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The Dirac operators

Ly = i

(
1 0
0 −1

)
dy

dx
+ v(x)y, y =

(
y1

y2

)
, x ∈ [0, π],

with L2-potentials

v(x) =

(
0 P (x)

Q(x) 0

)
, P, Q ∈ L2([0, π]),

considered on [0, π] with periodic, antiperiodic or Dirichlet boundary conditions (bc), have discrete spectra,
and the Riesz projections

SN =
1

2πi

∫
|z|=N− 1

2

(z − Lbc)
−1 dz, Pn =

1

2πi

∫
|z−n|= 1

2

(z − Lbc)
−1 dz

are well-defined for |n| ≥ N if N is sufficiently large. It is proved that

∑
|n|>N

∥∥Pn − P 0
n

∥∥2
< ∞,

where P 0
n , n ∈ Z, are the Riesz projections of the free operator.

Then, by the Bari–Markus criterion, the spectral Riesz decompositions

f = SNf +
∑

|n|>N

Pnf, ∀f ∈ L2;

converge unconditionally in L2.

1 Introduction

The question for unconditional convergence of the spectral decompositions is one of the central problems in
Spectral Theory of Differential Operators [2, 3, 20, 23, 26,27].
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In the case of ordinary differential operators on a finite interval, say I = [0, π],

�(y) =
dmy

dxm
+

m−2∑
k=0

qk(x)
dky

dxk
, qk ∈ W 2

k (I), (1.1)

with strongly regular boundary conditions (bc) the eigenfunction decompositions

f(x) =
∑

k

ck(f)uk(x), �(uk) = λkuk, uk ∈ (bc), (1.2)

converge unconditionally for every f ∈ L2(I) (see [3, 17, 22]).
If (bc) are regular but not strictly regular the system of root functions (eigenfunctions and associated functions)

in general is not a basis in L2. But if the root functions are combined properly in disjoint groups Bn,
⋃

Bn = N,
then the series

f(x) =
∑

n

Pnf, where Pnf =
∑

k∈Bn

ck(f)uk(x), (1.3)

converges unconditionally in L2 (see [29, 30]).
Let us be more specific in the case of operators of second order

�(y) = y′′ + q(x)y, 0 ≤ x ≤ π. (1.4)

Then, Dirichlet bc = Dir : y(0) = y(π) = 0 is strictly regular; however, Periodic bc = Per+ : y(0) =
y(π), y′(0) = y′(π) and Antiperiodic bc = Per− : y(0) = −y(π), y′(0) = −y′(π) are regular, but not strictly
regular.

Analysis—even if it becomes more difficult and technical—could be extended to singular potentials q ∈ H−1.
A. Savchuk and A. Shkalikov showed ([28], Theorems 2.7 and 2.8) that for both Dirichlet bc or (properly under-
stood) Periodic or Antiperiodic bc, the spectral decomposition (1.3) converges unconditionally. An alternative
proof of this result is given in [10].

For Dirac operators (2.1) the results on unconditional convergence are sparse and not complete so far [13, 14,
18, 19, 30–32].

The case of separate boundary conditions, at least for smooth potential v, has been studied in detail in [13,14,
18, 19]. For periodic (or antiperiodic) bc B. Mityagin [24, 25] proved unconditional convergence of the series
(1.3) with dim Pn = 2, |n| ≥ N(v), for potentials v ∈ Hb, b > 1/2—see Theorem 8.8 [25] for a precise
statement.

Our techniques from [10] to analyze the resolvents (λ−Lbc)−1 of Hill operators with the weakest (in Sobolev
scale) assumption v ∈ H−1 on “smoothness” of the potential are adjusted and extended in the present paper to
Dirac operators with potentials in L2. We prove (see Theorem 3.1 for a precise statement) that if v ∈ L2 and
bc = Per±, Dir the sequence of deviations

∥∥Pn − P 0
n

∥∥ is in �2. Then, the Bari–Markus criterion (see [1, 21]
or [12], Ch.6, Sect.5.3, Theorem 5.2)) shows that the spectral decomposition

f = SNf +
∑

|n|>N

Pnf, ∀f ∈ L2, (1.5)

where, for |n| ≥ N(v),

dimPn =

{
2, bc = Per±,

1, bc = Dir,
(1.6)

converge unconditionally. This is Theorem 5.1, the main result of the present paper.
Further analysis requires thorough discussion of the algebraic structure of regular and strictly regular bc for

Dirac operators. Then we can claim a general statement which is an analogue of (1.5)–(1.6), or Theorem 5.1,
with bc = Dir in case of strictly regular boundary conditions, and bc = Per± in case of regular but not strictly
regular boundary conditions. We will give all the details in another paper.

The authors are grateful to the anonymous reviewers whose comments helped to improve this exposition.



2 Preliminary results

Consider the Dirac operator on I = [0, π]

Ly = i

(
1 0
0 −1

)
dy

dx
+ v(x)y, (2.1)

where

v(x) =
(

0 P (x)
Q(x) 0

)
, y =

(
y1

y2

)
, (2.2)

and v is an L2-potential, i.e., P, Q ∈ L2(I).
We equip the space H0 of L2(I)-vector functions F =

(
f1
f2

)
with the scalar product

〈F, G〉 =
1
π

∫ π

0

(
f1(x)g1(x) + f2(x)g2(x)

)
dx.

Consider the following boundary conditions (bc) :
(a) periodic Per+ : y(0) = y(π), i.e., y1(0) = y1(π) and y2(0) = y2(π);
(b) anti-periodic Per− : y(0) = −y(π), i.e., y1(0) = −y1(π) and y2(0) = −y2(π);
(c) Dirichlet Dir : y1(0) = y2(0), y1(π) = y2(π).
The corresponding closed operator with a domain

Δbc =
{

f ∈ (W 2
1 (I))2 : f =

(
f1

f2

)
∈ (bc)

}
(2.3)

will be denoted by Lbc, or respectively, by LPer± and LDir. If v = 0, i.e., P ≡ 0, Q ≡ 0, we write L0
bc (or

simply L0), or L0
Per± , L0

Dir respectively. Of course, it is easy to describe the spectra and eigenfunctions for L0
bc.

(a) Sp
(
L0

Per+

)
= {n even} = 2Z; each number n ∈ 2Z is a double eigenvalue, and the corresponding

eigenspace is

E0
n = Span

{
e1

n, e2
n

}
, n ∈ 2Z, (2.4)

where

e1
n(x) =

(
e−inx

0

)
, e2

n(x) =
(

0
einx

)
; (2.5)

(b) Sp
(
L0

Per−
)

= {n odd} = 2Z+1; the corresponding eigenspaces E0
n are given by (2.4) and (2.5) but with

n ∈ 2Z + 1;
(c) Sp

(
L0

Dir

)
= {n ∈ Z}; each eigenvalue n is simple. The corresponding normalized eigenfunction is

gn(x) =
1√
2

(
e1

n + e2
n

)
, n ∈ Z, (2.6)

so the corresponding (one-dimensional) eigenspace is

G0
n = Span{gn}. (2.7)

We study the spectral properties of the operators LPer± and LDir by using their Fourier representations with
respect to the eigenvectors of the corresponding free operators given above in (2.4)–(2.7).

Let

P (x) =
∑

m∈2Z

p(m)eimx, Q(x) =
∑

m∈2Z

q(m)eimx, (2.8)



and

P (x) =
∑

m∈1+2Z

p1(m)eimx, Q(x) =
∑

m∈1+2Z

q1(m)eimx, (2.9)

be, respectively, the Fourier expansions of the functions P and Q about the systems {eimx, m ∈ 2Z} and
{eimx, m ∈ 1 + 2Z}.

Then

‖v‖2 =
∑

m∈2Z

(|p(m)|2 + |q(m)|2) =
∑

m∈1+2Z

(|p1(m)|2 + |q1(m)|2) . (2.10)

Let V be the operator of multiplication by the matrix potential v(x). The Fourier representation of V is defined
by its action on vectors e1

n and e2
n, with n ∈ 2Z for bc = Per+ and n ∈ 1 + 2Z for bc = Per−. In view of (2.2)

and (2.8), we have

V e1
n =

∑
k∈n+2Z

q(k + n)e2
k, V e2

n =
∑

k∈n+2Z

p(−k − n)e1
k, (2.11)

so, the matrix representation of V is

V ∼
(

0 V 12

V 21 0

)
, (V 12)kn = p(−k − n), (V 21)kn = q(k + n). (2.12)

In the case of Dirichlet boundary conditions the operator L0 is diagonal as well. The matrix representation of
V given by the following lemma.

Lemma 2.1 Let (gn)n∈Z be the orthogonal normalized basis (2.6) of eigenfunctions of L0 in the case of
Dirichlet boundary conditions. Then

Vkn := 〈V gn, gk〉 = W (k + n), k, n ∈ Z, (2.13)

with

W (m) =

{
(p(−m) + q(m))/2, m even,

(p1(−m) + q1(m))/2, m odd.
(2.14)

The proof follows from a direct computation of 〈V gn, gk〉. Let us mention, that the sequences p1(m) and
q1(m) in (2.14) are Hilbert transforms of p(n) and q(n) (see [6], Lemma 2 in Section 1.3) but we do not need
this fact. In the following only the relation (2.10) is essential.

In view of (2.4)–(2.7) the operator R0
λ = (λ − L0)−1 is well defined, respectively, for λ �∈ 2Z if bc = Per+,

λ �∈ 1 + 2Z if bc = Per−, and λ �∈ Z if bc = Dir. The operator R0
λ is diagonal, and we have

R0
λe1

n =
1

λ − n
e1

n, R0
λe2

n =
1

λ − n
e2

n for bc = Per±, (2.15)

and

R0
λgn =

1
λ − n

gn for bc = Dir. (2.16)

The standard perturbation type formulae for the resolvent Rλ = (λ − L0 − V )−1 are

Rλ = (1 − R0
λV )−1R0

λ =
∞∑

k=0

(R0
λV )kR0

λ, (2.17)

and

Rλ = R0
λ(1 − V R0

λ)−1 =
∞∑

k=0

R0
λ(V R0

λ)k. (2.18)



The simplest conditions that guarantee convergence of the series (2.17) or (2.18) in �2 are

‖R0
λV ‖ < 1, respectively, ‖V R0

λ‖ < 1.

In the case of Dirac operators there are no such good estimates but there are good estimates for the norms of
(R0

λV )2 and (V R0
λ)2 (see [4, 5] and [6], Section 1.2, for more comments).

But now we are going to suggest another approach that is borrowed from the study of Hill operators with
periodic singular potentials (see [8–10]). Notice, that one can write (2.17) or (2.18) as

Rλ = R0
λ + R0

λV R0
λ + · · · = K2

λ +
∞∑

m=1

Kλ(KλV Kλ)mKλ, (2.19)

provided

(Kλ)2 = R0
λ. (2.20)

In view of (2.15) and (2.16), we define an operator K = Kλ with the property (2.20) by

Kλe1
n =

1√
λ − n

e1
n, Kλe2

n =
1√

λ − n
e2

n for bc = Per±, (2.21)

and

Kλgn =
1√

λ − n
gn for bc = Dir, (2.22)

where
√

z =
√

reiϕ/2 if z = reiϕ, −π ≤ ϕ < π.

Then Rλ is well-defined if

‖KλV Kλ‖�2→�2 < 1. (2.23)

In view of (2.11) and (2.21), for periodic or anti–periodic boundary conditions bc = Per±, we have

(KλV Kλ)e1
n =

∑
k

q(k + n)
(λ − k)1/2(λ − n)1/2

e2
k,

(KλV Kλ)e2
n =

∑
k

p(−k − n)
(λ − k)1/2(λ − n)1/2

e1
k,

(2.24)

so, the Hilbert–Schmidt norm of the operator KλV Kλ is given by

‖KλV Kλ‖2
HS =

∑
k,m

|q(k + m)|2
|λ − k||λ − m| +

∑
k,m

|p(−k − m)|2
|λ − k||λ − m| , (2.25)

where k, m ∈ 2Z for bc = Per+ and k, m ∈ 1 + 2Z for bc = Per−.
In an analogous way (2.13), (2.14) and (2.22) imply, for Dirichlet boundary conditions bc = Dir,

(KλV Kλ)gn =
∑

k

W (k + n)
(λ − k)1/2(λ − n)1/2

gk, k, n ∈ Z, (2.26)

and therefore, we have

‖KλV Kλ‖2
HS =

∑
k,m

|W (k + m)|2
|λ − k||λ − m| , k, m ∈ Z. (2.27)



For convenience, we set

r(m) = max(|p(m)|, |p(−m)|) + max(|q(m)|, |q(−m)|), m ∈ 2Z, (2.28)

if bc = Per±, and

r(m) = |W (m)|, m ∈ Z, (2.29)

if bc = Dir. Now we define operators V̄ and K̄λ which dominate, respectively, V and Kλ, as follows:

V̄ e1
n =

∑
k∈n+2Z

r(k + n)e2
k, V̄ e2

n =
∑

k∈n+2Z

r(k + n)e1
k for bc = Per±, (2.30)

V̄ gn =
∑
k∈Z

r(k + n)gk for bc = Dir, (2.31)

and

K̄λe1
n =

1√|λ − n|e
1
n, K̄λe2

n =
1√|λ − n|e

2
n for bc = Per±, (2.32)

K̄λgn =
1√|λ − n|gn for bc = Dir. (2.33)

Since the matrix elements of the operator KλV Kλ do not exceed, by absolute value, the matrix elements
of K̄λV̄ K̄λ, we estimate from above the Hilbert–Schmidt norm of the operator KλV Kλ by one and the same
formula:

‖KλV Kλ‖2
HS ≤ ‖K̄λV̄ K̄λ‖2

HS =
∑
i,k

|r(i + k)|2
|λ − i||λ − k| , (2.34)

where i, k ∈ 2Z if bc = Per+ and i, k ∈ 1 + 2Z if bc = Per−, or i, k ∈ Z if bc = Dir. Next we estimate the
Hilbert–Schmidt norm of the operator K̄λV̄ K̄λ for λ ∈ Cn = {λ : |λ − n| = 1/2}.

For each �2-sequence x = (x(j))j∈Z and m ∈ N we set

Em(x) =

⎛
⎝ ∑

|j|≥m

|x(j)|2
⎞
⎠

1/2

. (2.35)

Lemma 2.2 In the above notations, if n �= 0, then

‖K̄λV̄ K̄λ‖2
HS =

∑
i,k

|r(i + k)|2
|λ − i||λ − k| ≤ 60

(
‖r‖2√|n| + (E|n|(r))2

)
, λ ∈ Cn. (2.36)

P r o o f. Since

2|λ − i| ≥ |n − i| if i �= n, λ ∈ Cn = {λ : |λ − n| = 1/2}, (2.37)

the sum in (2.36) does not exceed

4|r(2n)|2 + 4
∑
k �=n

|r(n + k)|2
|n − k| + 4

∑
i�=n

|r(n + i)|2
|n − i| + 4

∑
i,k �=n

|r(i + k)|2
|n − i||n − k| .

In view of (4.2) and (4.3) in Lemma 4.1, each of the above sums does not exceed the right-hand side of (2.36),
which completes the proof.

Corollary 2.3 There is N ∈ N such that

‖KλV Kλ‖ ≤ 1/2 for λ ∈ Cn, |n| > N. (2.38)



3 Core results

By our Theorem 18 in [6] (about spectra localization), for sufficiently large |n|, say |n| > N, the operator
LPer± has exactly two (counted with their algebraic multiplicity) periodic (for even n) or antiperiodic (for odd
n) eigenvalues inside the disc with a center n of radius 1/2. The operator LDir has, for all sufficiently large |n|,
one eigenvalue in every such disc.

Let Pn and P 0
n be the Riesz projections corresponding to L and L0, i.e.,

Pn =
1

2πi

∫
Cn

(λ − L)−1 dλ, P 0
n =

1
2πi

∫
Cn

(
λ − L0

)−1
dλ,

where Cn = {λ : |λ − n| = 1/2}.
Theorem 3.1 Suppose L and L0 are, respectively, the Dirac operator (2.1) with an L2 potential v and the

free Dirac operator, subject to periodic, antiperiodic or Dirichlet boundary conditions bc = Per± or Dir. Then,
there is N ∈ N such that for |n| > N the Riesz projections Pn and P 0

n corresponding to L and L0 are well
defined and we have∑

|n|>N

∥∥Pn − P 0
n

∥∥2
< ∞. (3.1)

P r o o f. Now we present the proof of the theorem up to a few technical inequalities. They will be proved later
in Section 4, Lemmas 4.1 and 4.2.

1. Let us notice that the operator-valued function Kλ is analytic in C \ R. But (2.19), (3.2) below and
all formulas of this section, which are essentially variations of (2.19), always have even powers of Kλ, and
K2

λ = R0
λ is analytic on C \Sp(L0). Certainly, this justifies the use of Cauchy formula or Cauchy theorem when

warranted.
In view of (2.38), the corollary after the proof of Lemma 2, if |n| is sufficiently large then the series in (2.19)

converges. Therefore,

Pn − P 0
n =

1
2πi

∫
Cn

∞∑
s=0

Kλ(KλV Kλ)s+1Kλ dλ. (3.2)

Remark 3.2 We are going to prove (3.1) by estimating the Hilbert–Schmidt norms
∥∥Pn − P 0

n

∥∥
HS

which
dominate

∥∥Pn − P 0
n

∥∥. Of course, these norms are equivalent as long as the dimensions dim
(
Pn − P 0

n

)
are

uniformly bounded because for any finite dimensional operator T we have

‖T ‖ ≤ ‖T ‖HS ≤ (dim T )1/2‖T ‖

but in the context of this paper for all projections dim Pn, dim P 0
n ≤ 2.

2. If bc = Dir, then, by (2.6),

∥∥Pn − P 0
n

∥∥2

HS
=
∑

m,k∈Z

∣∣〈(Pn − P 0
n

)
gm, gk

〉∣∣2.
By (3.2), we get

〈(
Pn − P 0

n

)
gm, gk

〉
=

∞∑
s=0

In(s, k, m),

where

In(s, k, m) =
1

2πi

∫
Cn

〈Kλ(KλV Kλ)s+1Kλgm, gk〉 dλ.



Therefore,

∑
|n|>N

∥∥Pn − P 0
n

∥∥2

HS
≤

∞∑
s,t=0

∑
|n|>N

∑
m,k∈Z

|In(s, k, m)| · |In(t, k, m)|.

Now, the Cauchy inequality implies

∑
|n|>N

∥∥Pn − P 0
n

∥∥2

HS
≤

∞∑
s,t=0

(A(s))1/2(A(t))1/2, (3.3)

where

A(s) =
∑

|n|>N

∑
m,k∈Z

|In(s, k, m)|2. (3.4)

Notice that A(s) depends on N but this dependence is suppressed in the notation.
From the matrix representation of the operators Kλ and V we get

〈Kλ(KλV Kλ)s+1Kλgm, gk〉 =
∑

j1,...,js

W (k + j1)W (j1 + j2) · · ·W (js + m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

, (3.5)

and therefore,

In(s, k, m) =
1

2πi

∫
Cn

∑
j1,...js

W (k + j1)W (j1 + j2) · · ·W (js + m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

dλ. (3.6)

In view of (2.29), we have∣∣∣∣W (k + j1)W (j1 + j2) · · ·W (js + m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

∣∣∣∣ ≤ B(λ, k, j1, . . . , js, m), (3.7)

where

B(λ, k, j1, . . . , js, m) =
r(k + j1)r(j1 + j2) · · · r(js−1 + js)r(js + m)

|λ − k||λ − j1| · · · |λ − js||λ − m| , s > 0, (3.8)

and

B(λ, k, m) =
r(m + k)

|λ − k||λ − m| (3.9)

in the case when s = 0 and there are no j-indices. Moreover, by (2.29), (2.31) and (2.33), we have∑
j1,...,js

B(λ, k, j1, . . . , js, m) = 〈K̄λ(K̄λV̄ K̄λ)s+1K̄zgm, gk〉. (3.10)

Lemma 3.3 In the above notations, we have

A(s) ≤ B1(s) + B2(s) + B3(s) + B4(s), (3.11)

where

B1(s) =
∑

|n|>N

sup
λ∈Cn

⎛
⎝ ∑

j1,...,js

B(λ, n, j1, . . . , js, n)

⎞
⎠

2

; (3.12)



B2(s) =
∑

|n|>N

∑
k �=n

sup
λ∈Cn

⎛
⎝ ∑

j1,...,js

B(λ, k, j1, . . . , js, n)

⎞
⎠

2

; (3.13)

B3(s) =
∑

|n|>N

∑
m �=n

sup
λ∈Cn

⎛
⎝ ∑

j1,...,js

B(λ, n, j1, . . . , js, m)

⎞
⎠

2

; (3.14)

B4(s) =
∑

|n|>N

∑
m,k �=n

sup
λ∈Cn

⎛
⎝ ∗∑

j1,...,js

B(λ, k, j1, . . . , js, m)

⎞
⎠

2

, s ≥ 1, (3.15)

where the symbol ∗ over the sum in the parentheses means that at least one of the indices j1, . . . , js is equal to n.

P r o o f. Indeed, in view of (3.4), we have

A(s) ≤ A1(s) + A2(s) + A3(s) + A4(s),

where

A1(s) =
∑

|n|>N

|In(s, n, n)|2, A2(s) =
∑

|n|>N

∑
k �=n

|In(s, k, n)|2,

A3(s) =
∑

|n|>N

∑
m �=n

|In(s, n, m)|2, A4(s) =
∑

|n|>N

∑
m,k �=n

|In(s, k, m)|2.

By (3.6)–(3.9) we get immediately that

Aν(s) ≤ Bν(s), ν = 1, 2, 3.

On the other hand, by the Cauchy formula,∫
Cn

W (k + j1)W (j1 + j2) · · ·W (js + m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

dλ = 0 if k, j1, . . . , js, m �= n.

Therefore, removing from the sum in (3.6) the terms with zero integrals, and estimating from above the remaining
sum, we get

|In(s, k, m)| ≤ sup
λ∈Cn

⎛
⎝ ∗∑

j1,...,js

B(λ, k, j1, . . . , js, m)

⎞
⎠ , m, k �= n.

From here it follows that A4(s) ≤ B4(s), which completes the proof.

3. If bc = Per±, then using the orthonormal system of eigenvectors of the free operator L0 given by (2.5),
we get

∥∥Pn − P 0
n

∥∥2

HS
=

2∑
α,β=1

∑
m,k

∣∣〈(Pn − P 0
n

)
eα

m, eβ
k

〉∣∣2, (3.16)

where m, k ∈ 2Z if n is even or m, k ∈ 1 + 2Z if n is odd. By (3.2), we have

〈(
Pn − P 0

n

)
eα

m, eβ
k

〉
=

∞∑
s=0

Iαβ(n, s, k, m), (3.17)

where

Iαβ(n, s, k, m) =
1

2πi

∫
Cn

〈
Kλ(KλV Kλ)s+1Kλeα

m, eβ
k

〉
dλ. (3.18)



Therefore,

∑
|n|>N

∥∥Pn − P 0
n

∥∥2

HS
≤

2∑
α,β=1

∞∑
t,s=0

∑
|n|>N

∑
m,k

|Iαβ(n, s, k, m)| · |Iαβ(n, t, k, m)|.

Now, the Cauchy inequality implies

∑
|n|>N

∥∥Pn − P 0
n

∥∥2

HS
≤

2∑
α,β=1

∞∑
t,s=0

(
Aαβ(s)

)1/2(
Aαβ(t)

)1/2
, (3.19)

where

Aαβ(s) =
∑

|n|>N

∑
m,k

|Iαβ(n, s, k, m)|2. (3.20)

Lemma 3.4 In the above notations, with r given by (2.28), B(λ, k, j1, . . . , js, m) defined in (3.8), (3.9), and
Bj(s), j = 1, . . . , 4, defined by (3.12)–(3.15), we have

Aαβ(s) ≤ B1(s) + B2(s) + B3(s) + B4(s), α, β = 1, 2. (3.21)

P r o o f. The matrix representations of the operators V and Kλ given in (2.12) and (2.21) imply that if s is
even, then

〈
Kλ(KλV Kλ)s+1Kλeα

m, eα
k

〉
= 0 for α = 1, 2, and if s is odd then

〈
Kλ(KλV Kλ)s+1Kλe1

m, e1
k

〉
=

∑
j1,...,js

p(−k − j1)q(j1 + j2) · · · p(−js−1 − js)q(js + m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

, (3.22)

〈
Kλ(KλV Kλ)s+1Kλe2

m, e2
k

〉
=

∑
j1,...,js

q(k + j1)p(−j1 − j2) · · · q(js−1 + js)p(−js − m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

. (3.23)

In analogous way it follows that if s is odd then〈
Kλ(KλV Kλ)s+1Kλe1

m, e2
k

〉
= 0 and

〈
Kλ(KλV Kλ)s+1Kλe2

m, e1
k

〉
= 0,

and if s is even then

〈
Kλ(KλV Kλ)s+1Kλe1

m, e2
k

〉
=

∑
j1,...,js

q(k + j1)p(−j1 − j2) · · · p(−js−1 − js)q(js + m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

, (3.24)

〈
Kλ(KλV Kλ)s+1Kλe2

m, e1
k

〉
=

∑
j1,...,js

p(−k − j1)q(j1 + j2) · · · q(js−1 + js)p(−js − m)
(λ − k)(λ − j1) · · · (λ − js)(λ − m)

. (3.25)

From (2.28), (3.12)–(3.15) and the above formulas it follows that∣∣〈Kλ(KλV Kλ)s+1Kλeα
m, eβ

k

〉∣∣ ≤ ∑
j1,...,js

B(λ, k, j1, . . . , js, m),

which implies immediately

|Iαβ
n (s, k, m)| ≤ sup

λ∈Cn

⎛
⎝ ∑

j1,...,js

B(λ, k, j1, . . . , js, m)

⎞
⎠ . (3.26)

By (3.20),

Aαβ(s) ≤ Aαβ
1 (s) + Aαβ

2 (s) + Aαβ
3 (s) + Aαβ

4 (s),



where

Aαβ
1 (s) =

∑
|n|>N

|Iαβ
n (s, n, n)|2, Aαβ

2 (s) =
∑

|n|>N

∑
k �=n

|Iαβ
n (s, k, n)|2,

Aαβ
3 (s) =

∑
|n|>N

∑
m �=n

|Iαβ
n (s, n, m)|2, Aαβ

4 (s) =
∑

|n|>N

∑
m,k �=n

|Iαβ
n (s, k, m)|2.

Therefore, in view of (3.26) and (3.12)–(3.14), we get

Aαβ
ν (s) ≤ Bν(s), ν = 1, 2, 3.

Finally, as in the proof of Lemma 3.3, we take into account that in the sums (3.22)–(3.25) the terms with indices
j1, . . . , js, m, k �= n have zero integrals over the contour Cn. Therefore,

|Iαβ
n (s, k, m)| ≤ sup

λ∈Cn

⎛
⎝ ∗∑

j1,...,js

B(λ, k, j1, . . . , js, m)

⎞
⎠ , m, k �= n.

In view of (3.15), this yields Aαβ
4 (s) ≤ B4(s), which completes the proof.

4. In view of (3.3) and (3.11), Theorem 3.1 will be proved if we get “good estimates” of the sums Bν(s), ν =
1, . . . , 4, that are defined by (3.12)–(3.15). Such estimates are given in the next proposition. For convenience, we
set for any �2-sequence r = (r(j))

ρN = 8
(‖r‖2

√
N

+ (EN (r))2
)1/2

. (3.27)

Proposition 3.5 In the above notations,

Bν(s) ≤ C‖r‖2ρ2s
N , ν = 1, 2, 3, B4(s) ≤ Cs‖r‖4ρ

2(s−1)
N , s ≥ 1, (3.28)

where C is an absolute constant.

Remark: For convenience, here and thereafter we denote by C any absolute constant.

P r o o f. Estimates for B1(s). By (3.9) and (3.12), we have

B1(0) =
∑

|n|>N

sup
λ∈Cn

|r(2n)|2
|λ − n|2 = 4(EN(r))2 ≤ 4‖r‖2,

so (3.28) holds for B1(s) if s = 0.
If s = 1, then by (3.8), the sum B1(1) from (3.12) has the form

B1(1) =
∑

|n|>N

sup
λ∈Cn

∣∣∣∣∣∣
∑

j

r(n + j)r(j + n)
|λ − n||λ − j||λ − n|

∣∣∣∣∣∣
2

.

By (2.37), and since |λ − n| = 1/2 for λ ∈ Cn, we get

B1(1) ≤
∑

|n|>N

⎛
⎝8
∑
j �=n

|r(j + n)|2
|j − n| + 8|r(2n)|2

⎞
⎠

2

≤ 128
∑

|n|>N

⎛
⎝∑

j �=n

|r(j + n)|2
|j − n|

⎞
⎠

2

+ 128
∑

|n|>N

|r(2n)|4.



By the Cauchy inequality and (4.5) in Lemma 4.2, we have

∑
|n|>N

⎛
⎝∑

j �=n

|r(j + n)|2
|j − n|

⎞
⎠

2

≤
∑

|n|>N

∑
j �=n

|r(j + n)|2
|j − n|2 ‖r‖2 ≤ C‖r‖2ρ2

N .

On the other hand,
∑

|n|>N |r(2n)|4 ≤ ‖r‖2(EN (r))2 ≤ ‖r‖2ρ2
N , so (3.28) holds for B1(s) if s = 1.

Next, we consider the case s > 1. In view of (3.8), since |λ − n| = 1/2 for λ ∈ Cn, the sum B1(s) from
(3.12) can be written as

B1(s) =
∑

|n|>N

4 sup
λ∈Cn

∣∣∣∣∣∣
∑

j1,...,js

r(n + j1)r(j1 + j2) · · · r(js + n)
|λ − j1||λ − j2| · · · |λ − js|

∣∣∣∣∣∣
2

.

Therefore, we have (with j = j1, k = js)

B1(s) = 4
∑

|n|>N

sup
λ∈Cn

∣∣∣∣∣∣
∑
j,k

r(n + j)
|λ − j|1/2

· Hjk(λ) · r(k + n)
|λ − k|1/2

∣∣∣∣∣∣
2

,

where (Hjk(λ)) is the matrix representation of the operator H(λ) = (K̄λV̄ K̄λ)s−1. By (2.36) in Lemma 2.2,

‖H(λ)‖HS =

⎛
⎝∑

j,k

|Hjk(λ)|2
⎞
⎠

1/2

≤ ‖K̄λV̄ K̄λ‖s−1
HS ≤ ρs−1

N for λ ∈ Cn, |n| > N.

Therefore, the Cauchy inequality implies

B1(s) ≤ 4 sup
λ∈Cn

‖H(λ)‖2
HS · σ ≤ 4ρ

2(s−1)
N · σ,

where

σ =
∑

|n|>N

sup
λ∈Cn

∑
j,k

|r(n + j)|2
|λ − j| · |r(k + n)|2

|λ − k| .

By (2.37) and since |λ − n| = 1/2 for λ ∈ Cn, we have

σ ≤ 4
∑

|n|>N

∑
j,k �=n

|r(n + j)|2|r(n + k)|2
|n − j||n − k| + 4

∑
|n|>N

|r(2n)|2
∑
k �=n

|r(n + k)|2
|n − k|

+ 4
∑

|n|>N

|r(2n)|2
∑
j �=n

|r(n + j)|2
|n − j| + 4

∑
|n|>N

|r(2n)|4.

In view of (4.6) in Lemma 4.2, the triple sum does not exceed C‖r‖2ρ2
N . By (4.2) in Lemma 4.1, each of the

double sums can be estimated from above by

C
∑

|n|>N

|r(2n)|2ρ2
N ≤ C‖r‖2ρ2

N ,

and the same estimate holds for the single sum. Therefore,

B1(s) ≤ Cρ
2(s−1)
N · ‖r‖2ρ2

N ,

which completes the proof of (3.28) for B1(s).



Estimates for B2(s). By (3.9) and (3.12), we have

B2(0) =
∑

|n|>N

∑
k �=n

sup
λ∈Cn

|r(k + n)|2
|λ − k|2|λ − n|2 .

Taking into account that |λ − n| = 1/2 for λ ∈ Cn, we get, in view of (2.37) and (4.5) in Lemma 4.2,

B2(0) ≤ 16
∑

|n|>N

∑
k �=n

|r(k + n)|2
|n − k|2 ≤ C‖r‖2.

So, (3.28) holds for B2(s) if s = 0.
If s = 1, then, by (3.8), the sum B2(s) in (3.28) has the form

B2(1) =
∑

|n|>N

∑
k �=n

sup
λ∈Cn

∣∣∣∣∣∣
∑

j

r(k + j)r(j + n)
|λ − k||λ − j||λ − n|

∣∣∣∣∣∣
2

.

Since |λ − n| = 1/2 for λ ∈ Cn, we get, in view of (2.37),

B2(1) ≤
∑

|n|>N

∑
k �=n

∣∣∣∣∣∣
∑
j �=n

8
r(k + j)r(j + n)
|n − k||n − j| + 8r(2n)

r(k + n)
|n − k|

∣∣∣∣∣∣
2

.

Therefore,

B2(1) ≤ 128σ1 + 128σ2,

where (by the Cauchy inequality and (4.5) in Lemma 4.2)

σ1 =
∑

|n|>N,k �=n

⎛
⎝∑

j �=n

r(k + j)r(j + n)
|n − k||n − j|

⎞
⎠

2

≤
∑

|n|>N,k �=n

1
|n − k|2

⎛
⎝∑

j �=n

|r(n + j)|2
|n − j|2

⎞
⎠ · ‖r‖2

=
∑

|n|>N,j �=n

|r(n + j)|2
|n − j|2

∑
k �=n

‖r‖2

|n − k|2

≤ Cρ2
N‖r‖2,

and

σ2 =
∑

|n|>N,k �=n

|r(2n)|2 |r(n + k)|2
|n − k|2 ≤ Cρ2

N‖r‖2.

Thus, (3.28) holds for B2(s) if s = 1.
If s > 1, then by (3.8) and |λ − n| = 1/2 for λ ∈ Cn, we have

B2(s) =
∑

|n|>N,k �=n

2 sup
λ∈Cn

∣∣∣∣∣∣
∑

j1,...,js

r(k + j1)r(j1 + j2) · · · r(js + n)
|λ − k||λ − j1||λ − j2| · · · |λ − js|

∣∣∣∣∣∣
2

.

In view of (2.31) and (2.32), we get (with j = j1, i = js)

B2(s) = 2
∑

|n|>N,k �=n

sup
λ∈Cn

∣∣∣∣∣∣
∑
j,i

r(k + j)
|λ − k||λ − j|1/2

· Hji(λ) · r(i + n)
|λ − i|1/2

∣∣∣∣∣∣
2

,



where Hji(λ) is the matrix representation of the operator H(λ) = (K̄λV̄ K̄λ)s−1. Therefore, by the Cauchy
inequality and (2.36) in Lemma 2.2,

B2(s) ≤ 2 sup
λ∈Cn

‖H(λ)‖2
HS · σ̃ ≤ 2ρ

2(s−1)
N · σ̃, (3.29)

where

σ̃ =
∑

|n|>N,k �=n

sup
λ∈Cn

∑
i,j

|r(k + j)|2|r(i + n)|2
|λ − k|2|λ − j||λ − i| .

From |λ − n| = 1/2 for λ ∈ Cn and (2.37) it follows that

σ̃ ≤ 8(σ̃1 + σ̃2 + σ̃3 + σ̃4),

with

σ̃1 =
∑

|n|>N

∑
k �=n

∑
j,i�=n

|r(k + j)|2|r(i + n)|2
|n − k|2|n − j||n − i| ≤ C‖r‖2(E2N (r))2 ≤ C‖r‖2ρ2

N

(by (4.8) in Lemma 4.2);

σ̃2 =
∑

|n|>N

∑
k �=n

∑
j �=n

|r(k + j)|2|r(2n)|2
|n − k|2|n − j|

≤
∑

|n|>N

|r(2n)|2
∑
k �=n

1
|n − k|2

∑
j

|r(k + j)|2

≤ C‖r‖2(E2N (r))2

≤ C‖r‖2ρ2
N ;

σ̃3 =
∑

|n|>N

∑
k �=n

∑
i�=n

|r(k + n)|2|r(n + i)|2
|n − k|2|n − i|

≤
∑

|n|>N

∑
k �=n

|r(k + n)|2
|n − k|2 ·

∑
i

|r(n + i)|2

≤ C‖r‖2ρ2
N

(by (4.5) in Lemma 4.2);

σ̃4 =
∑

|n|>N,k �=n

|r(k + n)|2|r(2n)|2
|n − k|2 ≤ ‖r‖2

∑
|n|>N,k �=n

|r(k + n)|2
|n − k|2 ≤ C‖r‖2ρ2

N

(by (4.5) in Lemma 4.2). These estimates imply the inequality σ̃ ≤ C‖r‖2ρ2
N , which completes the proof of

(3.28) for ν = 2, s > 1.

Estimates for B3(s). The sums B3(s) can be estimated in a similar way because the indices k and m play
symmetric roles. More precisely, since

B(λ, k, i1, . . . , is, n) = B(λ, n, j1, . . . , jτ−1, k)

if j1 = is−1, . . . , js−1 = i1, we have B3(s) = B2(s). Thus, (3.28) holds for ν = 3.



Estimates for B4(s). Here s ≥ 1 by the definition of B4(s).
Fix s ≥ 1 and consider the sum in (3.15) that defines B4(s); then at least one of the indices j1, . . . , js is equal

to n. Let τ ≤ t be the least integer such that jτ = n. Then, by (3.8) or (3.9), and since |λ−n| = 1/2 for λ ∈ Cn,
we have

B(λ, k, j1, . . . , jτ−1, n, jτ+1, . . . , js, m)

=
1
2
B(λ, k, j1, . . . , jτ−1, n) · B(λ, n, jτ+1, . . . , js, m).

Therefore,

B4(s) ≤
s∑

τ=1

∑
|n|>N

∑
k �=n

sup
λ∈Cn

∣∣∣∣∣∣
∑

j1,...,jτ−1

B(λ, k, j1, . . . , jτ−1, n)

∣∣∣∣∣∣
2

×
∑
m �=n

sup
λ∈Cn

∣∣∣∣∣∣
∑

jτ+1,...,js

B(λ, n, jτ+1, . . . , js, m)

∣∣∣∣∣∣
2

.

On the other hand, by the estimate of B3(s) given by (3.28),

∑
m �=n

sup
λ∈Cn

∣∣∣∣∣∣
∑

jτ+1,...,js

B(λ, n, jτ+1, . . . , js, m)

∣∣∣∣∣∣
2

≤ C‖r‖2ρ
2(s−τ)
N , |n| > N.

Thus, we have

B4(s) ≤ C‖r‖2
s∑

τ=1

ρ
2(s−τ)
N

∑
|n|>N

∑
k �=n

sup
λ∈Cn

∣∣∣∣∣∣
∑

j1,...,jτ−1

B(λ, k, j1, . . . , jτ−1, n)

∣∣∣∣∣∣
2

.

Now, by (3.28) for ν = 2,

∑
|n|>N

∑
k �=n

sup
λ∈Cn

∣∣∣∣∣∣
∑

j1,...,jτ−1

B(λ, k, j1, . . . , jτ−1, n)

∣∣∣∣∣∣
2

≤ C‖r‖2ρ
2(τ−1)
N .

Hence,

B4(s) ≤ C‖r‖4
s∑

τ=1

ρ
2(s−1)
N = Cs‖r‖4ρ

2(s−1)
N ,

which completes the proof of (3.28).

5. Now, we can complete the proof of Theorem 3.1. Lemma 3.4, (3.21) together with the inequalities (3.28)
and (3.27) in Proposition 3.5 imply that

Aαβ(s) ≤ 4C‖r‖2
(
1 + ‖r‖2/ρ2

N

)
(1 + s)ρ2s

N , (3.30)

(
Aαβ(s)Aαβ(t)

)1/2 ≤ 4C‖r‖2
(
1 + ‖r‖2/ρ2

N

)
(1 + s)(1 + t)ρs+t

N . (3.31)

With ρN ≤ 1/2 by (3.27) the inequality (3.31) guarantees that the series on the right side of (3.19) converges and∑
n>N

∥∥Pn − P 0
n

∥∥2 ≤
∑
n>N

∥∥Pn − P 0
n

∥∥2

HS
≤ C1‖r‖2

(
1 + ‖r‖2/ρ2

N

)
< ∞.

So, Theorem 3.1 is proven subject to Lemmas 4.1 and 4.2 in the next section.



4 Technical lemmas

In this section we use that

∑
n>N

1
n2

<
∑
n>N

(
1

n − 1
− 1

n

)
=

1
N

, N ≥ 1. (4.1)

Lemma 4.1 If r = (r(k)) ∈ �2(2Z) (or r = (r(k)) ∈ �2(Z)), then

∑
k �=n

|r(n + k)|2
|n − k| ≤ ‖r‖2

|n| + (E|n|(r))2, |n| ≥ 1; (4.2)

∑
i,k �=n

|r(i + k)|2
|n − i||n − k| ≤ 12

(
‖r‖2√|n| + (E|n|(r))2

)
, |n| ≥ 1, (4.3)

where n ∈ Z, i, k ∈ n + 2Z (or, respectively, i, k ∈ Z).

P r o o f. If |n − k| ≤ |n|, then we have |n + k| ≥ 2|n| − |n − k| ≥ |n|. Therefore,

∑
k �=n

|r(n + k)|2
|n − k| ≤

∑
0<|n−k|≤|n|

|r(n + k)|2 +
∑

|n−k|>|n|

|r(n + k)|2
|n| ≤ (E|n|(r))2 +

‖r‖2

|n| ,

which proves (4.2).
Next we prove (4.3). We have

∑
i,k �=n

|r(i + k)|2
|n − i||n − k| ≤

∑
(i,k)∈J1

+
∑

(i,k)∈J2

+
∑

(i,k)∈J3

, (4.4)

where J1 = {(i, k) : 0 < |n − i| ≤ |n|/2, |n − k| ≤ |n|/2},

J2 =
{

(i, k) : i �= n, |n − k| >
|n|
2

}
, J3 =

{
(i, k) : |n − i| >

|n|
2

, k �= n

}
.

For (i, k) ∈ J1 we have |i + k| = |2n − (n − i) − (n − k)| ≥ 2|n| − |n − i| − |n − k| ≥ |n|. Therefore, by
the Cauchy inequality,

∑
(i,k)∈J1

≤
⎛
⎝ ∑

(i,k)∈J1

|r(i + k)|2
|n − i|2

⎞
⎠

1/2⎛
⎝ ∑

(i,k)∈J1

|r(i + k)|2
|n − k|2

⎞
⎠

1/2

≤ 4(E|n|(r))2.

On the other hand, again by the Cauchy inequality,

∑
(i,k)∈J2

=
∑

(i,k)∈J3

≤
⎛
⎝ ∑

(i,k)∈J3

|r(i + k)|2
|n − i|2

⎞
⎠

1/2⎛
⎝ ∑

(i,k)∈J3

|r(i + k)|2
|n − k|2

⎞
⎠

1/2

≤

⎛
⎜⎝ ∑

|n−i|> |n|
2

1
|n − i|2

∑
k

|r(i + k)|2
⎞
⎟⎠

1/2⎛
⎝∑

k �=n

1
|n − k|2

∑
i

|r(i + k)|2
⎞
⎠

1/2

≤ 4
‖r‖2√|n| ,

which completes the proof.



Lemma 4.2 If r = (r(k)) ∈ �2(2Z) (or r = (r(k)) ∈ �2(Z)), then

∑
|n|>N,k �=n

|r(n + k)|2
|n − k|2 ≤ C

(‖r‖2

N
+ (EN (r))2

)
; (4.5)

∑
|n|>N

∑
i,p�=n

|r(n + i)|2|r(n + p)|2
|n − i||n − p| ≤ C

(‖r‖2

N
+ (EN (r))2

)
‖r‖2; (4.6)

∑
|n|>N,j,p�=n

|r(j + p)|2
|n − j|2|n − p|2 ≤ C

(‖r‖2

N
+ (EN (r))2

)
; (4.7)

∑
|n|>N

∑
i,j,p�=n

|r(n + i)|2|r(j + p)|2
|n − i||n − j||n − p|2 ≤ C

(‖r‖2

N
+ (EN (r))2

)
‖r‖2, (4.8)

where C is an absolute constant.

P r o o f. With k̃ = n − k and ñ = n + k it follows that whenever |k̃| ≤ |n| we have |ñ| = |2n − k̃| ≥
2|n| − |k̃| ≥ |n|. Therefore,

∑
|n|>N

∑
k �=n

|r(n + k)|2
|n − k|2 =

∑
|n|>N

∑
0<|n−k|≤|n|

|r(n + k)|2
|n − k|2 +

∑
|n|>N

∑
|n−k|>|n|

|r(n + k)|2
|n − k|2

≤
∑
|k̃|>0

1
|k̃|2

∑
|ñ|>N

|r(ñ)|2 +
∑

|n|>N

1
n2

∑
k

|r(n + k)|2

≤ C

(
(EN (r))2 +

‖r‖2

N

)
,

which proves (4.5).

Since 1
|n−i||n−p| ≤ 1

2

(
1

|n−i|2 + 1
|n−p|2

)
, the sum in (4.6) does not exceed

1
2

∑
|n|>N,i�=n

|r(n + i)|2
|n − i|2

∑
p

|r(n + p)|2 +
1
2

∑
|n|>N,p�=n

|r(n + p)|2
|n − p|2

∑
i

|r(n + i)|2.

In view of (4.5), the latter is less than C
(

‖r‖2

N + (EN (r))2
)
‖r‖2, which proves (4.6).

In order to prove (4.7), we set j̃ = n − j and p̃ = n − p. Then

∑
|n|>N ;j,p�=n

|r(j + p)|2
|n − j|2|n − p|2 =

∑
j̃,p̃�=0

1
j̃2

1
p̃2

∑
|n|>N

|r(2n − j̃ − p̃)|2

≤
∑

0<|j̃|,|p̃|≤N/2

1
j̃2

1
p̃2

∑
n>N

|r(2n − j̃ − p̃)|2 +
∑

|j̃|>N/2

∑
|p̃|�=0

· · · +
∑
|j̃|�=0

∑
|p̃|>N/2

· · ·

≤ C(EN (r))2 +
C

N
‖r‖2 +

C

N
‖r‖2,

which completes the proof of (4.7).
Let σ denote the sum in (4.8). The inequality ab ≤ (a2 + b2)/2, considered with a = 1/|n − i| and b =

1/|n − j|, implies that σ ≤ (σ1 + σ2)/2, where

σ1 =
∑

|n|>N,i�=n

|r(n + i)|2
|n − i|2

∑
p�=n

1
|n − p|2

∑
j

|r(j + p)|2 ≤ C

(
(EN (r))2 +

‖r‖2

N

)
‖r‖2



(by (4.5)), and

σ2 =
∑

|n|>N

∑
j,p�=n

|r(j + p)|2
|n − j|2|n − p|2

∑
i

|r(n + i)|2 ≤ C

(
(EN (r))2 +

‖r‖2

N

)
‖r‖2

(by (4.7)). Thus (4.8) holds.

5 Conclusions

1. The convergence of the series (3.1) is the analytic core of Bari–Markus Theorem (see [12], Ch. 6, Sect. 5.3,
Theorem 5.2) which guarantees that the series

∑
|n|>N Pnf converges unconditionally in L2 for every f ∈ L2.

But in order to have the identity

f = SNf +
∑

|n|>N

Pnf,

we need to check the “algebraic” hypotheses in Bari–Markus Theorem:
(a) The system of projections

{SN ; Pn, |n| > N} (5.1)

is complete, i.e., the linear span of the system of subspaces

{E∗; En, |n| > N}, E∗ = Ran SN , En = Ran Pn, (5.2)

is dense in L2(I).
(b) The system of subspaces (5.2) is minimal, i.e., there is no vector in one of these subspaces that belongs to

the closed linear span of all other subspaces. Condition (b) holds because the projections in (5.1) are continuous,
commute and

PnSN = 0, PnPm = 0 for m �= n, |m|, |n| > N.

The system (5.1) is complete; this fact is well-known since the early 1950’s (see details in [12, 15, 16]). More
general statements are proven in [19] and [25], Theorems 6.1 and 6.4 or Proposition 7.1.

Therefore, all hypotheses of Bari–Markus Theorem hold, and we have the following theorem.

Theorem 5.1 Let L be the Dirac operator (2.1) with an L2-potential v, subject to the boundary conditions
bc = Per± or Dir. Then there is N ∈ N such that the Riesz projections

SN =
1

2πi

∫
|z|=N− 1

2

(z − Lbc)−1 dz, Pn =
1

2πi

∫
|z−n|= 1

2

(z − Lbc)−1 dz

are well-defined, and

f = SNf +
∑

|n|>N

Pnf, ∀f ∈ L2;

moreover, this series converges unconditionally in L2.

2. General regular boundary conditions for the operator L0 (or L) (2.1)–(2.2) are given by a system of two
linear equations

y1(0) + by1(π) + ay2(0) = 0, (5.3)

dy1(π) + cy2(0) + y2(π) = 0,

with the restriction

bc − ad �= 0. (5.4)



A regular boundary condition is strictly regular, if additionally

(b − c)2 + 4ad �= 0, (5.5)

i.e., the characteristic equation

z2 + (b + c)z + (bc − ad) = 0 (5.6)

has two distinct roots.
As we noticed in Introduction our main results (Theorem 5.1) can be extended to the cases of both strictly

regular (SR) and regular but not strictly regular (R \ SR) bc. More precisely, the following statements hold.

(SR) case. Let Lbc be an operator (2.1)–(2.2) with (bc) ∈ (5.3)–(5.4). Then its spectrum SP (Lbc) =
{λk, k ∈ Z} is discrete, sup |Im λk| < ∞, |λk| → ∞ as k → ±∞, and all but finitely many eigenvalues λk

are simple, Lbcuk = λkuk, |k| > N = N(v). Put

SN =
1

2πi

∫
C

(z − Lbc)−1 dz,

where the contour C is chosen so that all λk, |k| ≤ N, lie inside of C, and λk, |k| > N, lie outside of C. Then
the spectral decompositions

f = SNf +
∑

|k|>N

ck(f)uk, ∀f ∈ L2

are well–defined and converge unconditionally in L2.

(R \ SR) case. Let bc be regular, i.e., (5.3)–(5.4) hold, but not strictly regular, i.e.,

(b − c)2 + 4ad = 0, (5.7)

and z∗ = exp(iπτ) be a double root of (5.6).
Then its spectrum SP (Lbc) = {λk, k ∈ Z} is discrete; it lies in ΠN ∪⋃m>N Dm, N = N(v), where

ΠN = {z ∈ C : |Im (z − τ)|, |Re (z − τ)| < N − 1/2}

and Dm = {z ∈ C : |(z − m − τ)| < 1/2}. The spectral decompositions

f = SNf +
∑

|m|>N

Pmf, ∀f ∈ L2

are well–defined if we set

SN =
1

2πi

∫
∂ΠN

(z − Lbc)−1 dz, Pm =
1

2πi

∫
∂Dm

(z − Lbc)−1 dz, |m| > N,

and they converge unconditionally in L2.
Complete presentation and proofs of these general results will be given elsewhere.
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