

3
15

7
18

1
11

1
11

1
16

6
11

1
66

*
66

*
66

*
66

*
66

*
66

*
66

*
66

*
66

*
or

b1
0

1.
6

76
22

0
16

9
18

7
57

8
39

6
88

96
19

8
88

84
12

4
84

84
10

8
84

84
92

78

To
ta

lG
ap

(%
)

18
4.

74
23

0.
30

11
7.

03
11

2.
30

11
9.

73
10

9.
64

51
.6

1
47

.7
2

37
.2

0
24

.6
8

27
.0

2
16

.6
7

22
.8

7
17

.0
3

15
.3

9
22

.1
6

13
.1

4
8.

18
A

vg
.G

ap
(%

)
22

2.
23

35
4.

89
15

6.
98

11
0.

46
13

4.
87

69
.2

8
27

.6
6

34
.4

7
18

.2
5

8.
64

11
.5

7
4.

95
8.

34
8.

93
4.

74
8.

07
7.

19
3.

12
#

O
pt

.
9

8
11

10
10

13
12

13
13

14
14

15
14

14
15

14
14

15
A

vg
.T

.(s
ec

.)
11

.5
1

8.
50

8.
92

12
.0

2
13

.7
2

12
.9

6
24

.1
7

30
.3

7
26

.3
2

11
0.

04
16

5.
57

14
9.

35
14

3.
81

21
9.

97
22

9.
28

19
9.

91
31

7.
74

22
3.

46

22 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

The bottom line is that a synergy is created by embedding the tabu search into the shifting bottleneck
framework. Third, SB-TS yields excellent solutions in reasonable times. Over 66 instances, the SB-
TS heuristic with the tree parameters (3,2,2,3,2,2,1,1,1,1)-RF and the combined neighborhood generator
G/MAI provides 42 optimal solutions with an average optimality gap of 2.92% in an average computation
time of 223 seconds. The corresponding performance measures for (3,2,2,3,3,2,1,1,1,1)-RF and G/MAI
are 44 optimal solutions, an average optimality gap of 2.12%, and an average computation time of 280
seconds, respectively. In Figure 8, we present a detailed analysis of the solution quality versus the
solution time and the number of feasible schedules constructed for JS-TWT. For the results with the tree
parameters (3,2,2,3,3,2,1,1,1,1)-RF and the G/MAI neighborhood, we take a snapshot of the optimality
gaps after 60, 120, 180, 300, 450, and 600 seconds of solution time and depict the empirical cumulative
distributions of these gaps in Figure 8(a). A similar figure is produced for the number of leaf nodes
traversed in the search tree in Figure 8(b), where each leaf node corresponds to a feasible schedule for
JS-TWT. In these figures, gaps larger than 100% appear as 100%. Also, if the objective value is positive
for an instance with a zero optimal objective value, the gap is set to 100%. In Figure 8(a), we observe
that more than 1/3 of the instances (23 instances) are solved to optimality in 60 seconds, while this figure
increases to 42% (28 instances) in 120 seconds. After 600 seconds of solution time, 58% of the instances
(38 instances) are solved to optimality, and 76% (50 instances) and 83% (55 instances) of the instances are
within 5% and 10% of optimality, respectively. Intuitively, if the shifting bottleneck framework performs
well, then good solutions should be identified early in the tree. This intuition is verified in Figure 8(b).
For 11% of the instances (7 instances), an optimal solution is obtained after re-optimization at the first
leaf node, while 1/3 of the instances (22 instances) are solved to optimality after visiting at most 10 leaf
nodes in the search tree.

One specific idea that involves scaling the data is discussed in the next section in order to reduce the
solution times. In addition, there are several avenues we may explore in the future in order to decrease
the computational effort expended in SB-TS. Computing the longest paths approximately in order to
evaluate the solutions in the neighborhood of the current solution in the tabu search would be a first
priority because a significant portion of the total solution time in SB-TS is devoted to computing longest
paths from scratch. See Balas and Vazacopoulos (1998) and Essafi et al. (2008) for approximate move
evaluations. We also reckon that SB-TS is amenable to parallelization as different branches in the search
tree may be assigned to different processing units. Finally, it may be possible to do warm starts in the
subproblems if similar instances of the transportation problem are solved at different points in time
during the course of the shifting bottleneck algorithm.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Gap

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

60 sec.
120 sec.
180 sec.
300 sec.
450 sec.
600 sec.
> 600 sec.

(a) Optimality gaps as a function of solution times.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Gap

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

1 schedule
10 schedules
20 schedules
30 schedules
40 schedules
50 schedules
75 schedules
100 schedules
> 100 schedules

(b) Optimality gaps as a function of the number of feasible
schedules constructed for JS-TWT.

Figure 8: The progress of the optimality gaps in the SB-TS heuristic.

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 23

3.2 Subproblems In this section, we first analyze the quality of the preemptive lower bounds and
the feasible solutions obtained for the subproblems in the SB-TS heuristic. To this end, we export all
22,281 subproblems solved during the course of the shifting bottleneck algorithm while applying SB-TS
to the instances in Table 1 with the tree parameters (2,2,2,1,1,1,1,1,1,1)-RF and the G/MAI neighborhood.
We solve these instances optimally using a standard single-machine time-indexed formulation, first
introduced by Dyer and Wolsey (1990), and plot the empirical cumulative distribution of the optimality
gaps in Figure 9. The nonpositive gaps are associated with the lower bounds given by the transportation
problem, and the nonnegative gaps correspond to the the feasible non-preemptive solutions constructed
based on the processing sequences extracted from the optimal solution of the transportation problem as
discussed in Section 2.2. All gaps larger than 100% appear as 100%, and if the objective function value
of a non-preemptive feasible solution is positive for an instance with a zero optimal objective value,
the gap is set to 100%. Figure 1 reveals that more than 60% of the subproblems are solved optimally
for all values of f while in about 20% of the instances either the objective value is at least twice the
optimal objective value or an optimal solution cannot be identified for an instance with a zero optimal
objective value. Furthermore, the lower bound obtained from the transportation problem is identical
to the optimal non-preemptive objective value in more than 40% of the instances for f = 1.5, 1.6, while
this number drops to 20% for f = 1.3. In about 10% of the instances, the preemptive lower bound is
zero while the optimal objective value is positive which corresponds to a -100% optimality gap for the
transportation problem. Summarizing, the quality of the information provided by the transportation
problem is frequently sufficient to construct good feasible solutions for the single-machine subproblems;
however there is room for improvement. For example, instances with zero lower bounds are difficult.
In such cases, there typically exists a large number of alternate optimal solutions in the transportation
problem, and extracting a good sequence for constructing a feasible solution is tricky. We note that the
lower bound is zero in 67% of the cases in which the gap of the feasible solution is 100% in Figure 9.

−100−80 −60 −40 −20 0 20 40 60 80 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Percentage Gap

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(a) f = 1.3

−100−80 −60 −40 −20 0 20 40 60 80 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Percentage Gap

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(b) f = 1.5

−100−80 −60 −40 −20 0 20 40 60 80 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Percentage Gap

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(c) f = 1.6

Figure 9: Solution quality of the lower and upper bounds obtained from the subproblems.

Table 2: Effect of scaling the processing times on the solution quality.

f = 1.3 f = 1.5 f = 1.6

Instance σ = 1 σ = 2 σ = 3 σ = 4 σ = 1 σ = 2 σ = 3 σ = 4 σ = 1 σ = 2 σ = 3 σ = 4

abz05 1462 1409 1450 1487 69* 69* 72 69* 0* 0* 0* 0*
abz06 436* 449 436* 496 0* 0* 0* 0* 0* 0* 0* 0*

la16 1169* 1169* 1169* 1169* 166* 180 170 180 0* 0* 0* 0*
la17 899* 899* 899* 939 260* 263 263 260* 65* 84 90 81
la18 929* 936 936 986 34* 34* 34* 66 0* 0* 0* 0*
la19 955 955 1024 948* 23 21* 58 53 0* 0* 0* 0*
la20 805* 805* 867 866 1 2 3 13 0* 0* 0* 0*
la21 463* 463* 468 475 0* 0* 39 41 0* 0* 0* 0*
la22 1084 1086 1086 1090 196* 196* 196* 281 0* 0* 0* 2
la23 877 835* 892 879 2* 4 6 2* 0* 0* 0* 0*
la24 835* 835* 835* 835* 82* 94 107 114 0* 0* 0* 0*

mt10 1363* 1363* 1397 1397 394* 443 396 413 155 176 177 177
orb01 2630 2568* 2568* 2568* 1202 1282 1141 1309 619 569 667 661
orb02 1408* 1434 1434 1434 292* 292* 353 378 52 52 52 64
orb03 2115 2194 2314 2200 928 952 918* 918* 461 461 422* 477
orb04 1652 1652 1652 1623* 358* 369 397 397 66* 66* 80 96
orb05 1593* 1593* 1593* 1667 405* 405* 405* 405* 181 181 181 217

24 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

f = 1.3 f = 1.5 f = 1.6

Instance σ = 1 σ = 2 σ = 3 σ = 4 σ = 1 σ = 2 σ = 3 σ = 4 σ = 1 σ = 2 σ = 3 σ = 4

orb06 1790* 1844 2047 1844 426* 426* 426* 524 31* 40 36 36
orb07 616 593 593 665 50* 52 133 133 0* 0* 0* 0*
orb08 2453 2513 2533 2592 1023* 1023* 1075 1062 672 691 698 657
orb09 1316* 1483 1326 1393 297* 297* 297* 297* 66* 66* 66* 105
orb10 1801 1753 1801 1842 424 519 466 464 78 102 186 171

Total Gap(%) 1.30 1.93 3.66 3.93 3.03 7.55 8.05 14.63 8.18 10.04 17.43 21.36
Avg. Gap(%) 1.20 1.64 3.19 4.40 2.03 10.20 32.83 31.43 3.12 7.62 13.89 19.52

Opt. 12 9 6 5 17 11 7 7 15 13 13 10
Avg. T.(sec.) 356.19 354.79 229.11 253.61 260.67 409.62 204.27 268.41 223.46 203.72 252.88 190.54

Avg. SubT.(sec.) 184.10 87.42 56.95 43.04 255.70 126.74 79.91 53.94 142.79 76.14 51.83 38.98

An important issue regarding the transportation problem is the length of the processing times. As
discussed in Section 2.2, the length of the planning horizon in TR depends on the sum of the operation
processing times. In other words, for an instance of JS-TWT with long processing times it may be
computationally very expensive to solve the subproblems in the SB-TS heuristic. We propose a practical
remedy to this problem that retains the solution quality. For a given instance with long processing times,
we first create an auxiliary instance by scaling the ready times, processing times, and the due dates as
specified below:

r′j = dr j/σe, ∀ j,
p′i j = dpi j/σe, ∀i, j,
d′j = bd j/σc, ∀ j,

(18)

where σ is the scaling constant and the data in the scaled instance are denoted by a prime in the
superscript. Then, we solve the scaled instance by SB-TS, record the operation processing sequences
in the final solution, and then compute the longest paths and the corresponding objective value in the
original instance based on these sequences. Observe that the scaling in (18) ensures that the objective
value obtained for the original instance is no larger than σ times that of the scaled instance. This property
is based on the fact that the length of any path in the scaled instance is no smaller than 1/σ times that
in the original instance, and the scaled due date is no larger than 1/σ times the original due date. In
Table 2, we report the results obtained by applying SB-TS to the instances of Pinedo and Singer (1999)
by setting σ = 1, 2, 3, 4. The tree parameters are selected as (3,2,2,3,3,2,1,1,1,1)-RF, and the combined
neighborhood G/MAI is employed. Thus, the results for σ = 1 are identical to those in the last column
of Table 1. The times expended in solving the transportation problems are listed in the last row of Table
2 labeled as “Avg. SubT.”, where the reduction is approximately linear in σ. Of course, this reduction
does not necessarily translate into a reduction in the solution times until the best solution is identified
as demonstrated by the row “Avg. T.” The results in Table 2 generally provide evidence that scaling
the processing times should be the first choice for shorter solution times in the SB-TS heuristic without
compromising the solution quality significantly. Furthermore, scaling sometimes leads to higher quality
solutions. Taking the best objective value over σ for each instance, the average optimality gap for f = 1.3
is just 0.27% and the number of optimal solutions increases from 12 to 16. The corresponding numbers
for f = 1.5 and 1.6 are 1.26%, 19 optimal solutions and 2.19%, 16 optimal solutions, respectively. In total,
51 out of 66 instances are solved to optimality as compared to 44 instances in the last column of Table 1.

3.3 Benchmarking Against Existing Algorithms In this section, we present a comparison of the
performance of SB-TS against the current state-of-the-art for JS-TWT. We start by benchmarking our
algorithm against those by Pinedo and Singer (1999), Kreipl (2000), De Bontridder (2005), and Essafi et al.
(2008) on the standard test suite of Pinedo and Singer (1999). Then, we move on to a new set of benchmark
instances for JS-TWT introduced by Essafi et al. (2008). Finally, we demonstrate that SB-TS does also
perform well on well-known instances of Jm//Cmax although it is not tailored to the makespan criterion.

The results for the instances of Pinedo and Singer (1999) are reported in Table 3. For SB-TS, we pick
three versions of the algorithm from Table 1. The third, forth, and fifth columns in Table 3 correspond
to the results with the combined neighborhood G/MAI and the tree parameters (3,2,2,2,2,2,1,1,1,1)-RF,
(3,2,2,3,2,2,1,1,1,1)-RF, and (3,2,2,3,3,2,1,1,1,1)-RF in Table 1, respectively. The results of Pinedo and Singer
(1999) appear in the column “SB(10,3)” which is the computationally more intensive version of their

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 25

shifting bottleneck algorithm that yields their best results. In a similar way, the column “LSRW(200)”
corresponds to the the large step random walk of Kreipl (2000) with longer run times. The output of
the genetic local search algorithm by Essafi et al. (2008) is given in the column “GLS.” De Bontridder
(2005) only report results for f = 1.5, and this author’s results with the criterion “rbf” are listed in the
column “BONT.” This criterion produces the best average results obtained by the author. As mentioned
in Section 1, the algorithms of Kreipl (2000), De Bontridder (2005), and Essafi et al. (2008) incorporate
randomness, and these authors report both best and average results over either 5 or 10 independent runs
for each instance. Since SB-TS is deterministic, it is only fair to compare it against the average results,
and the results under “LSRW(200),” “GLS,” and “BONT” are all average results reported in the original
papers. Furthermore, recall that the best result over σ for a given instance in Table 2 leads to significant
improvements in some cases. That is, it would be possible to improve the “best” performance of SB-TS
by adopting such strategies or adding randomness to our neighborhood traversal rule in the tabu search,
etc.

Table 3: Benchmarking against existing approaches on the instances of Pinedo and Singer (1999).

Instance Opt. SB-TS† SB-TS‡ SB-TS^ SB(10,3) LSRW(200) GLS BONT

abz05 1.3 1405 1487 1462 1462 1464 1451 1403*
abz06 1.3 436 436* 436* 436* 436* 436* 436*

la16 1.3 1170 1169* 1169* 1169* 1170* 1170* 1175
la17 1.3 900 899* 899* 899* 900* 900* 900*
la18 1.3 929 929* 929* 929* 936 929* 933
la19 1.3 948 955 955 955 955 951 949
la20 1.3 809 805* 805* 805* 878 809* 805*
la21 1.3 464 463* 463* 463* 464* 464* 464*
la22 1.3 1068 1084 1084 1084 1086 1086 1087
la23 1.3 837 877 877 877 875 875 865
la24 1.3 835 835* 835* 835* 835* 835* 835*

mt10 1.3 1368 1363* 1363* 1363* 1368* 1368* 1372
orb01 1.3 2568 2630 2630 2630 2890 2616 2651
orb02 1.3 1412 1408* 1408* 1408* 1412* 1434 1444
orb03 1.3 2113 2186 2115 2115 2113* 2204 2170
orb04 1.3 1623 1652 1652 1652 1623* 1674 1643
orb05 1.3 1593 1667 1593* 1593* 1667 1662 1659
orb06 1.3 1792 1790* 1790* 1790* 1792* 1802 1792*
orb07 1.3 590 616 616 616 590* 618 592
orb08 1.3 2429 2503 2503 2453 2617 2554 2522
orb09 1.3 1316 1316* 1316* 1316* 1483 1334 1316*
orb10 1.3 1679 1801 1801 1801 1827 1775 1718

Total Gap(%) 2.08 1.47 1.30 3.88 2.34 1.58
Avg. Gap(%) 1.74 1.29 1.20 3.04 1.93 1.17

Opt. 11 12 12 11
Best Heur. 12 13 14 5 4 8

abz05 1.5 69 70 70 69* 77 70 69* 78.6
abz06 1.5 0 0* 0* 0* 0* 0* 0* 0*

la16 1.5 166 166* 166* 166* 175 166* 166* 181.3
la17 1.5 260 260* 260* 260* 260* 260* 260* 260.4
la18 1.5 34 34* 34* 34* 34* 34* 34* 34.4
la19 1.5 21 23 23 23 21* 21* 21* 43.8
la20 1.5 0 1 1 1 0* 0* 0* 0.8
la21 1.5 0 0* 0* 0* 0* 0* 0* 4.8
la22 1.5 196 196* 196* 196* 196* 196* 196* 204.1
la23 1.5 2 2* 2* 2* 2* 2* 2* 2*
la24 1.5 82 82* 82* 82* 82* 90 86 89.9

mt10 1.5 394 394* 394* 394* 394* 414 394* 414.7
orb01 1.5 1098 1326 1202 1202 1196 1143 1159 1308.1
orb02 1.5 292 322 322 292* 292* 292* 292* 302.8
orb03 1.5 918 968 952 928 967 965 943 1027.9
orb04 1.5 358 358* 358* 358* 358* 358* 394 446.6
orb05 1.5 405 405* 405* 405* 517 455 405* 491.5
orb06 1.5 426 426* 426* 426* 426* 426* 440 528.7
orb07 1.5 50 50* 50* 50* 50* 119 55 63
orb08 1.5 1023 1023* 1023* 1023* 1023* 1138 1059 1158.1
orb09 1.5 297 297* 297* 297* 331 297* 311 344.5

26 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

Instance Opt. SB-TS† SB-TS‡ SB-TS^ SB(10,3) LSRW(200) GLS BONT

orb10 1.5 346 424 424 424 458 408 400 533.1

Total Gap(%) 6.06 3.88 3.03 6.56 6.48 3.87 16.81
Avg. Gap(%) 3.33 2.71 2.03 4.67 9.32 2.74 18.32

Opt. 15 15 17 15
Best Heur. 15 15 18 15 14 14 2

abz05 1.6 0 0* 0* 0* 0* 0* 0*
abz06 1.6 0 0* 0* 0* 0* 0* 0*

la16 1.6 0 0* 0* 0* 0* 0* 0*
la17 1.6 65 65* 65* 65* 65* 65* 65*
la18 1.6 0 0* 0* 0* 0* 0* 0*
la19 1.6 0 0* 0* 0* 0* 0* 0*
la20 1.6 0 0* 0* 0* 0* 0* 0*
la21 1.6 0 0* 0* 0* 0* 0* 0*
la22 1.6 0 0* 0* 0* 0* 0* 0*
la23 1.6 0 0* 0* 0* 0* 0* 0*
la24 1.6 0 0* 0* 0* 0* 0* 0*

mt10 1.6 141 155 155 155 184 144 162
orb01 1.6 566 776 776 619 619 624 688
orb02 1.6 44 52 52 52 64 44* 44*
orb03 1.6 422 461 461 461 461 441 514
orb04 1.6 66 66* 66* 66* 66* 66* 78
orb05 1.6 163 181 181 181 193 174 181
orb06 1.6 31 31* 31* 31* 31* 31* 28*
orb07 1.6 0 0* 0* 0* 0* 0* 0*
orb08 1.6 621 701 672 672 646 658 669
orb09 1.6 66 66* 66* 66* 95 66* 83
orb10 1.6 76 84 84 78 105 97 142

Total Gap(%) 16.67 15.39 8.18 11.85 6.59 17.38
Avg. Gap(%) 4.95 4.74 3.12 9.05 2.60 9.01

Opt. 15 15 15 14
Best Heur. 14 14 16 15 18 14

† (3,2,2,2,2,2,1,1,1,1)-RF with G/MAI.
‡ (3,2,2,3,2,2,1,1,1,1)-RF with G/MAI.
^ (3,2,2,3,3,2,1,1,1,1)-RF with G/MAI.

One more performance measure is computed in Table 3 in addition to those in Table 1. For each
instance, we determine the best objective value over all heuristics in Table 3, and in rows labeled as
“# Best Heur.” we report for each category of f the total number of times a given heuristic attains
the best solution over 22 instances. It does not make sense to compute the number of times an aver-
age objective value is optimal; hence, the entries for LSRW(200), GLS, and BONT are blank in rows
“# Opt.” For f = 1.3, SB-TS dominates both SB(10,3) and LSRW(200) with the computationally less
demanding tree parameters (3,2,2,2,2,2,1,1,1,1)-RF and (3,2,2,3,2,2,1,1,1,1)-RF. GLS has a slightly smaller
average gap than (3,2,2,3,2,2,1,1,1,1)-RF and (3,2,2,3,3,2,1,1,1,1)-RF; however, both (3,2,2,3,2,2,1,1,1,1)-RF
and (3,2,2,3,3,2,1,1,1,1)-RF are better along the other dimensions. The consistency of the performance of
SB-TS is clear from the number of optimal solutions achieved and the number of times the best heuristic
solution is attained by the SB-TS variants. Analyzing the results for f = 1.5, the overall picture is similar.
SB-TS with the tree parameters (3,2,2,3,2,2,1,1,1,1)-RF and (3,2,2,3,3,2,1,1,1,1)-RF either performs on a
par with or is better than any other existing algorithm for all performance measures. However, note
that all algorithms score higher in terms of achieving the best heuristic solution as compared to the
results for f = 1.3. BONT is clearly inferior to all others, and GLS appears to be better than SB(10,3)
and LSRW(200). The best performing algorithm for f = 1.6 is LSRW(200) while SB-TS with the tree
parameters (3,2,2,3,3,2,1,1,1,1)-RF comes second.

Next, we discuss our results on a new set of benchmark instances created by Essafi et al. (2008) as
explained at the beginning of Section 3. Table 4 summarizes the results. The instances la16-la20 are
identical to those in previous tables. Except for these 5 instances, the optimal solutions of the instances
in Table 4 are unknown, and all performance measures are calculated with respect to the best heuristic
solution. Essafi et al. (2008) state that they increase their computational effort significantly for solving
this new set of instances; however, it is not possible to deduce the magnitude of the increase from

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 27

their paper. For SB-TS, the tree parameters are set to (5,4,3,2,1)-RF for instances with m = 5 machines
and all other parameters are left intact at their values discussed initially at the beginning of Section 3.
However, for instances with m = 10 machines we decrease the maximum number of solutions traversed
in the neighborhood of the current solution in the tabu search from 60% to 45% of the total size of the
neighborhood and fix the tree parameters to (3,2,2,3,2,2,1,1,1,1)-RF in order to avoid long run times. We
had to omit the runs with the computationally more intensive tree parameters (3,2,2,3,3,2,1,1,1,1)-RF for
instances with more than 100 operations. It appears that this is the limit of the Excel/VB environment.
The results in Table 4 reveal that GLS is clearly better than SB-TS for instances with m = 5. We reckon that
SB-TS cannot realize its full potential for these instances as with a small number of machines selecting a
good sequence of scheduling the machines becomes less critical. On the other hand, the performance of
SB-TS is enhanced to a significant extent relative to that of GLS for instances with m = 10 machines. GLS
is superior to SB-TS for m = 10 and f = 1.3 while SB-TS dominates GLS for m = 10 and f = 1.6. That is,
looser due dates seem to favor SB-TS over GLS.

Table 4: Benchmarking against existing approaches on the instances of Essafi et al. (2008).

f = 1.3 f = 1.5 f = 1.6

Instance m n SB-TS† GLS SB-TS† GLS SB-TS† GLS

la01 5 10 2299 2299 1616 1610 1230 1230
la02 5 10 1762 1762 1028 1028 695 695
la03 5 10 1951 1951 1280 1280 1024 1024
la04 5 10 1917 1917 1277 1277 1068 1029
la05 5 10 1878 1878 1205 1205 877 877
la06 5 15 6008 5827 4821 4658 4180 4130
la07 5 15 5961 5801 4624 4548 3843 3988
la08 5 15 5560 5482 4423 4094 3584 3400
la09 5 15 6116 5648 4618 4421 4040 3835
la10 5 15 6734 6621 5304 5148 4728 4533
la11 5 20 12792 12341 10682 10332 9679 9399
la12 5 20 11238 10683 9494 9084 8663 8302
la13 5 20 12533 11889 10158 9846 9244 8916
la14 5 20 13681 13225 12024 11382 11292 10594
la15 5 20 12964 12428 10464 10455 9675 9392

Total Gap(%) 3.65 0.00 3.30 0.00 3.68 0.20
Avg. Gap(%) 2.62 0.00 2.52 0.00 2.71 0.25
Best Heur. 5 15 4 15 5 14

la16 10 10 1169 1169 166 166 0 0
la17 10 10 899 899 260 260 65 65
la18 10 10 929 929 34 34 0 0
la19 10 10 955 948 23 21 0 0
la20 10 10 805 805 0 0 0 0
la21 10 15 3841 3771 1740 1692 890 949
la22 10 15 4453 4471 2099 2273 1364 1450
la23 10 15 4103 3955 1731 1683 1010 977
la24 10 15 3770 3831 1849 1618 693 773
la25 10 15 3724 3569 1499 1497 929 922
la26 10 20 10562 9748 6328 6106 5236 5125
la27 10 20 9827 9860 6252 6142 4441 4590
la28 10 20 10198 9757 6096 6254 4403 4594
la29 10 20 9792 9397 6265 6392 5049 4706
la30 10 20 9297 8968 5273 5496 3821 4131

Total Gap(%) 3.28 0.16 1.70 1.75 1.80 3.19
Avg. Gap(%) 2.09 0.16 2.34 1.14 0.91 2.69
Best Heur. 7 12 8 11 11 9

† If m = 5, (5,4,3,2,1)-RF with G/MAI.
If m = 10, (3,2,2,3,2,2,1,1,1,1)-RF with G/MAI.

Finally, we employ SB-TS to solve 13 instances of Jm//Cmax that are classified as “hard” in the literature.
See Balas and Vazacopoulos (1998) for a discussion on these instances. Our objective is to demonstrate
that SB-TS yields high-quality solutions for the makespan criterion although it is not tailored to this
objective and is competitive with an approach specifically developed for Jm//Cmax. The results are given

28 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

in Table 5, where the last two columns “GLS” and “HGA” are taken from Essafi et al. (2008), and the
column “HGA” lists the best objective value of the three hybrid genetic algorithms for solving Jm//Cmax
developed by Goncalves et al. (2005). The tree parameters in SB-TS are specified in the footnotes of Table
5 for each value of m. All other parameters are identical to their previously specified values. Taking into
account that the results in column “HGA” are the best over three algorithms, we observe that both GLS
and SB-TS outperform HGA although they are not catered toward solving makespan problems.

Table 5: Benchmarking against existing approaches on hard instances of Jm//Cmax.

Instance m n Opt. SB-TS† GLS HGA

la02 5 10 655 655* 655* 655*
la19 10 10 842 842* 842* 842*
la21 10 15 1046 1062 1051 1046*
la24 10 15 935 941 940 953
la25 10 15 977 984 978 986
la27 10 20 1235 1260 1247 1256
la29 10 20 1153‡ 1190 1174 1196
la36 15 15 1268 1269 1282 1279
la37 15 15 1397 1408 1409 1408
la38 15 15 1196 1202 1196* 1219
la39 15 15 1233 1241 1238 1246
la40 15 15 1222 1234 1230 1241

mt10 10 10 930 936 934 930*

Total Gap(%) 0.96 0.62 1.19
Avg. Gap(%) 0.91 0.57 1.11

Opt. 2 3 4
Best Heur. 4 9 5

† If m = 5, (4,4,3,2,1)-RF with G/MAI.
If m = 10, (3,2,2,3,2,2,1,1,1,1)-RF with G/MAI.
If m = 15, (3,2,2,3,2,2,2,1,1,1,1,1,1,1,1)-RF with G/MAI.

‡ Best known upper bound.

4. Conclusions and Future Research We embedded a tabu search algorithm into the shifting bot-
tleneck algorithm and demonstrated that it results in a state-of-the-art approach for solving JS-TWT. A
general insight that may be exploited in order to solve other problems in a job shop setting is that the
tree search component of the SB algorithm is a powerful means to diversify the embedded local search.
Moreover, by controlling the size of the search tree we can easily trade-off solution quality and time. The
tabu search component of our solution algorithm relies on two distinct neighborhood definitions with
complementary properties and the demonstrated synergy merits further research in this area. Moreover,
leveraging on previous research by Balas and Vazacopoulos (1998) and Kreipl (2000) we focus on neigh-
borhoods that generalize adjacent pairwise interchanges on a critical path and conclude that more work
in this area may be fruitful for job shop scheduling problems with regular objectives.

Another significant contribution of our work is a novel approach for solving a generalized single-
machine weighted tardiness problem that arises as a subproblem in the SB heuristic. Our approach is
based on a preemptive lower bound that provides information for constructing non-preemptive feasible
solutions. Although the results are satisfactory there is room for improvement as we argued in Section
2.2. We leave this issue as a future research direction.

One hurdle that we would need to overcome in order to be able to solve larger instances of JS-TWT
by SB-TS is reducing the solution times. An obvious direction here is to replace the exact longest path
calculations from scratch for each move in the neighborhood of the current solution in the tabu search
by approximate move evaluations. More work is needed on approximate move evaluations in the MAI
and G/MAI neighborhoods in the context of JS-TWT. Other options for shorter solution times involve
parallelizing SB-TS as different branches of the search tree may be pursued independently and applying
warm starts to similar transportation problems solved during the course of the algorithm.

Finally, we emphasize the need for new optimal algorithms capable of solving large instances of
JS-TWT. To date, there is a single paper available in this domain and new research in this area would be
most welcome.

Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem 29

*Bibliography

Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling.
Management Science, 34(3):391–401.

Armentano, V. A. and Scrich, C. R. (2000). Tabu search for minimizing total tardiness in a job shop.
International Journal of Production Economics, 63(2):131–140.

Aytug, H., Kempf, K., and Uzsoy, R. (2002). Measures of subproblem criticality in decomposition
algorithms for shop scheduling. International Journal of Production Research, 41(5):865–882.

Balas, E., Lenstra, J. K., and Vazacopoulos, A. (1995). The one-machine problem with delayed precedence
constraints and its use in job shop scheduling. Management Science, 41(1):94–109.

Balas, E. and Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop schedul-
ing. Management Science, 44(2):262–275.

Bulbul, K., Kaminsky, P., and Yano, C. (2007). Preemption in single machine earliness/tardiness schedul-
ing. Journal of Scheduling, 10(4-5):271–292.

Dauzere-Peres, S. and Lasserre, J. (1993). A modified shifting bottleneck procedure for job shop schedul-
ing. International Journal of Production Research, 31(4):923–932.

De Bontridder, K. (2005). Minimizing total weighted tardiness in a generalized job shop. Journal of
Scheduling, 8(6):479–496.

Demirkol, E., Mehta, S., and Uzsoy, R. (1997). A computational study of shifting bottleneck procedures
for shop scheduling problems. Journal of Heuristics, 3(2):111–137.

Dyer, M. and Wolsey, L. (1990). Formulating the single machine sequencing problem with release dates
as a mixed integer program. Discrete Applied Mathematics, 26(2–3):255–270.

Essafi, I., Mati, Y., and Dauzere-Peres, S. (2008). A genetic local search algorithm for minimizing total
weighted tardiness in the job-shop scheduling problem. Computers & Operations Research, 35(8):2599–
2616.

Goncalves, J. F., de Magalhaes Mendes, J. J., and Resende, M. G. (2005). A hybrid genetic algorithm for
the job shop scheduling problem. European Journal of Operations Research, 167(1):77–95.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. (1979). Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326.

Jain, A. and Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and future. European
Journal of Operations Research, 113(2):390–434.

Kreipl, S. (2000). A large step random walk for minimizing total weighted tardiness in a job shop. Journal
of Scheduling, 3(3):125–138.

Lawrence, S. (1984). Supplement to ”Resource Constrained Project Scheduling: An Experimental Inves-
tigation of Heuristic Scheduling Techniques”. GSIA, Carnegie Mellon University, Pittsburgh, PA.

Lenstra, J., Rinnooy Kan, A., and Brucker, P. (1977). Complexity of machine scheduling problems. Annals
of Discrete Mathematics, 1:343–362.

Mason, S., Fowler, J., and Carlyle, W. (2002). A modified shifting bottleneck heuristic for minimizing
total weighted tardiness in complex job shops. Journal of Scheduling, 5(3):247–262.

Matsuo, H., Suh, C., and Sullivan, R. (1988). A controlled simulated annealing method for the general job
shop scheduling problem. Technical Report 03-04-88, Department of Management, Graduate School
of Business, The University of Texas at Austin, Austin, TX.

Mattfeld, D. and Bierwirth, C. (2004). An efficient genetic algorithm for job shop scheduling with
tardiness objectives. European Journal of Operations Research, 155(3):616–630.

Pinedo, M. (2008). Scheduling: Theory, Algorithms, and Systems. Springer, 3rd edition.

Pinedo, M. and Singer, M. (1999). A shifting bottleneck heuristic for minimizing the total weighted
tardiness in a job shop. Naval Research Logistics, 46(1):1–17.

Roy, B. and Sussman, B. (1964). Les problemes d’ordonnancement avec contraintes disjonctives. Paris:
Note DS No.9 bis. SEMA.

Runge, N. and Sourd, F. (2009). A new model for the preemptive earliness-tardiness scheduling problem.
Computers & Operations Research, 36(7):2242–2249.

30 Bulbul: A Hybrid Shifting Bottleneck-Tabu Search Heuristic for the Job Shop Total Weighted Tardiness Problem

Singer, M. (2001). Decomposition methods for large job shops. Computers & Operations Research, 28(3):193–
207.

Singer, M. and Pinedo, M. (1998). A computational study of branch and bound techniques for minimizing
the total weighted tardiness in job shops. IIE Transactions, 30(2):109–118.

Standard Performance Evaluation Corporation (1996). SPEC CINT95 Benchmarks.
http://www.spec.org/cgi-bin/osgresults?conf=cint95. Accessed in February 2010.

Standard Performance Evaluation Corporation (2007). SPECint2006 Results.
http://www.spec.org/cgi-bin/osgresults?conf=cint2006. Accessed in February 2010.

Suh, C. (1988). Controlled search simulated annealing for job shop scheduling. PhD thesis, University of Texas,
Austin.

Vepsalainen, A. P. J. (1987). Priority rules for job shops with weighted tardiness costs. Management
Science, 33(8):1035–1047.

