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Abstract
We study the initial-value problem for a general class of nonlinear nonlocal
wave equations arising in one-dimensional nonlocal elasticity. The model
involves a convolution integral operator with a general kernel function whose
Fourier transform is nonnegative. We show that some well-known examples
of nonlinear wave equations, such as Boussinesq-type equations, follow from
the present model for suitable choices of the kernel function. We establish
global existence of solutions of the model assuming enough smoothness on
the initial data together with some positivity conditions on the nonlinear term.
Furthermore, conditions for finite time blow-up are provided.

Mathematics Subject Classification: 74H20, 74J30, 74B20

1. Introduction

In this paper we focus on global existence and blow-up of solutions to the nonlocal nonlinear
Cauchy problem

utt = (β ∗ (u + g(u)))xx, x ∈ R, t > 0, (1.1)

u(x, 0) = ϕ(x), ut (x, 0) = ψ(x), (1.2)

where u = u(x, t), g is a nonlinear function of u, the subscripts denote partial derivatives, the
symbol ∗ denotes convolution in the spatial domain, β is an integrable function whose Fourier
transform satisfies a set of conditions specified in section 2.

The predictions of classical (local) elasticity theory become inaccurate when the
characteristic length of an elasticity problem is comparable to the atomic length scale. To
remedy this situation, a nonlocal theory of elasticity was introduced (see [1–3] and the
references cited therein) and the main feature of the new theory is the fact that its predictions
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were more down to earth than those of the classical theory. For other generalizations of
elasticity we refer the reader to [4–7]. Equation (1.1) models one-dimensional motion in
an infinite medium with nonlinear and nonlocal elastic properties within the context of the
nonlocal theory [8]. The well-posedness of the Cauchy problem (1.1)–(1.2) depends crucially
on the presence of a suitable kernel. However, the choice of an appropriate kernel function
remains an open problem in the nonlocal theory of elasticity and nowadays, attention is focused
on the selection of the kernel function [9]. Then the question that naturally arises is which
of the possible forms of the kernel functions are relevant for the global well-posedness of the
corresponding initial-value problem. In [8], for a special form of the kernel function which
reduces (1.1) to a higher-order Boussinesq equation, it has been proved that the corresponding
initial-value problem is globally well posed. However, the effect of more general kernel
functions on global existence and blow-up must be addressed. In this study, as a partial answer
to this question, we consider (1.1) with a general class of kernel functions (see (2.6) below)
and provide both global existence and blow-up results for the solutions of the initial-value
problem (1.1)–(1.2). The kernel functions most frequently used in the literature are particular
cases of this general class of kernel functions.

Section 2 presents a derivation of (1.1) from the one-dimensional theory of nonlinear
nonlocal elasticity. This section also presents both a discussion about the assumptions we
make about β and a brief overview of the kernel functions used in the literature. In section 3
we present a local existence theory for solutions of the Cauchy problem (1.1)–(1.2) for given
initial data in suitable Sobolev spaces. In section 4 we prove global existence of solutions
of (1.1)–(1.2) assuming some positivity conditions on the nonlinear function g together with
enough smoothness on the initial data. Finally, in section 5 we discuss finite time blow-up of
solutions.

In what follows Hs = Hs(R) will denote the L2 Sobolev space on R. For the Hs norm
we use the Fourier transform representation ‖u‖2

s = ∫
R
(1 + ξ 2)s |û(ξ)|2 dξ . We use ‖u‖∞, ‖u‖

and 〈u, v〉 to denote the L∞ and L2 norms and the inner product in L2, respectively. Dx stands
for the classical partial derivative with respect to x.

2. The nonlocal nonlinear Cauchy problem

2.1. Physical motivation

We now discuss the physical motivation behind (1.1). In the classical (or local) theory of
elasticity, the stress at a spatial point depends uniquely on the strain at the same point. However,
in the nonlocal theory of elasticity the stress at a point depends on the strain field at every point
in the body and consequently it is written as a functional of the strain field (see [1] and the
references cited therein). We now show that in one space dimension, the dimensionless form
of the equation governing the resulting dynamics is given by (1.1).

Consider a one-dimensional, homogeneous, nonlinearly and non-locally elastic infinite
medium. Let a scalar-valued function u(X, t) be the displacement of a reference point X at
time t . In the absence of body forces the equation of motion for the displacement is

ρ0utt = (S(uX))X, (2.1)

where ρ0 is the mass density of the medium, S = S(uX) is the (nonlocal) stress [1, 8]. In
contrast with classical elasticity, we employ a nonlocal model of constitutive equation, which
gives the stress S as a general nonlinear nonlocal function of the strain ε = uX. The constitutive
equation for nonlinear nonlocal elastic response considered here has the following form

S(X, t) =
∫

R

α(|X − Y |)σ (Y, t) dY, σ (X, t) = W ′(ε(X, t)), (2.2)



where σ is the classical (local) stress, W is the local strain-energy density function, Y denotes
a generic point of the medium, α is a kernel function to be specified below and the symbol
′ denotes differentiation [8]. The kernel α serves as a weight on the relative contribution of
the local stress σ(Y, t) at a point Y in a neighbourhood of X to the nonlocal stress S(X, t).
So, when the kernel becomes the Dirac delta measure, the classical constitutive relation of
a hyperelastic material is recovered. We emphasize the distinction between our proposed
constitutive relation (2.2), which involves a nonlinear dependence of the stress on both local and
nonlocal effects, and the standard constitutive relations, which include a linear term describing
nonlocal effects.

If a stress-free undistorted state is considered as the reference configuration, the strain-
energy function must satisfy W(0) = W ′(0) = 0. Without loss of generality, for convenience,
we decompose the derivative of the strain-energy density function into its linear and nonlinear
parts:

W ′(ε) = γ [ε + g(ε)], g(0) = 0, (2.3)

where γ is a constant with the dimension of stress, or equivalently

W(ε) = γ
[

1
2ε2 + G(ε)

]
with

G(ε) =
∫ ε

0
g(s) ds. (2.4)

Differentiating both sides of (2.1) with respect to X we obtain the equation of motion for the
strain:

ρ0εtt = γ

{∫
R

α(|X − Y |)[ε + g(ε)] dY

}
XX

. (2.5)

Now we define the dimensionless independent variables

x = X

l
, τ = t

l

√
γ

ρ0

where l is a characteristic length and from now on, and for simplicity, we use u for ε and t

for τ . Thus, (2.5) takes the form given in (1.1), with

β ∗ v =
∫

R

β(x − y)v(y) dy

and β(x) = lα(|x|).

2.2. The kernel function

An important open question in the nonlocal theory of elasticity is how to choose the kernel
function which represents the details of the atomic scale effects. The triangular kernel, the
exponential kernel and the Gaussian kernel (see, for instance, equations (3.3), (3.4) and (3.5)
of [10], respectively) are examples of only the most commonly used kernel functions. In
general it is assumed that the kernel function α is a monotonically decreasing nonnegative
function of the distance |x − y| between x and y. We refer the reader to [9] for an example of
a non-monotone, sign-changing kernel function. In this study we consider a general class of
kernel functions, which covers both types of the kernels reported in the literature. Throughout
the rest of this work we assume that the kernel β is an integrable function whose Fourier
transform satisfies

0 � β̂(ξ) � C(1 + ξ 2)−r/2 for all ξ (2.6)



for a suitable constant C > 0. Here the exponent r can be any real number (not necessarily an
integer). The order of β is −r , where r is the largest such exponent.

The kernels used in the literature all satisfy the positivity condition β̂(ξ) � 0. This
is a natural consequence of the wave character of the equation of motion, which means the
nondissipative nature of the dynamics. On the other hand, in the literature the following
two conditions are imposed on the kernel: β(0) � β(x) and β(−x) = β(x). In fact, these
conditions are implied by the positivity of β̂(ξ) through Bochner’s theorem [11]. In this
study we only consider kernels with r � 2. When r < 2, the model is linearly unstable with
unbounded growth rate at short wavelengths and thus this case seems to be of a different nature.

In the next subsection we present several examples of kernel functions, showing how the
general class of kernels defined by (2.6) covers the most common used kernels in the literature.
Before this, for convenience we rewrite (1.1) in a slightly different form. Since differentiation
and convolution commute, (β ∗h(u))xx = K ∗h(u), where K = βxx in the distribution sense.
Obviously K̂(ξ) = −ξ 2β̂(ξ). Then (1.1)–(1.2) becomes

utt = K ∗ f (u), x ∈ R, t > 0, (2.7)

u(x, 0) = ϕ(x), ut (x, 0) = ψ(x), (2.8)

where to shorten the notation we write f (u) = u + g(u).

2.3. Examples for the kernel

The following list of kernels contains the most commonly used kernels.

(i) The Dirac measure: β = δ. In this case r = 0, and we recover the classical theory
of one-dimensional elasticity. The equation of motion, (1.1), is just a nonlinear wave
equation

utt − uxx = g(u)xx.

(ii) The triangular kernel [10]:

β(x) =
{

1 − |x|, |x| � 1
0, |x| � 1.

Since β̂(ξ) = (4/ξ 2) sin2(
ξ

2 ), we have r = 2. Abusing notation slightly, note that

K(x) = δ(x − 1) − 2δ(x) + δ(x + 1).

So

(β ∗ v)xx = v(x − 1) − 2v(x) + v(x + 1)

and the equation of motion, (1.1), becomes a differential–difference equation.
(iii) The exponential kernel [10]: β(x) = 1

2 e−|x|. Since β̂(ξ) = (1 + ξ 2)−1, we have r = 2.
Note that β is Green’s function for the operator 1 − D2

x so that

(β ∗ v)xx = (1 − D2
x)

−1vxx = β ∗ v − v.

The equation of motion, (1.1), becomes the generalized improved Boussinesq equation,

utt − uxx − uxxtt = (g(u))xx.

The global existence of the Cauchy problem for this equation has been studied by many
authors (see [12–14]).



(iv) The double-exponential kernel [15]: β(x) = 1/(2(c2
1 − c2

2))(c1e−|x|/c1 −c2e−|x|/c2), where
c1 and c2 are real and positive constants. Since β̂(ξ) = (1 + γ1ξ

2 + γ2ξ
4)−1, where

γ1 = c2
1 + c2

2 and γ2 = c2
1c

2
2, we have r = 4. As above, β is Green’s function for the

operator 1 − γ1D
2
x + γ2D

4
x and

(β ∗ v)xx = (1 − γ1D
2
x + γ2D

4
x)

−1vxx.

The equation of motion, (1.1), becomes the higher-order Boussinesq equation,

utt − uxx − γ1uxxtt + γ2uxxxxtt = (g(u))xx.

The global existence of the Cauchy problem of the higher-order Boussinesq equation has
been proved in [8, 16, 17].

(v) The Gaussian kernel [10]: β(x) = (1/
√

2π)e−x2/2. Note that β̂(ξ) = e−ξ 2/2.
(v) A sign-changing kernel [9]: β(x) = (1/

√
2π)(1 − x2)e−x2/2. Then β̂(ξ) = ξ 2e−ξ 2/2.

In these last two examples the kernel function β hence its Fourier transform β̂ is rapidly
decreasing, and we can take any r in (2.6). The equation of motion, (1.1), is an integro-
differential equation.

In order to capture the equations corresponding to the classical (local) theory of elasticity
one expects that the kernel functions must behave like the Dirac measure as the characteristic
length tends to zero. Notice that the characteristic length l does not appear in the above
dimensionless forms of the kernel functions. However, if we rewrite the kernel functions in
terms of the original quantities X and α, then we indeed get the Dirac measure as l goes to zero.

The rest of this study addresses some issues related to global existence and blow-up of
solutions for the Cauchy problem (1.1)–(1.2).

3. Local well posedness

Below we will give several versions of local well posedness depending on the properties of the
kernel β. We first need two lemmas concerning the behaviour of the nonlinear term [13, 18].

Lemma 3.1. Let s � 0, f ∈ C[s]+1(R) with f (0) = 0. Then for any u ∈ Hs ∩ L∞, we have
f (u) ∈ Hs ∩ L∞. Moreover there is some constant A(M) depending on M such that for all
u ∈ Hs ∩ L∞ with ‖u‖∞ � M

‖f (u)‖s � A(M)‖u‖s .

Lemma 3.2. Let s � 0, f ∈ C[s]+1(R). Then for any M > 0 there is some constant B(M)

such that for all u, v ∈ Hs ∩ L∞ with ‖u‖∞ � M , ‖v‖∞ � M and ‖u‖s � M , ‖v‖s � M

we have

‖f (u) − f (v)‖s � B(M)‖u − v‖s and ‖f (u) − f (v)‖∞ � B(M)‖u − v‖∞.

For s > 1
2 , by the Sobolev embedding theorem, Hs ⊂ L∞. Then the bounds on L∞ norms

in lemma 3.2 become redundant and we get the following.

Corollary 3.3. Let s > 1
2 , f ∈ C[s]+1(R). Then for any M > 0 there is some constant B(M)

such that for all u, v ∈ Hs with ‖u‖s � M , ‖v‖s � M we have

‖f (u) − f (v)‖s � B(M)‖u − v‖s .

We will assume throughout this paper that f ∈ C[s]+1(R) with f (0) = 0 for some s � 0; note
that the function g appearing in (1.1) will also satisfy the same assumptions.



Theorem 3.4. Let s > 1/2 and r � 2. Then there is some T > 0 such that the Cauchy
problem (2.7)–(2.8) (equivalently (1.1)–(1.2)) is well posed with solution in C2([0, T ], H s)

for initial data ϕ, ψ ∈ Hs .

Proof. Converting the problem into an Hs valued system of ordinary differential equations

ut = v u(0) = ϕ

vt = K ∗ f (u) v(0) = ψ,

we can use the standard well posedness result [19] for ordinary differential equations once we
check whether the right-hand side is Lipschitz on Hs . As

|K̂(ξ)| = | − ξ 2β̂(ξ)| � Cξ 2(1 + ξ 2)−r/2 � C,

then

‖K ∗ v‖s = ‖(1 + ξ 2)s/2K̂(ξ )̂v(ξ)‖
� C‖(1 + ξ 2)s/2v̂(ξ)‖ = C‖v‖s . (3.1)

Thus K ∗ ( ) is a bounded linear map on Hs . Then from corollary 3.3, K ∗ f (u) is locally
Lipschitz on Hs .

Now we remove the restriction s > 1
2 . Note that the main obstacle is the following: to

control the nonlinear term we need an L∞ estimate. Even if we start with L∞ data, K ∗ ( )

may not stay in L∞. We overcome this obstacle in two different cases. One case is theorem 3.5,
where we assume that the order of β is sufficiently large. This will ensure that K ∗ f (u) is
sufficiently smooth, hence in L∞. The other case is in theorem 3.6.

Theorem 3.5. Let s � 0 and r > 5
2 . Then there is some T > 0 such that the Cauchy problem

(2.7)–(2.8) (equivalently (1.1)–(1.2)) is well posed with solution in C2([0, T ], H s ∩ L∞) for
initial data ϕ, ψ ∈ Hs ∩ L∞.

Proof. As in the proof of theorem 3.4 we convert the problem into an ODE system on Hs ∩L∞

where the space is endowed with the norm ‖v‖s,∞ = ‖v‖s + ‖v‖∞. Then all we need is to
show that K ∗ f (u) is Lipschitz on Hs ∩ L∞. Since

|K̂(ξ)| = | − ξ 2β̂(ξ)| � Cξ 2(1 + ξ 2)−r/2 � C(1 + ξ 2)−(r−2)/2,

we have

‖K ∗ v‖s+r−2 = ‖(1 + ξ 2)(s+r−2)/2K̂(ξ )̂v(ξ)‖
� C‖(1 + ξ 2)s/2v̂(ξ)‖ = C‖v‖s .

Then K ∗ ( ) is a bounded linear map from Hs into Hs+r−2. Since s � 0 and r > 5
2 we have

s + r − 2 > 5
2 − 2 = 1

2 . Again the Sobolev embedding theorem implies that K ∗ ( ) is a
bounded linear map from Hs ∩L∞ into Hs ∩L∞. Lemma 3.2 implies the Lipschitz condition
on Hs ∩ L∞.

For the second case, we observe that it suffices to have K ∗ ( ) map from Hs ∩ L∞

into itself. This holds for K ∈ L1 as well as for the triangular and the exponential kernel of
section 2.3 where K equals an L1 function plus some Dirac measures. Theorem 3.6 generalizes
this to finite measures.

Theorem 3.6. Let s � 0 and let K be a finite measure on R. Then there is some T > 0 such
that the Cauchy problem (2.7)–(2.8) (equivalently (1.1)–(1.2)) is well posed with solution in
C2([0, T ], H s ∩ L∞) for initial data ϕ, ψ ∈ Hs ∩ L∞.



Proof. When K is a finite measure

(K ∗ v)(x) =
∫

R

v(x − y) dK(y),

so that for v ∈ L∞, ‖K ∗v‖∞ � ‖v‖∞
∫

d|K| = ‖K‖‖v‖∞, where ‖K‖ is the total variation
of K . Also,

K̂(ξ) =
∫

R

e−ixξ dK(x)

so that |K̂(ξ)| � ‖K‖. Then for v ∈ Hs ,

‖K ∗ v‖s = ‖(1 + ξ 2)s/2K̂(ξ )̂v(ξ)‖ � ‖K‖‖(1 + ξ 2)s/2v̂(ξ)‖ = ‖K‖‖v‖s .

Thus K ∗ ( ) is a bounded linear map on Hs ∩L∞ and the Lipschitz condition follows from
lemma 3.2.

When β ∈ L1 and K is a finite measure, we have (1 + ξ 2)β̂(ξ) � ‖β‖L1 + ‖K‖, so that
r = 2.

Remark 3.7. In theorems 3.4, 3.5 and 3.6 we have not used the assumption β̂(ξ) � 0; so in
fact these results hold for more general kernels.

Remark 3.8. Going back to the kernels given in section 2.3, we see that r > 5
2 in (iv), (v) and

(vi) so theorem 3.5 applies; whereas for (ii) and (iii), r = 2. In (ii) K is a finite measure so
theorem 3.6 applies. In (iii) computation shows that K = β − δ so that dK = e−|x| dx − dδ

and theorem 3.6 applies again.

By the Sobolev embedding theorem Hs ∩ L∞ = Hs for s > 1
2 , and the norm ‖ ‖s,∞

is equivalent to the Hs norm. The solution in theorems 3.4, 3.5 and 3.6 can be extended to a
maximal interval [0, Tmax) where finite Tmax is characterized by the blow-up condition

lim sup
t→T −

max

(‖u(t)‖s,∞ + ‖ut (t)‖s,∞) = ∞.

Clearly Tmax = ∞, i.e. there is a global solution iff

for any T < ∞, we have lim sup
t→T −

(‖u(t)‖s,∞ + ‖ut (t)‖s,∞) < ∞.

Lemma 3.9. Suppose the conditions of theorems 3.4, 3.5 or 3.6 hold and u is the solution of
the Cauchy problem (2.7)–(2.8) (equivalently (1.1)–(1.2)). Then there is a global solution if
and only if

for any T < ∞, we have lim sup
t→T −

‖u(t)‖∞ < ∞.

Proof. Clearly if lim supt→T −(‖u(t)‖s,∞ +‖ut (t)‖s,∞) < ∞ then lim supt→T − ‖u(t)‖∞ < ∞.
Conversely, assume the solution exists for t ∈ [0, T ) and ‖u(t)‖∞ � M for all 0 � t � T .
Integrating the equation twice and calculating the resulting double integral as an iterated
integral, we have

u(x, t) = ϕ(x) + tψ(x) +
∫ t

0
(t − τ)(K ∗ f (u))(x, τ ) dτ (3.2)

ut (x, t) = ψ(x) +
∫ t

0
(K ∗ f (u))(x, τ ) dτ. (3.3)



Hence for all t ∈ [0, T )

‖u(t)‖s � ‖ϕ‖s + T ‖ψ‖s + T

∫ t

0
‖(K ∗ f (u))(τ )‖s dτ,

‖ut (t)‖s � ‖ψ‖s +
∫ t

0
‖(K ∗ f (u))(τ )‖s dτ.

But ‖(K ∗f (u))(τ )‖s � C‖(f (u))(τ )‖s � CA(M)‖u(τ)‖s where the first inequality follows
from (3.1) and the second from lemma 3.1. Then

‖u(t)‖s + ‖ut (t)‖s � ‖ϕ‖s + (T + 1)‖ψ‖s + (T + 1)CA(M)

∫ t

0
‖u(τ)‖s dτ,

and Gronwall’s lemma implies

‖u(t)‖s + ‖ut (t)‖s � (‖ϕ‖s + (T + 1)‖ψ‖s)e
(T +1)CA(M)T < ∞

for all t ∈ [0, T ).

4. Conservation of energy and global existence

In the rest of the study we will assume that

0 < β̂(ξ) � C(1 + ξ 2)−r/2.

We define the operator P as Pv = F−1(|ξ |−1(β̂(ξ))−1/2v̂(ξ)) with the inverse Fourier
transform F−1. Then P −2v = −K ∗ v.

Lemma 4.1. Suppose the conditions of theorems 3.4, 3.5 or 3.6 hold and the solution of the
Cauchy problem (1.1)–(1.2) exists in C2([0, T ), H s ∩L∞) for some s � 0. If Pψ ∈ L2, then
Put ∈ C1([0, T ), L2). If moreover Pϕ ∈ L2, then Pu ∈ C1([0, T ), L2).

Proof. From (3.3) we get

Put(x, t) = Pψ(x) −
∫ t

0
(P −1f (u))(x, τ ) dτ.

But for fixed t, we have f (u) ∈ Hs . Also P −1v = F−1(|ξ |(β̂(ξ))1/2v̂(ξ)) thus P −1(f (u)) ∈
Hs+ r

2 −1 ⊂ L2. The second statement follows similarly from (3.2).

Lemma 4.2. Suppose the conditions of theorems 3.4, 3.5 or 3.6 hold and u satisfies (1.1)–(1.2)
on some interval [0, T ). If Pψ ∈ L2 and the function G(ϕ) defined by (2.4) belongs to L1,
then for any t ∈ [0, T ) the energy

E(t) = ‖Put(t)‖2 + ‖u(t)‖2 + 2
∫

R

G(u) dx

is constant in [0, T ).

Proof. By lemma 4.1 Put(t) ∈ L2. The equation of motion, (1.1), can be rewritten as
P 2utt + u + g(u) = 0. Multiplying by 2ut , integrating in x and using Parseval’s identity we
get that dE/dt = 0.

Theorem 4.3. Let s � 0 and r > 3. Let ϕ, ψ ∈ Hs ∩ L∞, Pψ ∈ L2 and G(ϕ) ∈ L1. If
there is some k > 0 so that G(r) � −kr2 for all r ∈ R, then the Cauchy problem (1.1)–(1.2)
has a global solution in C2([0, ∞), H s ∩ L∞).



Proof. Since r > 3, by theorem 3.5 we have local existence in C2([0, T ), L2) for some T > 0.
The hypothesis implies that E(0) < ∞. Assume that u exists on [0, T ). Since G(u) � −ku2,

we get for all t ∈ [0, T )

‖Put(t)‖2 + ‖u(t)‖2 � E(0) + 2k‖u(t)‖2. (4.1)

Since β̂(ξ) � C(1 + ξ 2)−r/2; we have

‖Put(t)‖2 =
∫

R

ξ−2(β̂(ξ))−1(̂ut (ξ, t))2 dξ

� C−1
∫

R

ξ−2(1 + ξ 2)r/2(̂ut (ξ, t))2 dξ

� C−1
∫

R

(1 + ξ 2)(r−2)/2(̂ut (ξ, t))2 dξ

� C−1‖ut (t)‖2
r
2 −1. (4.2)

By the triangle inequality, for any Banach space valued differentiable function v we have

d

dt
‖v(t)‖ �

∥∥∥∥ d

dt
v(t)

∥∥∥∥ .

Then putting together (4.1)-(4.2)

d

dt
‖u(t)‖2

r
2 −1 = 2‖u(t)‖ r

2 −1
d

dt
‖u(t)‖ r

2 −1

� 2‖ut (t)‖ r
2 −1‖u(t)‖ r

2 −1

� ‖ut (t)‖2
r
2 −1 + ‖u(t)‖2

r
2 −1

� C‖Put(t)‖2 + ‖u(t)‖2
r
2 −1

� C(E(0) + 2k‖u(t)‖2) + ‖u(t)‖2
r
2 −1

� CE(0) + (2Ck + 1)‖u(t)‖2
r
2 −1.

Gronwall’s lemma implies that ‖u(t)‖ r
2 −1 stays bounded in [0, T ). But since (r/2) − 1 > 1

2 ,
we conclude that ‖u(t)‖∞ also stays bounded in [0, T ). By lemma 3.9 this implies a global
solution.

Remark 4.4. If g′(r) is bounded from below, g′(r) � −2k, then integrating we get G(r) �
−kr2. Hence the condition is satisfied when g is a polynomial of odd order with positive
leading term.

When r = 2, we can prove global existence in a certain case; typically when the kernel
is of the form β(x) = µ(|x|) with some smooth µ that is decreasing sufficiently fast. Then
K = βxx = µ′′(|x|) − 2µ′(0)δ will satisfy the condition in the following theorem.

Theorem 4.5. Let s � 0 and let the kernel β be such that βxx ∗ v = K ∗ v = h ∗ v − λv for
some λ > 0 and for some h ∈ L1 ∩ L∞. Let ϕ, ψ ∈ Hs ∩ L∞, Pψ ∈ L2 and G(ϕ) ∈ L1.
If there is some C > 0 and q > 1 so that |g(r)|q � CG(r) for all r ∈ R; then the Cauchy
problem (1.1)–(1.2) has a global solution in C2([0, ∞), H s ∩ L∞).

Proof. As K is a finite measure by theorem 3.6 we have a local solution. We follow the idea
in [13]. Suppose the solution u exists for t ∈ [0, T ). For fixed x ∈ R let

e(t) = 1
2 (ut (x, t))2 + λ

(
1
2 (u(x, t))2 + G(u(x, t))

)
.



Then

e′(t) = (utt + λ(u + g(u)))ut

= ((β ∗ (u + g(u)))xx + λ(u + g(u)))ut

= (h ∗ u)ut + (h ∗ g(u))ut

� u2
t + 1

2 (‖h ∗ u‖2
∞ + ‖h ∗ g(u)‖2

∞).

Since h ∈ L1 ∩ L∞, we have h ∈ LP for all p � 1. By Young’s inequality

e′(t) � u2
t + 1

2 (‖h‖2‖u‖2 + ‖h‖2
Lp‖g(u)‖2

Lq ),

where (1/p) + (1/q) = 1. Now the last two terms may be estimated as ‖u‖2 � E(0) and

‖g(u)‖2
Lq =

(∫
R

|g(u)|q dx

) 2
q

�
(

C

∫
R

G(u) dx

) 2
q

� (CE(0))
2
q

so that

e′(t) � D + 2e(t)

for some constant D depending on ‖h‖Lp , ‖h‖ and E(0). This inequality holds for all x ∈ R,
t ∈ [0, T ). Gronwall’s lemma then implies that e(t) and thus u(x, t) stays bounded.

The condition |g(r)|q � CG(r) is satisfied in particular when g(r) = cr2n+1 with c > 0
and positive integer n.

We want to conclude with some comments on the condition Pψ ∈ L2. The estimate (4.2)
shows that when Pψ ∈ L2, we will have ψ ∈ H

r
2 −1. The converse is not necessarily true

since, without any further assumptions on the kernel, the factor (β̂(ξ))−1/2 may be quite large.
In examples (v) and (vi) of section 2.3, Pψ ∈ L2 implies a very strong smoothness condition
on ψ .

5. Blow-up in finite time

We will use the following lemma to prove blow-up in finite time.

Lemma 5.1 ([20]). Suppose H(t), t � 0 is a positive, twice differentiable function satisfying
H ′′H − (1 + ν)(H ′)2 � 0, where ν > 0. If H(0) > 0 and H ′(0) > 0, then H(t) → ∞ as
t → t1 for some t1 � H(0)/νH ′(0).

We first rewrite the energy identity as

E(t) = ‖Put(t)‖2 + 2
∫

R

F(u) dx = E(0),

where F(r) = ∫ r

0 f (ρ) dρ with f (u) = u + g(u) as before.

Theorem 5.2. Suppose that the conditions of theorems 3.4, 3.5 or 3.6 hold, Pϕ, Pψ ∈ L2

and G(ϕ) ∈ L1. If there is some ν > 0 such that

pf (p) � 2(1 + 2ν)F (p) for all p ∈ R,

and

E(0) = ‖Pψ‖2 + 2
∫

R

F(ϕ) dx < 0,

then the solution u of the Cauchy problem (2.7)–(2.8) blows up in finite time.



Proof. Assume that there is a global solution. Then Pu(t), Put (t) ∈ L2 for all t > 0. Let
H(t) = ‖Pu(t)‖2 +b(t + t0)

2 for some positive b and t0 that will be determined later. We have

H ′(t) = 2〈Pu, Put 〉 + 2b(t + t0),

H ′′(t) = 2‖Put‖2 + 2〈Pu, Putt 〉 + 2b.

Note that

2〈Pu, Putt 〉 = 2〈u, P 2utt 〉 = −2〈u, f (u)〉 = −2
∫

R

uf (u) dx

� − 4(1 + 2ν)

∫
R

F(u) dx

= 2(1 + 2ν)(‖Put‖2 − E(0)),

so that

H ′′(t) � 4(1 + ν)‖Put‖2 − 2(1 + 2ν)E(0) + 2b.

On the other hand, we have

(H ′(t))2 = 4[〈Pu, Put 〉 + b(t + t0)]
2

� 4[‖Pu‖‖Put‖ + b(t + t0)]
2

= 4[‖Pu‖2‖Put‖2 + 2‖Pu‖‖Put‖b(t + t0) + b2(t + t0)
2]

� 4[‖Pu‖2‖Put‖2 + b‖Pu‖2 + b‖Put‖2(t + t0)
2 + b2(t + t0)

2].

Thus

H ′′(t)H(t) − (1 + ν)(H ′(t))2

� [4(1 + ν)‖Put‖2 − 2(1 + 2ν)E(0) + 2b][‖Pu‖2 + b(t + t0)
2]

−4(1 + ν)[‖Pu‖2‖Put‖2 + b‖Pu‖2 + b‖Put‖2(t + t0)
2 + b2(t + t0)

2]

= [−2(1 + 2ν)E(0) + 2b − 4b(1 + ν)][‖Pu‖2 + b(t + t0)
2]

= −2(1 + 2ν)(b + E(0))H(t) .

Now if we choose b � −E(0), this gives

H ′′(t)H(t) − (1 + ν)(H ′(t))2 � 0 .

Moreover

H ′(0) = 2〈Pϕ, Pψ〉 + 2bt0 � 0

for sufficiently large t0. According to lemma 5.1, this implies that H(t), and thus ‖Pu(t)‖2

blows up in finite time contradicting the assumption that the global solution exists.
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