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ABSTRACT 

In this thesis we address the location routing problem (LRP) in which vehicle 

routing and warehouse location/allocation decisions are made simultaneously. LRP 

deals with determining the optimal number of warehouses as well as their locations 

while assigning customers to warehouses so that the shortest vehicle routes are 

achieved. The objective is to minimize total vehicle related costs (fixed vehicle cost and 

route cost) and the cost of operating the warehouses. To solve this NP-hard problem, we 

propose a clustering based heuristic approach which consists of three parts. Firstly, we 

determine the customer clusters based on vehicle capacities, i.e. all customers in the 

cluster are serviced by the same vehicle. Secondly, we solve a traveling salesman 

problem for each cluster. Thirdly, we attempt to improve the routes by using local 

search techniques. Finally, the routed clusters are assigned to warehouses.  

Keywords: Clustering, Heuristics, Location-allocation, Location-routing, Vehicle 

routing 
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ÖZET 

Bu tezde lokasyon rotalama problemleri (LRP) üzerinde durulmuştur. Problemin 

çözümü için kümeleme temelli sezgisel bir yöntem önerilmiştir. LRP iki zor problem 

olan lokasyon tahsisi ve araç rotalama problemlerinin birleşmesiyle oluşmaktadır. LRP 

ile bu iki probleme eş zamanlı çözüm üretilmektedir. Amaç fonksiyonu rotalama, araç 

kullanma ve depo maliyetinden oluşmaktadır ve enazlanmaya çalışılmaktadır. 

Literatürde genellikle sabit depo açılım maliyeti kullanılmaktadır. Bu tezde depo açma 

maliyeti kapasite belli değerlerin üzerine çıktığında artmaktadır ve genelden farklıdır. 

Maliyet fonksiyonunun bu yapısı ve LRP nin içsel kompleksliği birleştiğinde problemin 

çözümü zorlaşmaktadır. Önerdiğimiz sezgisel yönteme göre araç kapasitelerine göre 

kümeler oluşturmuştur ve her küme içinde gezgin satıcı problemi çözülmüştür. Yerel 

tarama yöntemleri uygulanarak çözüm iyileştirilmiştir. Son olarak oluşturulan kümeler 

uygun depolara atanmıştır.  

Anahtar Kelimeler: Araç Rotalama, Lokasyon Dağıtım, Lokasyon Rotalama, Sezgisel 

Yöntemler 
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CHAPTER 1 

INTRODUCTION 

Customer satisfaction is the primary target for most companies in today’s 

business environment. Fierce competition in the market forces companies to improve 

their service levels, decrease costs, and increase delivery speed. Logistics activities are 

one of the vital cost drivers as nearly 15% of the product cost consists of logistic costs. 

They also affect delivery speed. Opening new plants, distribution centers, and 

warehouses have an impact on both the cost and the delivery speed. As the number of 

warehouses increases, delivery times are improved at the expense of increased fixed 

costs. The balance is crucially important for companies in order to be competitive and 

survive in the market. The Location Routing Problem (LRP) and its several variants 

address this motivation of balancing the trade-off.  

The aim of this thesis is to briefly review the LRP and to present a solution 

approach. The definition of LRP contains both the Location-Allocation Problem (LAP) 

and the Vehicle Routing Problem (VRP). LRP focuses on finding optimal location, 

number, and capacity of distribution facilities serving more than one customer, 

optimizing vehicle numbers and finding the optimal set of vehicle schedules and routes. 

Tuzun and Burke (1999) describe the problem as follows:  

“A feasible set of potential facility sites and locations and expected demands 
of each customer are given. Each customer is to be assigned to a facility which will 
supply its demand. The shipments of customer demand are carried out by vehicles 
which are dispatched from the facilities, and operate on routes that include multiple 
customers. There is a fixed cost associated with opening a facility at each potential 
site, and a distribution cost associated with any routing of vehicles that includes the 
cost of acquiring the vehicles used in the routing, and the cost of delivery operations. 
The cost of delivery operations is linear in the total distance traveled by the vehicles. 
The LRP is to determine the location of the facilities and the vehicle routes from the 
facilities to the customers to minimize the sum of the location and distribution costs 
such that the vehicle capacities are not exceeded.”  
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Additionally, Tansel et al. (2007) define LRP as a combination of 

Location/Allocation and Vehicle Routing Problems where location and routing 

decisions are taken simultaneously. 

LAP is concerned with the provision of a service to satisfy a widely dispersed 

demand. It is impractical to satisfy the demand everywhere because of economic 

reasons which force us to build centralized servers. The problem has two components: 

location and allocation. The location problem deals with the number, capacities, and 

location of facilities whereas the allocation problems assign customers to facilities. 

Various application areas of LAP have been addressed in the literature, including the 

location of stores, restaurants, emergency facilities, ambulances, fire stations, schools, 

warehouses, regional offices of government departments, etc. In LAP it is assumed that 

a tour consists of only one customer. However, a tour serving more than one customer 

in most real-world settings renders this assumption unrealistic. 

The most important difference between the LRP and the classical location-

allocation problem is that LRP determines the location of customers/suppliers through 

making tours while the classical location-allocation problem goes on the radial or direct 

trips from the facility to the customers/suppliers. Hence the classical location-allocation 

problem causes the increased cost of distribution (Salhi and Rand, 1989). On the 

contrary, LRP establishes the optimal facilities using tours and designs the routes at the 

same time. 

VRP determines k vehicle routes, where a route is a tour that begins at the 

warehouse, traverses a subset of the customers in a specified sequence and returns to the 

warehouse. Each customer must be assigned to exactly one of the k vehicle routes and 

the total size of deliveries for customers assigned to each vehicle must not exceed the 

vehicle capacity b. The routes should be chosen to minimize total travel cost. Although 

both LRP and VRP are dealing with routing problems, VRP does not deal with locating 

the distribution facilities and focuses on finding the best routes. In LRP, the primary 

objective is to find the optimum location, capacity, and number of facilities. While 

investigating this problem, routing costs are included. 

Although many researchers are aware of the danger of sub-optimizing by 

separating warehouse location and vehicle routing problems, they often ignore this 

interrelation. The reason for small progress is the complexity of LRP. Berman et al. 
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(1995) observes that the facility must be central relative to the ensemble of demand 

points, as ordered by the (yet unknown) tour through all of them. By contrast, in 

classical problems, the facility must be located by considering the distance to individual 

demand points, thus making the problem more tractable. 

From a mathematical point of view, LRP is a combinatorial optimization 

problem. The word combinatorial denotes that a finite number of alternative feasible 

solutions exist. Combinatorial optimization process searches one or more best (optimal) 

solutions in a well defined discrete problem space. The algorithms developed for 

combinatorial optimization solve instances of problems that are believed to be hard in 

general. They explore the large solution space of these instances. Combinatorial 

optimization algorithms are typically concerned with problems that are NP-hard. Such 

problems are not believed to be efficiently solvable in general. LRP consist of two NP-

hard problems which are facility location and vehicle routing. 

The location of facilities does not only affect the location cost but also it has a 

major impact on the routing cost. Salhi and Rand (1989) show the effect of ignoring 

routes. Due to the complexity of both location allocation and vehicle routing problems, 

they have been often solved independently. However, the researchers indicate that poor 

decisions may be made if routing cost is not considered.  

Despite LRP solutions’ more accurate location decision, there is some criticism. 

Balakrishnan et al. (1987) note that LRPs are essentially strategic decisions concerning 

facility location, whereas routing is a operational decision. Since LRP brings these 

strategic and operational decisions together, it is criticized for inconsistency. Despite the 

fact that routes can be recalculated frequently, the location decision of a warehouse is 

given for much longer periods. After investigations on this criticism, Salhi and Nagy 

(1999) point out that location routing could decrease cost over a long planning horizon, 

within which routes are allowed to change.   

Types of LRP 

Several classifications of LRP are provided in the literature. One of the most 

inclusive reviews is made by Salhi and Nagy (2006). Classifications are made according 

to parameters such as the type of input data, planning period, solution method, objective 

function, solution space, number of warehouses, number and types of vehicles, and 

route structure.  
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• The input data may be deterministic or stochastic. Most of the studies in the 

literature address the deterministic case. Stochastic papers generally consider 

customer demand as the stochastic parameter.  

• The planning period may be single or multiple. Single-period problems are 

static and multiple period problems are dynamic. Most of LRP papers investigate 

the static case.  

• The solution methods may be exact or heuristic. Although heuristic 

applications are more convenient, exact methods are successful for special cases 

of the LRP. 

• The objective function generally minimizes total cost consisting of warehouse 

cost, vehicle cost, and routing cost. Some studies consider multiple objectives. 

• The solution space may be discrete, network type, or continuous. In the 

literature LRP studies generally deal with discrete location.  

• The number of warehouses may be single or multiple. Generally, the multiple 

warehouse case is considered in the literature. In addition, the number of 

warehouses is not given and selection may be made among the potential 

warehouses.  

• The number of vehicles is fixed and homogeneous fleet is assumed in most 

LRP.  On the other hand, a heterogeneous fleet is adopted in some studies.  

• In LRP, vehicle starts out a warehouse and returns to the same warehouse. 

Vehicles may be allowed multiple trips. Routes may contain both deliveries and 

pickups. 

A guiding review is given in Min et al. (1997). It classifies the problem into two 

main categories depending on the definition types and the solution techniques. The 

problem may be defined according to parameters as follows: 

• Number of facilities: single or multiple. 

• Hierarchical level: delivery or delivery-pickup. 

• Size of fleet: single or multiple. 
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• Vehicle capacity: capacitated (homogenous or non-homogeneous),  

uncapacitated. 

• Facility capacity: capacitated or uncapacitated. 

• Facility cost: fixed cost or capacity increment cost (linear, non-linear). 

• Planning horizon: single period (static) or multiple periods (dynamic). 

• Objective: single or multiple. 

• Time windows: unspecified, soft time, hard time. 

• Nature of demand: stochastic or deterministic. 

• Routing: single or multiple. 

 

This thesis is organized as follows: Chapter 2 reviews the LRP literature. The 

definition of the problem and the mathematical model are presented in Chapter 3. In 

Chapter 4, the solution approach is described. The computational study is discussed in 

Chapter 5. Conclusions and future research ideas are given in Chapter 6.  

 5



CHAPTER 2 

LITERATURE REVIEW 

Since the 1970’s, many researchers have studied LRP with different names and 

contents. However most of them have not noticed the connections between their work 

and LRP. The surveys published by Min et al. (1997) and Salhi and Nagy (2006) do 

help to gather the works together. A basic classification, heuristic approaches, optimal 

solutions and hybrid methods, depending on the solution method is made in their work.  

The importance of routing decision in location is first noticed by Webb (1968) as 

well as Christofides and Eilon (1969). They imply that using route length estimation is 

more sophisticated than using radial distance. LRP is first modeled by Watson-Gandy 

and Dohrn (1973) in a warehouse location with a van salesman.  

Heuristics are commonly used in the literature. Firstly, Gillett and Johnson 

(1976) build a single objective model with multiple uncapacitated facilities, capacitated 

vehicles, and deterministic customer demands. They apply multi-terminal sweep 

heuristics to solve the problem. Although deterministic demand is most widely applied 

in the models, Bumess and White (1976) contribute with stochastic customer demands. 

Their model includes single uncapacitated facility and vehicle. Later, Jacobsen and 

Madsen (1978) develop Gillett and Johnson’s problem by extending hard time 

windows. In the solution, the heuristic method (location-allocation first, route-second 

using the savings and tree-tour methods) is used, and newspaper transfer point location-

routing problem is solved in the private sector. Afterwards, Daskin (1987) contributed 

stochastic travel times. His model includes a single uncapacitated facility, and multiple 

uncapacitated vehicles. It is applied in emergency services. Bookbinder and Reece 

(1988) used the multi-commodity warehouse in their model. They apply heuristics in 

which location-allocation and routing are made respectively. Afterwards, the insertion 

method is first adapted by Chien (1993). Later, Srivastava (1993) use the clustering and 

saving method based heuristic for solving single stage, deterministic, static, single 

objective model with multiple capacitated vehicles, capacitated and hard time windows. 
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One of the most common methods, iterative heuristic method, is first used by Hansen 

(1994) to solve both location and routing phases. Afterwards, Tuzun and Burke, (1999) 

apply the two phase tabu search algorithm hierarchically for solution. In the problem, a 

feasible set of potential facility sites, locations, and expected demands of each customer 

exists. Each customer has to be assigned to a facility which will supply its demand. 

Vehicles supply multiple customer demand on routes and are dispatched from the 

facilities. The overall cost function consists of routing, facility, and vehicle cost. The 

objective function is single and minimization. Subsequent Wu et al. (2002) apply a 

combined tabu search, simulated annealing framework with a simpler neighborhood 

structure and sensible improvement is found when compared against a sequential 

method.  Later on, Chan and Baker (2003) include vehicle range and multiple service-

frequency requirements in the model and apply the heuristic consisting of minimum 

spanning forest (MSF) and a modified Clarke-Wright (MCW) procedure.  

Branch-and-bound, integer programming and nonlinear programming are the 

most widely used to solve LRP optimally. Ghosh et al. (1981) use non-rectilinear 

distance location. The model is single stage, deterministic, single objective with a single 

uncapacitated facility and vehicle. They adopt nonlinear programming for an exact 

solution. Laporte et al. have great contributions on optimal solution of the LRP.  

Laporte and Nobert (1981) use two branching strategies to solve the model which is a 

deterministic, static, single objective, single uncapacitated facility and vehicles. 

Moreover, Laporte (1983) applies integer programming on single stage, deterministic, 

static problem with multiple uncapacitated facilities, vehicles, unspecified time 

windows, single objective. Additionally, Laporte et al. (1986) develop a formulation 

and an exact algorithm, integer programming, for the generic capacitated location-

routing. Subsequent Laporte (1988) use a modified branch-and-bound method for 

solving the asymmetric, deterministic, static, single objective model with multiple 

capacitated facilities, multiple capacitated vehicles and hard time windows. Capacity 

and maximum cost restrictions are included in the model which is solved by using a 

graph transformation and branch-and-bound method. Additionally, Laporte (1989) 

develops an exact algorithm for the stochastic version of the single uncapacitated 

facility, multiple capacitated vehicles. In that paper, multiple uncapacitated vehicles and 

facilities, unspecified time windows, and a single objective are used. The problem is 

single stage, deterministic and solved by using integer programming. Dynamic location 
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routing problems is published by Laporte and Dejax (1989). Later on, Averbakh and 

Berman (1994) apply dynamic programming for an exact solution.   

One of the most common solution techniques is hybrid methods. They are 

widely used for solving LRP and nearly fast as heuristic methods. The concept of 

iterating between locational and routing phases is first published by Perl and Daskin 

(1985). The location part is solved optimally by using implicit enumeration. It 

minimizes the sum of distances between warehouses and the end-points of routes found 

in the routing phase. Their model is single stage, deterministic, single objective with 

multiple capacitated facilities and vehicles. Later, sequential methods are introduced by 

Srivastava and Benton (1990). This method provides good quality solutions for some 

cases. Although both location and routing sub problems are optimal, it cannot guarantee 

an optimal solution to the combined problem. Afterwards, Albareda-Sambola et al. 

(2005) implement an effective graph transformation to the LRP. Linear programming 

with relaxation is applied for finding an initial solution. Additionally, the locational 

neighborhood search is made depending on the moves add, drop, and shift. Infeasible 

solutions are allowed but a penalty term is added to the objective function for the 

violation of warehouse capacity constraint. Tabu search is applied as a framework 

algorithm. Later on, Melechovsky et al. (2005) include nonlinear cost in the cost 

function. They apply the P-median approach to find the initial feasible solution and a 

combination of tabu search and neighborhood search as a hybrid metaheuristic to 

improve solution. The problem is static, deterministic with facilities having non-linear 

cost function, growing with the total demand supplied and capacitated vehicles.  

 LRP is widely applied to public and private sector. Madsen (1983) builds a 

model and develops a solution for newspaper dealers. In the model, the factory may 

send newspapers to transfer points or directly to customer. Transfer points distribute the 

newspaper to the customer. The problem consists of determining the locations of 

transfer points, designing a vehicle route through these points, allocating the customers 

to transfer points or directly to the factory. The multiple objective, single stage, static, 

deterministic model with multiple capacitated facilities, single uncapacitated vehicle, 

and unspecified time windows is formed and adopted to hazardous waste transportation 

and disposal by Zografos and Samara (1989). The objective function minimizes 

disposal/routing risk and travel time. The mixed-integer goal programming is applied as 

an exact algorithm. Later, a multi objective model including minimization of risk, cost 
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and equity is studied by List and Mirchandani (1991). They use the exact route 

generation method. The model is applied to the public sector by using real-world data 

on the field of hazardous material handling. Afterwards, ReVelle (1991) uses integer 

programming, shortest paths, and a weighting method for hazardous waste disposal site 

location routing. The model has two objectives: minimization of transportation cost and 

perceived risk. Subsequent, Bruns et al. (2000) study a problem arising in the parcel 

delivery operations of a postal service. In this system post offices send parcels directly 

to delivery centers. Vehicles carry these parcels to customers on a route by making 

multiple stops. The problem is to determine the locations of the delivery bases, their 

allocation to processing centers, and the allocation of customer areas to delivery bases. 

The flow from post offices to delivery bases is separate from the flow from bases to 

customers. The problem is reduced to LRP and branch-and-bound is applied in the 

solution. Later on, Lin et al. (2002) study bill delivery service. The relocation of the 

existing bill delivery warehouses and setting up these warehouses to existing company 

buildings is considered. The model searches where the facilities establishment, route 

formation, and routing sequence. They adopt the clustering heuristic approach for 

finding the initial warehouses location. Initial routes are found with Clarke Wright 

(CW) algorithm and solution is improved with threshold accepting (TA) and simulated 

annealing. 

Similar problems are determined in the LRP literature. The problems given 

below have high similarities with LRP.  

Min (1996) attends the location consolidation terminal problem in which goods 

from several supply sources are aggregated at warehouses before sent to customers. It is 

more complicated than the basic LRP because allocation of both customers and 

suppliers to terminals needs to be found. Customer clusters are formed according to 

vehicle capacity and assigned to warehouses from the centroid of each cluster. 

Salhi and Nagy (1998) introduced many-to-many location-routing problem 

(MMLRP). In the problem, it is assumed that each customer sends a different 

commodity to every other customer. This is similar to a postal flow between locations. 

A network of hubs is to be located by considering costs. Although hub to customer 

routes are multi stop, the link between hubs are assumed to be direct. Both LRP and 

MMLRP investigate best locations facilities and hubs respectively. In the MMLRP, a 

pickup-and-delivery is allowed. The routing method considers both sending and 
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delivering goods. The problem is harder to solve than the VRP because the fluctuating 

load on the vehicles makes feasibility checks harder to perform. The hierarchical 

heuristic solution is presented.  

Logistic problems are special cases of MMLRP. In the hub location problem, 

full-truckload routes are assumed. In freight transport, problem hubs are fixed. If there 

is no flow between hubs and all deliveries or pickups are zero, the problem becomes 

LRP.  

Ghiani and Laporte (1999) study the arc routing problem. The usual route 

structure in LRP starts from a warehouse and returns to the same warehouse by visiting 

multiple customers. In the arc routing problem, vehicles may traverse given edges rather 

than nodes.  
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CHAPTER 3 

MODEL FORMULATION 

In this thesis, we address LRP where the objective is to select warehouse 

locations among potential warehouses to service a set of customers and determine their 

capacities by considering routing and vehicle acquisition costs. The customers are in a 

geographically dispersed area. Each customer has a deterministic demand and all 

demands must be satisfied. Moreover, each costumer is serviced exactly once. Distance 

matrix is symmetric and all distances between customers and potential warehouses are 

known. Customers are served using a homogeneous fleet where multiple vehicles are 

available at each warehouse and each vehicle makes only one tour.  

The objective function has three components: routing, vehicle operating, and 

warehouse operating costs. The routing cost is a function of the total distance traversed 

by all vehicles. The vehicle cost depends only on the number of vehicles used since the 

fleet is assumed to be homogenous and each vehicle has the same fixed cost. The 

warehouse cost has fixed and variable components.  Opening a warehouse incurs a fixed 

cost. The variable cost component is related with the demand to be satisfied by the 

warehouse. Piece-wise linear capacity cost is assumed and given in table 3.1. As the 

amount of demand assigned the same warehouse increases, total cost increases after a 

certain quantity. 

 

Table 3.1 Non-linear Cost of Warehouse  

The problem is formulated as a mixed integer program. 
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3.1. Assumptions 

In the design of the model, the following assumptions are made. 

• Demand is deterministic. 

• All customer demands are satisfied. 

• Each customer is served by exactly one vehicle.  

• Only delivery is made. Pick-ups are not considered.  

• Number of product type is not important for the model. Since model deals with 

the transportation and location of product, different types of product may be 

denoted with same volume, capacity, etc. 

• We consider a single planning period. The average demand of each customer for 

a multi period planning horizon is taken as the demand of a single period. This 

type of problem is called static problem in literature. 

• There exists one facility layer. It means only the relationship between customer 

and warehouses are taken into consideration. In a two layer problem, connection 

between warehouses and plants or distributors would be considered.   

• There exist multiple potential warehouses of which coordinates are known. 

• Transportation between warehouses is not allowed. 

• Distance cost is a linear function of range. Distance matrix is symmetrical. 

• Warehouses are uncapacitated. 

• Fixed cost of opening a warehouse and non-linear capacity increment cost are 

adopted to the model. 

• There are no vehicle range constraints. No restriction exists on the route length.  

• Capacitated vehicles are used. The total demand on each route is less than or 

equal to the capacity of a vehicle assigned to that route. 

• Multiple vehicles serve to customers. 

• There is no time windows constraint rod the delivery of demand. 
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• Each vehicle makes only one tour. A vehicle returns to its own warehouse. Each 

route begins and ends at the same warehouse. 

• Vehicle acquisition cost is fixed.  

3.2. Notation 

We use the following notation to formulate the problem: 

D  is the set of R feasible sites of potential warehouses. { Rrr ,...,1/ = }

}C { NRRii ++= ,...,1/  is the set of N customers to be served. 

S  is the set of all customers and potential warehouses.  { } { }DC U

V  is the set of K vehicles available for routing from facilities. { Kkvk ,...1/ = }

Cij average annual cost of traveling from node i to node j, i∈S, j∈S. 

Ck annual cost of acquiring a vehicle k (k=1, ...,K). 

Fr annual fixed cost of establishing a warehouse at site r (r=1 ,...,R). 

dj average number of units demanded by customer j, j∈C. 

Qk capacity of vehicle k (k=1 ,...,K). 

Rj rank of node j. 

 

The decision variables are as follows:   

Xijk =  
⎪
⎩

⎪
⎨

⎧ ≠∈∈∈

otherwise.0

.,,,,node  toi node fromk   vehicleif1 jiVkSjSij

Zr  =   
⎪
⎩

⎪
⎨

⎧ ∈

otherwise.0

.,siteat  destablishe isdepot  a if1 Grr

Ykr =   
⎪
⎩

⎪
⎨

⎧ ∈∈

                            otherwise.0

.,.depot   toassigned  is  vehiclea if1 DrVkr
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3.3. Mathematical Model 
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)10(,,1or0 VkCjiX ijk ∈∈∀=  

)11(1or0 DrZr ∈∀=  

)12(,1or0 DrVkYkr ∈∈∀=  

 

In this formulation, the objective function minimizes the total cost of 

transportation, vehicle acquisition, and warehouse operating cost.  Constraints (1) 

ensure that each customer is serviced by exactly one vehicle. Constraints (2) guarantee 

that total demand assigned a vehicle does not exceed the vehicle capacity. Route 
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continuity is satisfied with Constraints (3): if a vehicle visits a customer it should also 

leave that customer. Constraints (4) assure that each vehicle is routed from at most one 

warehouse. Constraints (5) guarantee that there exists no link between two warehouses. 

In constraint set (6) if warehouse is open, at least one vehicle should be assigned to that 

warehouse. Constraints (7) make sure that a vehicle can serve a customer starting from a 

warehouse if and only if that warehouse is open. Constraints (8) ensure that each tour 

contains a warehouse None of the tours consists of only customers. Ri are continuous 

variables used in the sub-tour breaking constraints. In constraints (9) Ykr is slack 

variable and takes 0 or 1 value. The remaining constraints are binary constraints for the 

decision variables. 
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CHAPTER 4 

SOLUTION METHODOLOGY 

Different solution techniques are applied to LRP. These solution techniques 

expressly categorized by Tansel et al. (2007) are given below.  

 

1. Exact algorithms 

a. Branch-and-bound 

b. Dynamic programming 

c. Integer programming 

i. Branch and cut 

ii. Constraint relaxation 

iii. Cutting plane algorithms 

iv. Benders’ composition 

d. Nonlinear programming 

2. Heuristics 

a. Tour construction heuristic 

i. Locate first, route second 

ii. Route first, locate second 

iii. Cluster first, route second 

b. Tour improvement heuristics 

i. Add/drop heuristic 

ii. k-exchange heuristic 

c. Iterative methods  

d. Nested methods 

 

Since the problem we are dealing with is NP hard and has a non-linear cost 

function, a hybrid-hierarchical algorithm is adopted. This algorithm consists of a 

clustering part, a TSP solution method, improvement heuristics, and an assignment 

heuristic.  
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In the first part, clusters are formed depending on the vehicle capacity. Initially, 

the lower bound on the vehicles is found and farthest two points are selected. Different 

points are marked up as much as total number of vehicles with two methods. After 

clusters are formed, a traveling salesman problem is solved for each of cluster. Further 

local improvements like swap and move are applied in an attempt to obtain better 

solutions. Finally, clusters are assigned to the warehouse simultaneously. The steps of 

the algorithm are given in Figure 4.1. 
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Step 1: Find minimum number of vehicles.  

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡
=

∑
∈

acityVehicleCap

Dem
bVehicleNum Ui

i

    

 

Step 2: Find (unassigned cluster) and move node i and j to from U to 

S(selected cluster). Insert node i to C1 and node j to C2. Increase Assigned Nodes by two. 

UjiDistij ∈,max

 

Step 3: Find means. 

 Case 1: Call Max-Min Distance Heuristic  

 Case 2: Call Max-Total Distance Heuristic 

 

Step 4: Form clusters.  

 Case 1: Call Nearest Point to Cluster Heuristic  

 Case 2: Call Nearest Neighbor Heuristic 

 Case 3: Call Gravity Force Heuristic 

Increase VehicleNumb and return to step 2 if clusters are not feasibly formed.  

 

Step 5: Find routes in each cluster.  

            Case 1: Call nearest Point to Cluster Median Heuristic  

 Case 2: Call Nearest Neighbor Heuristic 

 Case 3: Call Branch-and-bound Traveling Salesman Problem Algorithm (BAB-

TSP) 

 

Step 6: Improve solution by local search methods.  

         

Step 7: Assign clusters to open warehouses. Call Assignment Heuristic. 

Figure 4.1 Steps of Clustering Based Location Routing Heuristic 
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4.1. Clustering 

Clustering is the process of assigning discrete objects to groups with similar 

characteristics such as the grouping animals of different species in order to find species 

having most similarities. An important part of a clustering algorithm is the similarities 

between data points. One similarity criterion is the distance which is called distance-

based clustering. In another type, conceptual clustering, objects are grouped according 

to their fit to descriptive concepts, not according to simple similarity measures. There 

exist many different clustering techniques. However, clustering algorithms may be 

mainly classified as hierarchical and k-means clustering algorithms. 

4.1.1. Hierarchical Clustering Algorithm 

It is first defined by Johnson (1967). In the model, a set of N items are clustered 

depending on a given distance (or similarity) matrix. Mostly hierarchical clustering 

merges clusters iteratively, it is called the agglomerative method. Divisive hierarchical 

clustering method starts with all objects in one cluster and subdivides them into smaller 

pieces. They rarely have been applied in the literature.  In the first step, each item is 

assigned to different clusters. Hence, we have N clusters at the beginning. Secondly, the 

pair of items having highest similarity value is merged and number of cluster decreases 

by one. In the third step, similarities between clusters are found. Step 2 and 3 are 

repeated until all items are clustered into single cluster. If we need k clusters, we have 

to cut the k-1 longest links. Different methods may be applied in step 3 such as single-

linkage, complete-linkage and average-linkage clustering. In single-linkage clustering, 

the shortest distance between any members of cluster to any member of other cluster is 

considered. In complete-linkage clustering, greatest distance between members in 

different clusters is considered. In average-linkage clustering, average distance between 

all members in different clusters are calculated.  

4.1.2. K-means Clustering Algorithm 

K-means is developed by Mac Queen (1967). The method is adopted when we 

need a fixed number of clusters. Firstly k points, centroids, are selected for each cluster. 

These centroids should be placed carefully inasmuch as different location causes 

different result. One of the most common methods is placing them far from each other. 
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In the next step, each point should be associated with the nearest centroid. As all points 

are assigned to clusters, early group age is completed. Later, k new centroids are re-

calculated. Points are checked whether they are assigned to nearest centroid. If not, they 

are deleted from previous cluster and inserted to the nearest cluster. This loop is carried 

out until centroids stand firm. That is to say, centroids do not move any more. 

Actually, the objective of the algorithm is to minimize square of discrepancy 

between centroids and assigned points. 

 
2

1 1

)(∑∑
= =

−=
n

j

n

i
j

j
i mxJ     xi

(j): point, mj: cluster centre  

4.1.3. Clustering Heuristics 

 Our clustering approaches are similar with k-means clustering. Since we build 

clusters depending on vehicle capacity, different methods are added in each heuristic.   

 Initially, a pair of nodes with the longest distance is found. These two points are 

selected as the centroid of two clusters. Later remaining centroids are selected with two 

different methods. In this first heuristic, Maximize Minimum Distance, shortest distance 

from unassigned nodes to centroids is found. The node having maximum distance is 

selected as the next centroid. This procedure continues until k centroids (number of 

vehicles) are assigned. In the second heuristic, Maximum-Total Distance, distance from 

unassigned nodes to centroids is summed for each node. The node having maximum 

value is selected as the next centroid. Algorithm terminates when k means are assigned. 

The algorithms are given in Figure 4.2 and 4.3. 

WHILE Assigned Nodes ≤  VehicleNumb 

Find ( ){ } SjUiDistij ∈∈ ,minmax  

  Increase Assigned Nodes by one 

  Move node i from U to S 

Insert node i to Ck (cluster k) and increase k  by one 

 ENDWHILE 

Figure 4.2 Max-Min Distance Heuristic 
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WHILE Assigned Nodes ≤  VehicleNumb 

  Find  iSjUiDist
Sj

ij ∀∈∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∈

,max

  Increase Assigned Nodes by one 

  Move node i from U to S 

  Insert node i to Ck (cluster k) and increase k  by one 

 ENDWHILE 

Figure 4.3 Max-Total Distance Heuristic 

 After assigning k means, we need to group other elements into clusters. Three 

different heuristic is presented for this part. In the nearest point to cluster heuristic, 

minimum distance to centroid is found starting from one centroid. The point is inserted 

to cluster if vehicle capacity is enough. New centroid is calculated by using inserted 

nodes. After completing the assignment of nodes to first cluster, the procedure starts for 

next centroid and carry outs until all nodes are assigned to nodes in the nearest point to 

cluster heuristic. It is presented in Figure 4.4. 

 VehicleRemainingCapacity is equal to VehicleCapacity initially. 

 FOR  all vehicle k  

  FOR node   Ui∈

   Find ( ) ,min UiDist
kim ∈ mk is the gravity center of Ck 

IF   VehicleRemainingCapacityk  iDem≥

    Move node i from U to S and insert node i to Ck 

                    VehicleRemainingCapacityk = VehicleRemainingCapacityk-Demi 

    ∑ ∈= kk Ciim ,  

   ENDIF 

  ENDFOR 

 ENDFOR 

Figure 4.4 Nearest Point to Cluster Heuristic 

The only difference between Nearest Neighbor Heuristic and the Nearest Point 

to Cluster is the method for calculating the distance to centroid. The last inserted node is 
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taken as the centroid of cluster. Hence the nearest point to the last inserted node is 

found. Nearest Neighbor Heuristic is given in Figure 4.5. 

 VehicleRemainingCapacity is equal to VehicleCapacity initially. 

 FOR  all vehicle k  

  FOR node   Ui∈

   Find ( ) kik mkUiDist ∈∈ ,min  and k is the last inserted node. 

IF   VehicleRemainingCapacityk  iDem≥

    Move node i from U to S and insert node i to Ck 

    VehicleRemainingCapacityk = VehicleRemainingCapacityk -Demi 

   ENDIF 

  ENDFOR 

 ENDFOR 

Figure 4.5 Nearest Neighbor Heuristic 

Gravity Force Heuristic, given in Figure 4.6, is inspired by physical law. Gravity 

force is calculated for each node. This force is calculated by using the following 

formula.  

( )2
*Re

ij

ji
ij Dist

DemacitymainingCapVehicle
force =   

 Each median pulls nodes with a force. As the remaining capacity of vehicle 

decreases, the force decreases. This will help insert nodes to the empty clusters and 

balance demand distribution. Bigger demands have priority because it gets harder to 

insert them into clusters as remaining capacity decreases. It is obvious that increase in 

distance cuts down force. If the demand of a node is higher than the remaining capacity, 

negative force is applied. Iteratively, forces on nodes are recalculated and then, the node 

having the highest force is inserted in associated cluster. Iterations are carried out until 

all nodes are assigned to cluster. It is given in Figure 4.6. 
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 PROCEDURE: Calculate All Forces 

FOR node   Ui∈

    FOR  kCj∈  and j is the first assigned node to cluster  

                                      Calculate force  

    ( )2
*Re

ij

j
ij Dist

DemacitymainingCapVehicle
force =   

   ENDFOR 

  ENDFOR 

 ENDPROCEDURE 

WHILE any node is unassigned. 

FOR node   Ui∈

    FOR  kCj∈  and j is the first assigned node to cluster.  

                         Find max forceij. 

Move node i from U to S and insert node i to Ck 

VehicleRemainingCapacityk = VehicleRemainingCapacityk-Demi

   ENDFOR 

                        ENDFOR 

  CALL Calculate All Forces 

             ENDWHILE 

Figure 4.6 Gravity Force Heuristic 
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4.2. Traveling Salesman Problem 

 TSP is one of the most widely studied combinatorial optimization problems.  

Many articles are written on the TSP. Given a set of nodes and the distances between 

them, the shortest path starting from a given node, passing through all the other nodes 

and returning to the first node is determined. As a more formal definition, TSP finds a 

path through a weighted graph which starts and ends at the same vertex, includes every 

other vertex exactly once, and minimizes the total cost of edges. There exist (N-1)! 

alternative solutions for the problem including N nodes. The main difference between 

TSP and VRP is the number of routes. While only one tour exists in TSP, more than one 

route may start from and end at the same node in VRP.  Both problems are known to be 

NP-compete.  

More formally, there is a graph G =(N,V,C) consisting of a set of n nodes, a set 

of V=(i,j) connecting cities and nonnegative weights Cij. The graph is directed. If both 

edges exist, Cij does not need to be equal to Cji. The TSP consists of determining the 

minimum distance route passing through each node only once.  

Although the problem looks simple, it has many application areas such as 

computer wiring, hole punching, job sequencing, etc. In computer wiring, we have n 

computers and we want to find the shortest cycle passing through computers in order to 

use least amount of cable. Metal sheet manufacturers often encounter the problem of 

drilling many holes on a sheet. TSP should be applied in order to find shortest path and 

reduce traveling time of the drill between nodes.     

We solve the TSP using three methods described in the following sections. 
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4.2.1. Branch-and-bound 

The following algorithm for the TSP is adopted from "Combinatorial 

Algorithms: Theory and Practice", by Reingold et al. (1977): A strategy for searching 

the solution space is to repeatedly divide it into two parts: those with a given edge and 

those without the edge. The search tree would unfold as follows:  

----------- 
| all solns | 
----------- 
/         \ 

                     ----------------             ----------------- 
| solns with e_i |         | solns w/out e_i | 

                      ----------------             ----------------- 
                         /          \                        /             \ 
        -----------      ----------               ----------        ----------- 

| with e_j |   | w/out e_j |          | with e_k |   | w/out e_k | 
        -----------      ----------               ----------         ----------- 

          

Let us assume that the following customers and their coordinates are given in 

Table 4.1 for the traveling salesman problem: 

 
 
 
  
CUSTOMER X Y 

1 9 3 
2 7 6 
3 8 0 
4 9 7 
5 2 7 
6 6 1 
7 3 2  

Ta

 

Assume that distance cos

 

 

Location of points
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ble 4.1 Coordinates of Points 

t is equal to distance between nodes and symmetrical. 
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CUSTOMER 1 2 3 4 5 6 7 MIN 
1 INF 3,6 3,2 4,0 8,1 3,6 6,1 3,2 
2 3,6 INF 6,1 2,2 5,1 5,1 5,7 2,2 
3 3,2 6,1 INF 7,1 9,2 2,2 5,4 2,2 
4 4,0 2,2 7,1 INF 7,0 6,7 7,8 2,2 
5 8,1 5,1 9,2 7,0 INF 7,2 5,1 5,1 
6 3,6 5,1 2,2 6,7 7,2 INF 3,2 2,2 
7 6,1 5,7 5,4 7,8 5,1 3,2 INF 3,2 
       SUM 20,4 

Table 4.2 Distance Matrix 

Firstly a reduced cost matrix is found and cost is calculated. In the reduced cost 

matrix, there exist at least one zero on every column and row. Reduced cost matrix is 

given in Table 4.3. The sum of reduction values in reduced cost matrix gives the 

additional cost of including an edge in the tour. The lower bound is calculated by taking 

the sum of cheapest way to enter and leave each city. In order to reduce matrix, 

minimum element in each row is found and subtracted from all elements in that row. 

Additionally, same operations are carried out for each column. Calculations are given in 

Table 4.2 and 4.3. 

 

CUSTOMER 1 2 3 4 5 6 7 
1 INF 0,4 0,0 0,8 3,0 0,4 2,9 
2 0,4 INF 3,8 0,0 0,9 2,9 3,4 
3 0,0 3,8 INF 4,8 5,0 0,0 3,1 
4 0,8 0,0 4,8 INF 2,8 4,5 5,6 
5 2,0 0,0 4,1 1,9 INF 2,1 0,0 
6 0,4 2,9 0,0 4,5 3,0 INF 0,9 
7 2,0 2,5 2,2 4,6 0,0 0,0 INF  

CUSTOMER 1 2 3 4 5 6 7  
1 INF 0,4 0,0 0,8 4,9 0,4 2,9  
2 1,4 INF 3,8 0,0 2,9 2,9 3,4  
3 0,9 3,8 INF 4,8 7,0 0,0 3,1  
4 1,8 0,0 4,8 INF 4,8 4,5 5,6  
5 3,0 0,0 4,1 1,9 INF 2,1 0,0  
6 1,4 2,9 0,0 4,5 5,0 INF 0,9  
7 2,9 2,5 2,2 4,6 1,9 0,0 INF SUM 

MIN 0,9 0,0 0,0 0,0 1,9 0,0 0,0 2,9 

Table 4.3 Reduced Matrix 
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Since there exist at least one zero in each row and column, the matrix is reduced 

and the sum of the reduction values is 23, 3. The cost on rows shows the cost of leaving 

the city and cost on column shows cost of entering the city. The second step is to decide 

which edge to include or exclude. We will check zero values for this part, find exclusion 

costs and select maximum exclusion value. The exclusion cost of arc (3,1) is given in 

Table 4.4. If arc (3,1) is excluded, infinitive values inserted to cell (3,1) and (1,3). We 

can not return point 1 in order to prevent cycles. 
 

CUSTOMER 1,0 2,0 3,0 4,0 5,0 6,0 7,0 Min 
1 INF 0,4 INF 0,8 3,0 0,4 2,9 0,4 
2 0,4 INF 3,8 0,0 0,9 2,9 3,4 0,0 
3 INF 3,8 INF 4,8 5,0 0,0 3,1 0,0 
4 0,8 0,0 4,8 INF 2,8 4,5 5,6 0,0 
5 2,0 0,0 4,1 1,9 INF 2,1 0,0 0,0 
6 0,4 2,9 0,0 4,5 3,0 INF 0,9 0,0 
7 2,0 2,5 2,2 4,6 0,0 0,0 INF 0,0 

Min 0,4 0,0 0,0 0,0 0,0 0,0 0,0  

Table 4.4 Cost After Exclusion  

Cost increases 0,8 and exclusion cost of arc (3,1) becomes 24,1. 
 

4 and 2 5 and 2 1 and 3  6 and 3 2 and 4 7 and 5 3 and 6 7 and 6 5 and 7
0,4 0 0,8 0 0,4 1,8 0 0 1,8 

 

The highest exclusion cost is 1,8 on arc (5,7) or (7,5). Hence we select one of them. 

Matrix is given in Table 4.5 when arc (5,7) is included. The fifth row and seventh 

column are deleted. Arc (7,5) is excluded.     
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CUSTOMER 1 2 3 4 5 6 
1 INF 0,4 0,0 0,8 3,0 0,4 
2 0,4 INF 3,8 0,0 0,9 2,9 
3 0,0 3,8 INF 4,8 5,0 0,0 
4 0,8 0,0 4,8 INF 2,8 4,5 
6 0,4 2,9 0,0 4,5 3,0 INF 
7 2,0 2,5 2,2 4,6 INF 0,0 

CUSTOMER 1 2 3 4 5 6 7 
1 INF 0,4 0,0 0,8 3,0 0,4 INF 
2 0,4 INF 3,8 0,0 0,9 2,9 INF 
3 0,0 3,8 INF 4,8 5,0 0,0 INF 
4 0,8 0,0 4,8 INF 2,8 4,5 INF 
5 INF INF INF INF INF INF INF 
6 0,4 2,9 0,0 4,5 3,0 INF INF 
7 2,0 2,5 2,2 4,6 INF 0,0 INF 

Table 4.5 Cost After Inclusion  

Figure 4.7 partially illustrates how algorithm works and Figure 4.8 and 4.9 show 

pseudo code of the algorithm. We will carry on excluding and including nodes until a 

solution is found. We apply depth first search. After finding a solution, we will check 

other branches. If lower cost is found on any branch, solution is carried out on that 

branch until a better solution is found.  In the solution, the node having the highest 

exclusion cost is included to the route because we do not want to carry out different 

branches in order to run algorithm faster. 

 
 

                              ----------- 
                             | all solns |  
                              ----------- 
                               /         \ 
                  ------------               ------------- 
                 | with (5,7)|            | w/out (5,7)| 
                  ------------               ------------- 
                  /             \ 
        ------------           ------------- 
       | with (7,6)|        | w/out (7,6)|  
        ------------           ------------- 
          /             \ 
  ------------        ------------ 
 | with (3,1)|     | w/out (3,1)|  
  ------------        ------------ 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 4.7 Branches 

 28



 

Lower Bound is equal to infinitiy 

           CALL Explore Nodes Procedure 

           FOR All nodes 

            IF Exclusion cost of node is less than Lower Bound 

             CALL Explore Nodes Procedure 

             ENDIF 

 ENDFOR 

Figure 4.8 Branch-and-bound Traveling Salesman Problem (BAB-TSP) 

 

PROCEDURE: Explore Nodes 

WHILE assigned nodes is not equal to number of edges-2 and cost is 

less than lower bound  

Reduce Matrix  

Calculate cost by adding reduction values 

Find Best Edge (Maximum exclusion cost) 

Delete Included Edge  

  ENDWHILE 

  IF number of edges-2 nodes included to route 

   Force remaining nodes to build a cycle 

   Calculate Lower Bound 

  ENDIF 

 END PROCEDURE 

Figure 4.9 BAB-TSP Explore Procedure 

4.2.2. Nearest Neighbor  

 This construction heuristic is simple and straightforward. The nearest city is 

always visited. Held-Karp lower bound is generally used to judge the performance of 

TSP heuristics. Johnson and McGeoch (1995) showed the Nearest Neighbor algorithm 

will often keep its tours within 25% of the Held-Karp lower bound.  
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4.2.3. Nearest Point to Cluster Median 

 This approach is similar with nearest neighbor heuristic. Cluster median is 

calculated by using coordinates at every iteration and nearest point to median is inserted 

to route.   

 The Nearest Neighbor and Nearest Point to Cluster Median heuristics are given 

in figure 4.10. 

 

 

 

 
 

Select a random city 
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ack Algorithm for Assignment 

of the problem is solved by using myopic approach. We have n 

 warehouses. Our objective is to determine the number and 

nd assign n cluster to these warehouses with least cost. There 

s. If there is only one facility, it is easy to find optimal solution 

tions. However as the number of warehouses and clusters 

ecomes complicated. First of all we locate single facility 

g all solutions. Secondly, we assume that previous solution is 
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given and test each possible location. Optimal solution is found for given condition and 

this procedure is carried out until total cost increases. Since clusters include many 

points, nearest points to warehouse is considered as stem distance. Myopic algorithm is 

applied when there is only a fixed cost for opening a warehouse. Figure 4.11 illustrates 

how algorithm works.  

 Stem distance denotes the minimum distance from cluster to potential 

warehouse. 

 

Figure 4.11 Stem Distance 

 Figure 4.11 show stem distance of a cluster to two potential WH. Stem distance 

form cluster to WH1 is equal to b+c-a. (Stem distance to WH2=y+z-x) Stem distance 

for a cluster may exist as much as number of potential warehouses.    
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Initially all locations 
are closed and cost 
equals to infinity.

Locate: facility at optimal  
location using total enumeration 
by holding the location of other 

facilities fixed. Assign all 
clusters to nearest open WH. 

Figure 4.12 Myopic Heuristic 

 When facility costs are non-linear, the problem becomes more complicated. We 

adopt a method that uses a myopic approach. In this method, it is important to determine 

which cluster is assigned to which warehouse because of the non-linear warehouse 

opening cost. Hence we define cluster priority showing the assignment rank. This rank 

is simply related with total demand of cluster. Initially, we open nearest warehouse to 

the first cluster. Later, we calculate the cost of assigning cluster to nearest and open 

warehouse. The solution that gives the minimum cost is selected. If a new warehouse is 

opened in the new solution, the previous node is inserted to new warehouse and total 

cost is calculated. If total cost decreases, solution is accepted and previous node is 

inserted to new warehouse. Solution is carried out with same methodology until all 

clusters are assigned to warehouses. The work flow of the algorithm is given in Figure 

4.12. 

Have we 
decreased cost? 

Memorize 

Yes

No

Stop 
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Rank Clusters 

Assign next cluster 
with least cost

 Figure 4.13 Look-Back Heuristic 

4.4. Local Search 

 Swap and move searches are applied both inside and between clusters. Before 

using these methods between clusters, capacity check is made. Swap algorithm basically 

removes two edges from tour, and reconnects the two paths created. Move algorithm 

deletes an edge from a route and inserts it into a new route.  

Is new WH 
opened? 

Assign previous
cluster to new WH

Are all 
clusters 

assigned? 

Is total cost 
decreased? 

No

Yes

Stop 
No

Yes

Yes

No

Assign previous 
cluster to 

previous WH 
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CHAPTER 5 

COMPUTATIONAL STUDY 

In this chapter, different clustering methods, TSP solution procedures and 

improvement heuristics are investigated. Additionally, we compare our solutions with 

the results of Tuzun and Burke (1999). Finally, we find the results with non-linear cost 

function.  

We use the data generated by Tuzun and Burke (1999). They present two-phase 

tabu search architecture consisting location and routing phase. Characteristic of the 

problem instance may affect the performance of heuristic. A wide variety of problems 

are solved by clustering based heuristic in order to determine performance of the 

heuristic. The size of an LRP instance may affect both the solution quality and the 

computational requirements of the heuristic. Number of customers is set at 100, 150 and 

200, and number of candidate facilities is set at 10 and 20. Customer demand is 

generated uniformly in the range [10, 20]. Vehicle capacity is set to 150 and 300. There 

are 10 and 20 customers on a route since the average demand is 15 for all problems. 

Number of clusters (cl), and clustering ratio (cl_ratio) is important for making point 

distribution. Number of clusters show the number of areas where the customer density 

is high. It is set at 3 levels: 0, 3, and 5, where level 0 refers to uniformly distributed 

customers. cl_ratio shows the ratio of number of customers that belong to a cluster to 

the total number of customers. This factor is at 2 levels: 75% and 100%.  

 

 

 

 

 

Pabcde 

# of customer # of cluster Clustering 
ratio 

# of 
Candidate 

facilty 

Vehicle 
capacity 
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The algorithm is implemented in Visual C++ on an Intel Celeron 1.5 GHz 

processor with 512 MB RAM.   

Calculations are made in order to determine median selection method, clustering 

heuristic and TSP solution technique. There exist two initial point selection procedures: 

max-min distance and max-total distance, three clustering method: nearest point to 

cluster, nearest neighbor, gravity force and three TSP solution technique: nearest point 

to cluster, nearest neighbor, branch-and-bound. After solving TSP in each cluster, 

improvements are applied in given order if branch-and-bound is not applied.  

1) SWAP between clusters 

2) MOVE between clusters 

3) SWAP inside the cluster 

4) MOVE inside the cluster 

As branch-and-bound is applied for solving TSP, 3rd and 4th steps are removed 

and branch-and-bound is applied in each cluster instead.  

 

 

 

 

 Sabc 

Median selection 
heuristic 

Clustering 
method 

TSP solution 
technique 

 

Sabc represents the average results of solution techniques a-b-c. Detailed results 

are reported in the Appendix. 

a=1: Max-min distance, a=2: Max-total distance 

b=1: Nearest point to median, b=2: Nearest neighbor, b=3: Gravity force 

c=1: Nearest point to median, c=2: Nearest neighbor, c=3: Branch-and-bound 

 

Median Selection Methods 
Max-Min Distance Max-Total Distance 

Deviation of Results 14.8% 19.8% 

Table 5.1 Max-Min Distance Heuristic with Improvement 
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Table 5.1 shows that max-min distance heuristic gives lower cost than max-total 

distance heuristic does on the average. All solutions are divided into two parts: max-min 

and max-total distance. From geometrical point of view, max-min distance method 

selects widely dispersed points. On the contrary, max-total distance heuristic selects 

close points as median. Hence we can conclude that selecting dispersed medians is 

important for building clusters and affects results 5 % on the average. We will use max-

min distance heuristic for the remaining part of the thesis.  

S111 S112 S113 Average 
Nearest Point to Median 19.3% 20.1% 21.9% 20.4% 

S121 S122 S123 Average 
Nearest Neighbor 13.1% 13.5% 11.7% 12.8% 

S131 S132 S133 Average 
Gravity Force 12.9% 11.9% 9.0% 11.3% 

Table 5.2 Clustering Heuristics  

 Table 5.2 shows the results of clustering methods with different TSP solution 

techniques. Gravity Force clustering method gives better results than Nearest Point to 

Median and Nearest Neighbor do for all TSP solution methods. Despite S121 and S131 are 

very close, discrepancy increases in other TSP solutions.  

 

S111 S121 S131 Average 
Nearest Point to Median 19.3% 13.1% 12.9% 15.1% 

S112 S122 S132 Average 
Nearest Neighbor 20.1% 13.5% 11.9% 15.2% 

S113 S123 S133 Average 
Branch-and-bound 21.9% 11.7% 9.0% 14.2% 

Table 5.3 TSP solution methods  

 Table 5.3 denotes effects of TSP solution techniques. Despite branch-and-bound 

finds better results on the average, it gives the worst result for the first clustering 

method. On the contrary, the minimum number in the table is found by applying 

branch-and-bound method.  

 As a result, max-min total distance heuristic gives best results for median 

selection, gravity force method with branch-and-bound finds minimum cost for building 

cluster and solving TSP in each of them. Hence we will apply only these three methods 

for the non-linear part. 
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 In the non-linear cost function, there exist fixed opening and capacity increment 

costs. If any demand less than 200 is assigned to warehouse, only fixed cost of 100 is 

incurred. As demand exceeds 200, cost increases. The following non-linear cost 

function is used for the incremental capacity cost. 
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  Non-Linear Cost   Non-Linear Cost 
Problem Cost Time(seconds) Open WH Problem Cost Time(seconds) Open WH 

P11111.dat 2518.33 20.10 1,7,10 P21111.dat 4466.14 78.12 1,3,4,5,7 
P11112.dat 2081.45 19.53 8,1 P21112.dat 3424.66 79.32 3,5,7,8 
P11121.dat 2395.97 16.83 1,9,15 P21121.dat 4592.29 83.22 1,6,12,14 
P11122.dat 1984.68 17.73 10,16,17 P21122.dat 3508.65 82.92 1,13,14,20 
P11211.dat 2708.04 16.83 1,4,9,10 P21211.dat 4342.93 75.99 3,5,6,8 
P11212.dat 1858.45 21.93 3,9 P21212.dat 3322.69 84.72 8,1 
P11221.dat 2748.35 18.63 9,12,16 P21221.dat 4496.95 89.25 6,7,11,12,15 
P11222.dat 2122.13 19.83 3,8,10 P21222.dat 3443.82 75.99 8,14,16,17 
P12111.dat 2611.79 16.53 3,4 P22111.dat 5791.17 77.22 8,1 
P12112.dat 1957.68 23.73 8,1 P22112.dat 3507.32 90.72 4,8 
P12121.dat 2391.76 16.80 7,8 P22121.dat 3829.05 72.72 2,8,18 
P12122.dat 1622.7 7.53 11,19 P22122.dat 3464.91 448.23 12,15,17 
P12211.dat 1963.37 25.83 5,1 P22211.dat 3769.6 87.72 1,4,5 
P12212.dat 1208.37 19.53 4,8 P22212.dat 2370.91 84.42 8,9 
P12221.dat 1504.76 19.23 17,18 P22221.dat 3477.22 82.62 1,10,19 
P12222.dat 1341.23 20.13 4,13 P22222.dat 2521.13 111.78 1,8,20 
P13111.dat 2722.63 16.53 1,6,9 P23111.dat 4765.55 82.62 1,3,6 
P13112.dat 1920.75 24.93 6,8,10 P23112.dat 3528.1 96.72 2,3,7,10 
P13121.dat 2304.83 18.93 6,15,18 P23121.dat 5074.16 121.68 12,16,17 
P13122.dat 1843.08 19.83 5,8,12,16 P23122.dat 3371.79 308.25 9,12,16,17,18
P13211.dat 2276.62 21.03 6,8 P23211.dat 3696.63 179.97 7,9 
P13212.dat 1493.77 15.93 6,1 P23212.dat 2884.64 107.25 1,9 
P13221.dat 1708.53 15.30 7,12,14,17 P23221.dat 3743.56 118.35 1,6,11,20 
P13222.dat 1523.29 16.83 8,12,13 P23222.dat 2424.82 116.58 3,4,13,19,20 

Table 5.4 Non-Linear Cost Results 

In the non-linear part, medians are selected by applying max-min distance 

heuristic and clusters are formed by gravity force heuristics. In each cluster TSP is 

solved with branch-and-bound algorithm. At last assignment of cluster is made by using 

look-back heuristic with stem distance. Table 5.4 shows the results of non-linear cost 

function.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this thesis, we develop a hierarchical clustering-based heuristic for the LRP. 

We use the clustering approach to reduce the complexity of the problem in an attempt to 

obtain good feasible solutions fast. In the case of a non-linear cost function, LRP 

becomes more complicated and finding optimal, or even good, solution becomes 

extremely difficult. The developed heuristics aim at solving LRP with non-linear cost 

function efficiently with reasonable computational time. The hierarchical approach 

consists of three parts: clustering of the customers, building TSP routes for each cluster, 

and assigning routes to warehouses. The efficiency of the proposed heuristic is tested 

using the well-known instances in the literature. We conclude that the clustering based 

heuristic provides feasible solutions for complex problems with little computational 

effort. However, the solution quality for the linear cost case is inferior compared to the 

benchmark results. 

In the clustering part, we tested two initial point selection techniques and three 

different clustering techniques (Section 4.1.3). The Max-Min distance approach with 

gravity force method gives best results on the average for building clusters. In each 

cluster, TSP is solved with three methods: nearest neighbor, nearest point to cluster 

median, branch-and-bound. The branch-and-bound method is adopted since the TSP 

solved for each cluster is rather small. Finally, the myopic and look-back heuristics are 

applied in the assignment part (Section 4.3).  

The proposed method is a simple, common sense procedure which is based on 

clustering method. As a future research direction, a more extensive study may be 

conducted to develop a more sophisticated heuristic to improve solution quality. One of 

the most crucial part affecting results is clustering. New clustering methods may be 

applied and gravity force heuristic, which has been utilized for the first time in this 

context, may be improved. Furthermore, results may be improved by applying a k-opt 

local search procedure. In the assignment phase, intuitive heuristics such as myopic and 
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look-back heuristics are used; this can be improved for the non-linear cost structure 

specifically.  

Finally, while building clusters, only the vehicle capacity is considered. The 

method may be easily adopted in the existence of vehicle distance constraints.  
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APPENDIX 

S111 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2268.06 8.51 9.90% 1,3,9,10 
P11112.dat 1720.57 9.11 10.00% 4,8,10  
P11121.dat 2253.68 8.61 10.80% 1,4,7,9,16 
P11122.dat 1816.81 10.22 17.10% 14,17 
P11211.dat 2346.37 99.44 7.30% 2,4,6,9 
P11212.dat 1683.97 91.33 15.40% 2,8 
P11221.dat 2398.17 85.12 15.90% 1,5,9,16 
P11222.dat 1636.25 84.43 9.00% 10,12 
P12111.dat 2322.29 105.15 14.40% 3,4,8  
P12112.dat 1778.92 87.12 30.70% 6,7 
P12121.dat 2199.25 84.92 26.40% 5,9,11  
P12122.dat 1429.25 67.5 19.90% 5,18 
P12211.dat 2199.71 77.71 35.30% 5,1 
P12212.dat 9301.25 78.52 13.50% 4,8 
P12221.dat 1426.16 139.3 13.90% 17,18 
P12222.dat 14599 80.21 49.20% 4 
P13111.dat 2786.47 60.99 23.90% 2,6,9  
P13112.dat 1440.34 86.52 9.50% 8,9,10  
P13121.dat 1969.58 72.81 14.10% 3,15,19,20 
P13122.dat 1432.97 87.92 10.60% 6,11,13,16 
P13211.dat 1799.04 75.11 17.00% 3,6,8,9 
P13212.dat 14671.6 112.46 37.00% 1,4,6  
P13221.dat 1653.98 73.21 30.80% 2,7,14,17 
P13222.dat 1299.7 68.8 21.00% 11,13,15  

S112 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2282.75 7.91 10.50% 1,3,6,7 
P11112.dat 1895.38 8.61 18.30% 4,8,10  
P11121.dat 2255.93 9.41 10.90% 1,4,7,9,16 
P11122.dat 1902.84 15.93 20.80% 3,17 
P11211.dat 2365.88 91.43 8.10% 2,4,9,10 
P11212.dat 1739.18 87.92 18.10% 2,8 
P11221.dat 2386.99 89.93 15.50% 1,5,9,16 
P11222.dat 1720.64 86.23 13.40% 10,12 
P12111.dat 2295.18 110.56 13.40% 3,4,8  
P12112.dat 1781.25 90.83 30.80% 6,7 
P12121.dat 2204.19 75.5 26.60% 5,7,9,11 
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P12122.dat 1463.05 89.63 21.70% 11,19 
P12211.dat 2199.85 89.53 35.30% 5,1 
P12212.dat 9.218 84.12 12.70% 4,8 
P12221.dat 1415.66 96.74 13.30% 17,18 
P12222.dat 14444.9 83.32 48.60% 4 
P13111.dat 2791.23 62.79 24.00% 2,6,9  
P13112.dat 1482.43 81.52 12.10% 8,9,10  
P13121.dat 1966.37 71.2 13.90% 3,15,19,20 
P13122.dat 1451.23 76.11 11.70% 6,11,13,16 
P13211.dat 1783.94 93.54 16.30% 3,6,8,9 
P13212.dat 14321.1 73.4 35.50% 1,4,6  
P13221.dat 1649.27 69.9 30.60% 2,14,17  
P13222.dat 1276.72 91.83 19.60% 11,13,15  

S113 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2273.18 5.7 10.10% 1,3,9,10 
P11112.dat 1735.3 5.71 10.80% 4,8,10  
P11121.dat 2223.24 16.52 9.60% 1,4,7,9 
P11122.dat 1695.43 22.43 11.10% 14,17 
P11211.dat 2369.93 28.94 8.20% 2,4,9,10 
P11212.dat 1658.56 33.84 14.10% 2,8 
P11221.dat 2375.37 41.05 15.10% 1,5,9,16 
P11222.dat 1635.42 45.66 8.90% 10,12 
P12111.dat 2334.96 52.17 14.90% 3,4,8  
P12112.dat 1728.43 57.18 28.70% 6,7 
P12121.dat 2210.38 61.68 26.80% 5,9,11  
P12122.dat 1351.97 67.59 15.30% 5,18 
P12211.dat 2147.15 71 33.70% 5,1 
P12212.dat 913.467 78.21 99.10% 4,8 
P12221.dat 1415.66 82.61 13.30% 15,18,19  
P12222.dat 14080.7 89.42 47.30% 4 
P13111.dat 2771.22 94.53 23.40% 2,6,9  
P13112.dat 1420.65 99.34 8.30% 8,9,10  
P13121.dat 1975.13 104.85 14.30% 3,15,19,20 
P13122.dat 1409.47 110.25 9.10% 6,11,13,16 
P13211.dat 1826.04 117.16 18.30% 3,6,8,9 
P13212.dat 14005.5 122.27 34.00% 1,4,6  
P13221.dat 1642.14 127.68 30.30% 2,14,17  
P13222.dat 1289.4 133.29 20.40% 11,13,15  

S121 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2155.34 10.11 5.20% 1,3,6,7 
P11112.dat 1734.39 9.11 10.70% 4,8 
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P11121.dat 2159.57 11.72 6.90% 1,2,4,7,18 
P11122.dat 1785.32 10.21 15.60% 11,14,17  
P11211.dat 2432 96.04 10.60% 2,4,9,10 
P11212.dat 1647.98 92.34 13.50% 1,2 
P11221.dat 2289.27 85.42 11.90% 1,5,9,13,20 
P11222.dat 1704.39 93.13 12.60% 10,12 
P12111.dat 2074.97 87.93 4.20% 4,8,9  
P12112.dat 1585.58 92.73 22.30% 2,6,7  
P12121.dat 1830.93 94.74 11.60% 5,9,11,16 
P12122.dat 1434.58 105.75 20.20% 5,18 
P12211.dat 1634.45 70.5 12.90% 5,1 
P12212.dat 9.528 65.9 15.50% 4,8 
P12221.dat 1279.47 80.41 4.00% 1,17,18  
P12222.dat 9.557 102.65 22.40% 4,13 
P13111.dat 2397.08 71.1 11.50% 2,6,9  
P13112.dat 1491.32 108.16 12.60% 2,6,10  
P13121.dat 1786.4 115.26 5.20% 3,15,18,19,20 
P13122.dat 1454.42 77.91 11.90% 6,13,16  
P13211.dat 1706.59 76.72 12.50% 3,6,8,9 
P13212.dat 11845 73.3 22.00% 1,4,6  
P13221.dat 1499.4 132.29 23.70% 2,12,14,17 
P13222.dat 1221.88 97.84 16.00% 4,13,15  

S122 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2159.19 9.8 5.30% 1,3,6,7 
P11112.dat 1758.7 9.22 12.00% 3,4,8  
P11121.dat 2147.75 12.12 6.40% 1,2,4,7,18 
P11122.dat 1842.47 11.62 18.20% 11,14,17  
P11211.dat 2442.61 89.83 10.90% 2,4,6,9 
P11212.dat 1633.21 92.83 12.70% 2,8,9  
P11221.dat 2291.62 91.13 12.00% 1,5,9,13,20 
P11222.dat 1729.76 111.86 13.90% 10,12 
P12111.dat 2095.03 96.44 5.10% 4,8,9  
P12112.dat 1551.8 83.92 20.60% 2,6,7  
P12121.dat 1835.57 81.42 11.80% 5,9,11,16 
P12122.dat 1440.34 60.99 20.50% 5,18 
P12211.dat 1630.61 75.1 12.70% 5,1 
P12212.dat 9.389 70.6 14.30% 4,8 
P12221.dat 1281.53 108.16 4.20% 1,17,18  
P12222.dat 9.611 67.3 22.80% 4,13 
P13111.dat 2405.67 69.1 11.80% 2,6,9  
P13112.dat 1483.75 82.72 12.20% 8,9,10  
P13121.dat 1801.4 60.08 6.00% 3,15,18,19,20 
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P13122.dat 1452.05 61.29 11.80% 6,13,16  
P13211.dat 1731.02 67.4 13.80% 3,6,8,9 
P13212.dat 12080.1 121.07 23.50% 1,4,6  
P13221.dat 1486.95 62.49 23.00% 2,12,14,17 
P13222.dat 1245.64 72.3 17.60% 10,15 

S123 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2159.06 98 5.30% 1,3,6,7 
P11112.dat 1677.86 29.1 7.70% 3,4,8  
P11121.dat 2136.63 90.2 5.90% 1,4,7,9,18 
P11122.dat 1708.29 56 11.80% 11,14,17  
P11211.dat 2410.81 91.2 9.80% 2,4,6,9 
P11212.dat 1596.58 62.1 10.70% 1,2 
P11221.dat 2308.49 67.1 12.60% 1,5,9,13,20 
P11222.dat 1685.54 68.1 11.60% 3,7 
P12111.dat 2073.91 59 4.20% 4,8,9  
P12112.dat 1491.31 54.1 17.40% 2,6,7  
P12121.dat 1822.31 45.1 11.20% 5,9,11,16 
P12122.dat 1324.43 71.1 13.50% 5,18 
P12211.dat 1599.48 70.1 11.00% 5,1 
P12212.dat 9.1 55.1 11.60% 4,8 
P12221.dat 1279.91 79.1 4.10% 1,17,18  
P12222.dat 9.587 68.1 22.60% 4,13 
P13111.dat 2382.2 60.1 10.90% 2,6,9  
P13112.dat 1450.53 64.1 10.10% 8,9,10  
P13121.dat 1801.04 67.1 6.00% 3,15,18,19,20 
P13122.dat 1420.41 57 9.80% 6,13,16  
P13211.dat 1741.23 76.1 14.30% 3,6,8,9 
P13212.dat 11657 79.2 20.70% 1,4,6  
P13221.dat 1485.27 62 22.90% 2,12,14,17 
P13222.dat 1206.54 70.1 14.90% 10,15 

S141 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2125.7 7.8 3.90% 1,3,6,7 
P11112.dat 1735.07 10.32 10.80% 4,8,10  
P11121.dat 2092.22 7.31 3.90% 1,2,4,6 
P11122.dat 1641.33 9.11 8.20% 3,17 
P11211.dat 2311.32 57.89 5.90% 2,4,6,9 
P11212.dat 1651.85 88.63 13.70% 2,8,9  
P11221.dat 2182.25 88.12 7.50% 1,5,9,13,20 
P11222.dat 1737.54 85.73 14.30% 10,12 
P12111.dat 2127.07 88.22 6.60% 4,8 
P12112.dat 1648.95 96.54 25.30% 2,7,10  
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P12121.dat 1844.63 76.21 12.20% 5,9,11,16 
P12122.dat 1435.5 71 20.20% 5,18 
P12211.dat 1632.87 109.16 12.90% 5,1 
P12212.dat 9.321 139.7 13.60% 4,8 
P12221.dat 1216.27 82.62 -1.00% 17,18 
P12222.dat 12099 73.3 38.70% 4,13 
P13111.dat 2451.04 54.58 13.40% 1,2,6,9 
P13112.dat 1496.2 74.31 12.90% 8,1 
P13121.dat 1735.67 58.08 2.50% 3,15,18,19,20 
P13122.dat 1462.22 68.5 12.40% 4,6,13  
P13211.dat 1666.04 66.5 10.40% 3,6,8,9 
P13212.dat 13113 94.33 29.50% 1,4,6  
P13221.dat 1374.11 80.02 16.70% 2,14,17  
P13222.dat 1205.34 139.3 14.80% 4,13,15  

S142 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2128.04 9.1 4.00% 1,3,6,7 
P11112.dat 1766.23 38.66 12.40% 4,8,10  
P11121.dat 2087.86 77.62 3.70% 1,2,4,6 
P11122.dat 1655.56 95.03 9.00% 3,17 
P11211.dat 2255.83 69.1 3.60% 2,4,6,9 
P11212.dat 1620.85 71.2 12.10% 2,8,9  
P11221.dat 2184.69 79.72 7.60% 1,5,9,13,20 
P11222.dat 1719.48 128.48 13.40% 10,12 
P12111.dat 2137.7 69.8 7.00% 4,8 
P12112.dat 1462.91 85.63 15.80% 2,6,7  
P12121.dat 2023.44 74.7 20.00% 5,9,11,16 
P12122.dat 1391.03 66.1 17.70% 5,18 
P12211.dat 1596.08 90.33 10.90% 5,1 
P12212.dat 9.682 82.22 16.90% 4,8 
P12221.dat 1214.29 126.48 -1.10% 17,18 
P12222.dat 10221.6 164.14 27.40% 4,13 
P13111.dat 2443.6 115.56 13.20% 1,2,6,9 
P13112.dat 1577.15 86.23 17.40% 9,1 
P13121.dat 1739.07 97.54 2.70% 3,15,18,19,20 
P13122.dat 1488.91 180.86 14.00% 4,6,13  
P13211.dat 1652.54 112.06 9.70% 3,6,8,9 
P13212.dat 11714.7 136.49 21.10% 1,4,6  
P13221.dat 1309.86 140.61 12.60% 14,16,17  
P13222.dat 1222.3 146.41 16.00% 4,13,15  

S143 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2114.11 58 3.30% 1,3,6,7 
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P11112.dat 1684.44 79.1 8.10% 3,4,8  
P11121.dat 2136.37 41.1 5.90% 1,2,4,10,11 
P11122.dat 1594.76 56.1 5.50% 3,17 
P11211.dat 2303.77 46.1 5.60% 2,4,6,9 
P11212.dat 1560.03 75.1 8.70% 1,2 
P11221.dat 2202.15 51 8.40% 1,5,9,13,20 
P11222.dat 1610.31 63.1 7.50% 7,19 
P12111.dat 2112.66 49.1 5.90% 3,4,8  
P12112.dat 1422.48 74.1 13.40% 6,7 
P12121.dat 1828.27 39.1 11.50% 5,9,11,16 
P12122.dat 1239.28 59 7.60% 5,18 
P12211.dat 1611.05 50.1 11.70% 5,1 
P12212.dat 9.09 63.1 11.50% 4,8 
P12221.dat 1209.32 49.1 -1.50% 17,18 
P12222.dat 8196.3 54.1 9.50% 4,13 
P13111.dat 2378.64 48 10.80% 1,2,6,9 
P13112.dat 1512.84 76.1 13.80% 7,9 
P13121.dat 1755.05 55.1 3.60% 3,15,19,20 
P13122.dat 1434.2 65.1 10.70% 4,6,13  
P13211.dat 1646.82 48.1 9.40% 3,6,8,9 
P13212.dat 10835.8 62.1 14.70% 1,4,6  
P13221.dat 1371.25 41 16.50% 2,14,17  
P13222.dat 1186.87 60.1 13.50% 4,13,15  

S211 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2506.38 5.8 18.50% 1,3,6,7 
P11112.dat 1763.56 10.82 12.20% 4,8 
P11121.dat 2656.14 8.61 24.30% 1,2,4,10 
P11122.dat 1774.65 9.72 15.10% 10,17 
P11211.dat 2788.5 110.85 22.00% 2,4,8,9 
P11212.dat 1766.49 89.53 19.30% 2,8,9  
P11221.dat 2609.29 95.24 22.70% 1,5,8,13 
P11222.dat 1799.21 83.12 17.20% 10,12 
P12111.dat 2497.39 96.14 20.40% 4,8 
P12112.dat 1606.47 88.22 23.30% 6,8 
P12121.dat 2103.65 81.22 23.00% 5,7,9,11 
P12122.dat 1390.29 67.4 17.60% 5,18 
P12211.dat 1945.77 72 26.90% 5,1 
P12212.dat 12091.8 71.1 33.40% 4 
P12221.dat 1509.9 111.06 18.70% 15,18,19  
P12222.dat 11761.8 69.1 36.90% 4,13 
P13111.dat 2795.02 55.98 24.10% 1,2,6,9 
P13112.dat 1597.38 67.7 18.40% 2,1 
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P13121.dat 2265.45 82.72 25.30% 3,14,15,20 
P13122.dat 1573.43 121.88 18.60% 4,6 
P13211.dat 2000.4 87.42 25.40% 6,8,9  
P13212.dat 16203.8 99.94 43.00% 1,4,6  
P13221.dat 1845.8 76.92 38.00% 2,14,17  
P13222.dat 1441.05 98.64 28.80% 4,7,15  

S212 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2552.44 8.1 19.90% 1,3,6,7 
P11112.dat 1764.16 9.12 12.30% 4,8,10  
P11121.dat 2603.87 9.01 22.80% 1,2,4,11 
P11122.dat 1858.94 9.52 18.90% 17 
P11211.dat 2778.7 124.38 21.70% 2,4,8,9 
P11212.dat 1788.12 86.52 20.30% 2,8,9  
P11221.dat 2653.84 89.33 24.00% 1,5,8,13 
P11222.dat 1818.99 86.42 18.10% 4,12 
P12111.dat 2508.33 91.93 20.80% 4,8 
P12112.dat 1736.18 108.66 29.00% 6,8 
P12121.dat 2095.86 93.13 22.80% 5,7,9,11 
P12122.dat 1465.21 61.29 21.80% 5,11 
P12211.dat 1946 84.82 26.90% 5,1 
P12212.dat 12154.6 109.76 33.80% 4 
P12221.dat 1500.15 98.74 18.10% 17,18 
P12222.dat 11695.9 75.61 36.60% 4,13 
P13111.dat 2750.97 67 22.90% 1,2,6,9 
P13112.dat 1682.17 69.7 22.50% 2,1 
P13121.dat 2266.71 76.51 25.30% 3,14,15,20 
P13122.dat 1569.76 107.75 18.40% 4,6 
P13211.dat 1995.35 108.86 25.20% 6,8,9  
P13212.dat 17490.6 83.22 47.20% 1,4,6  
P13221.dat 1790.48 55.48 36.10% 2,12,14,17 
P13222.dat 1444.76 62.79 28.90% 4,7,15  

S213 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2544.61 57 19.70% 1,3,6,7 
P11112.dat 1693.33 55.1 8.60% 4,8 
P11121.dat 2680.69 69.1 25.00% 1,4,10,12 
P11122.dat 1720.37 51.1 12.40% 2,17 
P11211.dat 2771.48 79.1 21.50% 2,4,8,9 
P11212.dat 1746.01 49.1 18.40% 2,8,9  
P11221.dat 2574.53 50 21.60% 1,5,9,13 
P11222.dat 1764.39 55.1 15.60% 4,12 
P12111.dat 2499.74 56.1 20.50% 4,8 
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P12112.dat 1622.37 57.1 24.00% 6,8 
P12121.dat 2172.06 45 25.50% 5,7,9,11 
P12122.dat 1377.92 61.1 16.90% 5,18 
P12211.dat 1946.54 39.6 26.90% 5,1 
P12212.dat 11841 74.6 32.00% 4 
P12221.dat 1499.16 62.1 18.10% 17,18 
P12222.dat 11501.1 53.1 35.50% 4,13 
P13111.dat 2691.27 38 21.20% 1,2,6,9 
P13112.dat 1618.78 63.1 19.50% 2,1 
P13121.dat 2284.1 44.1 25.90% 3,15,19,20 
P13122.dat 1559.13 58.1 17.80% 4,6 
P13211.dat 2038.72 51 26.80% 6,8,9  
P13212.dat 17341.2 65.1 46.70% 1,4,6  
P13221.dat 1823.06 46.1 37.20% 2,12,14,17 
P13222.dat 1483.52 69.1 30.80% 7,10,15  

S221 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2312.07 7.8 11.60% 1,3,6,7 
P11112.dat 1659.99 8.92 6.70% 4,8,10  
P11121.dat 2366.23 11.82 15.00% 1,2,4,7 
P11122.dat 1716.22 10.81 12.20% 3,17 
P11211.dat 2457.18 97.04 11.50% 2,4,8,9 
P11212.dat 1637.61 97.84 13.00% 2,8 
P11221.dat 2242.87 92.84 10.00% 1,5,9,16,20 
P11222.dat 1661.37 99.44 10.30% 3,7 
P12112.dat 1424.73 7.81 13.50% 6,9 
P12121.dat 1903.36 8.51 14.90% 5,7,9,11 
P12122.dat 1331.87 8.61 14.00% 5,18 
P12211.dat 1723.15 6.6 17.40% 5,1 
P12212.dat 9.163 8.31 12.20% 4,8 
P12221.dat 14738.8 8.81 91.70% 17,18 
P12222.dat 8994.3 9.11 17.50% 4,13 
P13111.dat 2341.93 7.81 9.40% 2,6,9  
P13112.dat 1447.43 18.2 10.00% 1,9,10  
P13121.dat 1973.86 10.12 14.20% 3,15,18,19,20 
P13122.dat 1364.35 20.12 6.10% 4,13 
P13211.dat 1799.28 94.24 17.00% 3,6,8,9 
P13212.dat 12710.4 86.42 27.30% 1,4,6  
P13221.dat 1483.83 86.23 22.90% 2,12,14,17 
P13222.dat 1342.05 98.34 23.50% 11,13,15  

S222 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2300.89 9.2 11.20% 1,3,6,7 
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P11112.dat 1801.7 8.92 14.10% 4,8,10  
P11121.dat 2339.27 11.42 14.10% 1,4,7,9 
P11122.dat 1796.48 10.11 16.10% 3,17 
P11211.dat 2470.59 104.05 11.90% 2,4,8,9 
P11212.dat 1750.77 99.95 18.60% 1,2 
P11221.dat 2301.46 90.43 12.30% 1,5,9,16 
P11222.dat 1766.68 98.84 15.70% 10,12 
P12112.dat 1480.18 10.31 16.70% 2,6,7  
P12121.dat 1921.11 8.01 15.70% 5,7,9,11 
P12122.dat 1320.6 8.61 13.30% 5,18 
P12211.dat 1739.07 6.9 18.20% 5,1 
P12212.dat 9.228 8.31 12.80% 4,8 
P12221.dat 1466.23 8.61 16.30% 17,18 
P12222.dat 8.922 9.01 16.90% 4,13 
P13111.dat 2328.15 8.11 8.90% 2,6,9  
P13112.dat 1459.67 21.6 10.70% 1,9,10  
P13121.dat 1976.68 10.44 14.40% 3,15,18,19,20 
P13122.dat 1424.83 52.48 10.10% 4,6,20  
P13211.dat 1807.78 93.93 17.40% 3,6,8,9 
P13212.dat 13307.4 91.63 30.50% 1,4,6  
P13221.dat 1494.1 75.31 23.40% 2,12,14,17 
P13222.dat 1444.8 77.61 29.00% 8,11,13  

S223 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2276.45 64 10.20% 1,3,6,7 
P11112.dat 1699.93 58.1 8.90% 4,8,10  
P11121.dat 2359.73 91.2 14.80% 1,4,7,9 
P11122.dat 1649.09 69.1 8.60% 2,3,17  
P11211.dat 2491.84 102.1 12.70% 2,4,8,9 
P11212.dat 1557.46 55.1 8.50% 1,2 
P11221.dat 2327.19 67.1 13.30% 1,5,9,16 
P11222.dat 1673.35 56.1 11.00% 10,12 
P12112.dat 1375.42 62 10.40% 6,7 
P12121.dat 1891.65 67 14.40% 5,9,11,16 
P12122.dat 1302.45 38 12.10% 5,18 
P12211.dat 1712.66 40 16.90% 5,1 
P12212.dat 9257.5 59 13.10% 4,8 
P12221.dat 1505.47 59 18.40% 17,18 
P12222.dat 8190 53 9.40% 4,13 
P13111.dat 2355.8 58 9.90% 2,6,9  
P13112.dat 1450.94 122 10.20% 1,9,10  
P13121.dat 1979.78 72.2 14.50% 3,15,18,19,20 
P13122.dat 1341.43 56.1 4.50% 4,11,13  
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P13211.dat 1793.96 92.1 16.80% 3,6,8,9, 
P13212.dat 12613.1 132.2 26.70% 1,4,6  
P13221.dat 1492.22 62.1 23.30% 2,14,17  
P13222.dat 1332.35 62.1 23.00% 8,11,13,15 

S241 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2366.79 7.9 13.60% 1,3,6,7 
P11112.dat 1679.17 10.42 7.80% 4,8,10  
P11121.dat 2308.86 7.41 12.90% 1,2,4,12 
P11122.dat 1669.73 8.91 9.80% 2,17 
P11211.dat 2449.46 94.94 11.20% 2,4,8,9 
P11212.dat 1834.73 94.04 22.30% 2,8,9  
P11221.dat 2403.18 79.51 16.00% 1,3,5,9 
P11222.dat 1761.92 94.74 15.40% 4,12 
P12111.dat 2200.97 85.92 9.70% 4,8 
P12112.dat 1456.17 86.73 15.40% 6,7 
P12121.dat 1878.18 120.77 13.80% 5,7,9,11 
P12122.dat 1361.19 127.18 15.80% 5,18 
P12211.dat 1933.6 94.64 26.40% 5,1 
P12212.dat 11147.7 124.68 27.80% 4,8 
P12221.dat 1408.58 106.65 12.80% 15,18,19  
P12222.dat 11822.6 84.02 37.30% 4,13 
P13111.dat 2514.31 78.81 15.60% 2,6,9  
P13112.dat 1470.26 70.51 11.40% 8,9,10  
P13121.dat 2196.81 65.19 23.00% 3,15,18,19,20 
P13122.dat 1539.73 62.69 16.80% 4,6,13  
P13211.dat 1810.73 50.37 17.60% 3,6,8,9 
P13212.dat 15844.7 96.74 41.70% 1,4 
P13221.dat 1719.98 100.55 33.40% 2,14,17  
P13222.dat 1265.45 72.2 18.90% 4,7,15  

S242 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2375.65 7.9 14.00% 1,3,6,7 
P11112.dat 1761.68 11.32 12.10% 4,8,10  
P11121.dat 2307.04 7.91 12.90% 1,2,4,12 
P11122.dat 1706.72 8.92 11.70% 2,17 
P11211.dat 2449.54 59.78 11.20% 2,4,8,9 
P11212.dat 1800.75 111.16 20.90% 2,8 
P11221.dat 2410.11 78.22 16.30% 1,5,9,16,20 
P11222.dat 1877.19 109.45 20.60% 7,19 
P12111.dat 2205.1 74.71 9.90% 4,8 
P12112.dat 1538.12 82.42 19.90% 6,7 
P12121.dat 1911.37 81.02 15.30% 5,7,9,11 
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P12122.dat 1421.85 68.49 19.40% 5,18 
P12211.dat 1932.35 73.21 26.40% 5,1 
P12212.dat 11160.4 74.41 27.90% 4,8 
P12221.dat 1379.11 66.79 11.00% 15,18,19  
P12222.dat 12086.6 82.72 38.60% 4,13 
P13111.dat 2528.51 54.38 16.10% 2,6,9  
P13112.dat 1434.08 77.91 9.10% 8,9,10  
P13121.dat 2106.6 92.03 19.70% 3,15,18,19,20 
P13122.dat 1497.07 74.11 14.40% 4,6,13  
P13211.dat 1774.86 62.29 15.90% 3,6,8,9 
P13212.dat 16729.8 64.49 44.80% 1,4 
P13221.dat 1664.26 66.7 31.20% 2,14,17  
P13222.dat 1250.7 63.59 17.90% 4,7,15  

S243 
Problem Cost Time(seconds) Discrepancy Open WH 

P11111.dat 2366.34 79 13.60% 1,3,6,7 
P11112.dat 1665.38 52.1 7.00% 4,8,10  
P11121.dat 2303.12 61.1 12.70% 1,4,7,9 
P11122.dat 1613.07 55.1 6.60% 3,17 
P11211.dat 2403.96 60.1 9.50% 2,4,8,9 
P11212.dat 1706.81 81.1 16.50% 8,9 
P11221.dat 2339.38 42.1 13.70% 1,5,9,16 
P11222.dat 1734.94 65.1 14.10% 10,12 
P12111.dat 2171.61 49 8.50% 4,8 
P12112.dat 1430.61 66.1 13.90% 6,7 
P12121.dat 1917.81 44.1 15.60% 5,9,11  
P12122.dat 1332.11 55.1 14.00% 5,18 
P12211.dat 1872.05 62.1 24.00% 5,1 
P12212.dat 10915 60 26.30% 4,8 
P12221.dat 1370.38 44.1 10.40% 15,18,19  
P12222.dat 11657.5 84.1 36.40% 4,15 
P13111.dat 2521.14 42.1 15.80% 1,2,6,9 
P13112.dat 1422.9 68.1 8.40% 2,1 
P13121.dat 2103.22 44.1 19.50% 11,13,15,19 
P13122.dat 1523.35 71.1 15.90% 4,6,13  
P13211.dat 1796.99 51 16.90% 3,6,8,9 
P13212.dat 16425.2 63.1 43.70% 1,4 
P13221.dat 1656.27 41.1 30.90% 2,14,17  
P13222.dat 1228.05 131.2 16.40% 4,7,15  
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