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ABSTRACT

We consider the design problem of a decentralized estimation net-
work under communication constraints. The underlying low capac-
ity links are modeled by introducing a directed acyclic graph where
each node corresponds to a sensor platform. The operation of the
platforms are constrained by the graph such that each node, based
on its measurement and incoming messages from parents, produces
a local estimate and outgoing messages to children. A Bayesian
risk that captures both estimation error penalty and cost of com-
munications, e.g. due to consumption of the limited resource of
energy, together with constraining the feasible set of strategies by
the graph, yields a rigorous problem definition. We adopt an iter-
ative solution that converges to an optimal strategy in a person-by-
person sense previously proposed for decentralized detection net-
works under a team theoretic investigation. Provided that some rea-
sonable assumptions hold, the solution admits a message passing
interpretation exhibiting linear complexity in the number of nodes.
However, the corresponding expressions in the estimation setting
contain integral operators with no closed form solutions in general.
We propose particle representations and approximate computational
schemes through Monte Carlo methods in order not to compromise
model accuracy and achieve an optimization method which results
in an approximation to an optimal strategy for decentralized esti-
mation networks under communication constraints. Through an ex-
ample, we present a quantification of the trade-off between the esti-
mation accuracy and the cost of communications where the former
degrades as the later is increased.

1. INTRODUCTION

The fundamental motivation of distributed estimation under com-
munication constraints is provided by sensor networks (SNs) which
are composed of networked platforms with limited sensing, com-
munication, and computation capability operating together to obtain
some useful information using the possibly high volume of obser-
vations collected at various locations and involving uncertainities.
This nature suggests the necessity of some communications to take
place over bandwidth (BW) limited links for a reasonable inference
performance as well as that of performing the processing in a dis-
tributed and collaborative manner.

The canonical approach considering a static estimation task
with a performance measure such as mean squared error (MSE) in
accordance with the BW limitations is to collect quantized values
due to observations at a center node which produces the required
estimate. In this so-called star topology setting, the design problem
involves finding quantization schemes for peripheral nodes address-
ing the limited BW and a fusion rule for the center node such that
a reasonable estimation accuracy is achieved [1],[2]. Problem set–
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tings suitable to sensor networks that differ in the reflected domain
knowledge such as the noise distribution and quantization level con-
straints have been studied as well as the case in which samples
of a field are to be estimated (see e.g. [3], [4] and the references
therein). Altough these treatments consider keeping the commu-
nication demand as low as possible, they are limited in capturing
certain aspects of the problem. First of all, the topologies for which
results can be produced for are restricted to star-shaped directed
graphs. The cost of transmissions from peripherals to the fusion
center which could vary considering the multi-hop nature is not ex-
plicitly accounted for. In the case of multiple random variables, a
computational bottleneck is of concern since inference is performed
only at the fusion center. Furthermore, the peripheral nodes do not
cooperate with each other and exploit possible correlation structures
that the problem might exhibit.

The framework of graphical models has proved to be useful for
distributed inference problems arising in various SN applications
including the estimation of a random field [5]. In this approach, the
so called “information structure” of an inference task is represented
with graphs revealing the correlation properties of the problem and
inference is performed through message passing algorithms (MPAs)
on them. After mapping the information structure onto the set of
platforms, some messages correspond to real communications and
provided that the required transmissions are supported by the under-
lying communication structure, a collaborative and distributed pro-
cessing scheme is achieved. On the other hand, the cost of commu-
nications is of concern because application scenarios often involve
cases in which no infrastructure can be provided so that the plat-
forms have to rely on stored energy which is primarily consumed
by the transmissions. Although it is possible to analyze the effects
of errors induced by transmissions to MPAs (see e.g. [6]), it is hard
to utilize this framework within a design problem in which the com-
munication constraints are severe and the trade-off between estima-
tion accuracy and cost of communications is explicitly of concern.

We consider the estimation of a random vector that takes val–
ues from an N-dimensional Euclidean space through a system with
a communication and computation structure that better matches
the underlying communication topology and exhibits collabora-
tive processing. This scenario captures, e.g. the estimation of a
scalar parameter (as in e.g.[7]) as well as samples of a field (as
in e.g.[4]) with an ad-hoc sensor network. Unlike the canoni-
cal inference approaches mentioned above, we employ a design
perspective in which the cost of communications and estimation
errors are considered explicitly in a Bayesian setting as well as
the constraints including the availability and capacity of links.
Similar challenges are of concern in decentralized detection for
which a general treatment has been presented in [8] (see also
[9]). In this setting, the available links between sensor platforms
render a directed acyclic graph (DAG) G= (V,E) where nodes
and edges correspond to platforms and uni-directional links be-
tween two platforms respectively. The inference task is distributed
through associating random variables with sensor platforms. Each
node evaluates its local rule, given the incoming messages and



its own measurement, producing an inference on the associated
random variable(s) and outgoing messages. The design prob-
lem involves finding the set of local rules, which is referred to
as the strategy, that minimizes an expected cost which captures
contributions of both cost of communications and detection er-
rors in a Bayesian setting with the set of feasible strategies con-
strained by G. Decentralized detection is NP-hard in general, nev-
ertheless necessary (but not sufficient) optimality conditions yield
nonlinear Gauss-Seidel iterations which converge to a person-by-
person optimal strategy [10]. In [8], this treatment is utilized for
a directed acyclic topology and an iterative solution together with
conditions under which the iterations admit a message passing inter-
pretation that is scalable with the number of nodes are established.

We generalize this framework to decentralized estimation (DE),
and address some of the limitations of the canonical distributed es-
timation algorithms mentioned above [1]-[3],[7]. However this ap-
proach leads to an iterative scheme that involves integral equations
that have no closed form solutions in general. In order not to com-
promise model accuracy, we develop an approximation framework
using Monte Carlo (MC) integration methods. In the resulting net-
work, the platforms perform computations which correspond to ap-
proximations to an approximately person-by-person optimal rule.
We maintain the scalability of the solution both in the number of
nodes and sample sizes and we can produce results for any set of
distributions as long as samples can be generated from them. Hence
our main contribution is an efficient MC optimization algorithm for
DE networks subject to communication constraints in a Bayesian
setting. The algorithm can be carried out in a message passing fash-
ion making it also suitable for self-organization.

2. DESIGNING DE NETWORKS

In this section we present the online structure we consider for pro-
cessing the measurements collected by the platforms which is de-
scribed with a DAG G. Then we define the problem of decen-
tralized estimation under communication constraints in Section 2.2,
and present a team theoretic iterative solution in Section 2.3.

2.1 Online Processing Constrained With a DAG

A DAG G = (V,E) represents a communication and computation
structure for a decentralized system where each platform is asso-
ciated with a node v ∈ V. An edge (i, j) ∈ E corresponds to the
finite capacity communication link from platform i to j on which i
can transmit a symbol ui→ j from a finite setUi→ j where the number
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∣ is in accordance with the link capacity capturing
the BW constraints. DAGs imply a partial ordering and without loss
of generality, we assume that the nodes are labeled in accordance
with a partial ordering using the reachability relation in which the
parentless nodes have the smallest order.

Let uπ( j) denote the incoming messages to node j from the par-
ent nodes π( j), given by uπ( j) , {ui→ j|i ∈ π( j)}. Let Uπ( j) de-
note the set from which uπ( j) takes values from. This set is con-
structed through consecutive Cartesian products given by Uπ( j) =

Uπ1→ j × . . .×UπP j
→ j where π( j) = {π1, ..., πP j

} and P j = |π( j)|. The

set of outgoing messages from node j to child nodes χ( j), given by
u j , {u j→k |k ∈ χ( j)} takes values from the set U j which can be
defined in a similar way with that forUπ( j).

Each node j is associated with a random variable(s) X j that
takes values from the set X j.

The directed acyclic nature of G leads a causal online process-
ing of observations when proceeded in accordance with the par-
tial order. Starting from the parentless nodes, as node j measures
y j ∈Y j and receives uπ( j) ∈U j, it evaluates a function, called its
local rule and defined by γ j :Y j ×Uπ( j)→U j × X j, which pro-
duces an estimate x̂ j ∈X j as well as outgoing messages u j ∈U j

(Fig.(1a) ). The space of rules local to node j is given by

Γ
G

j , {γ j|γ j :Y j×Uπ( j)→U j×X j} where the superscript G denotes

that the definition relies on G together with the set {Ui→ j|(i, j)∈E}.
In Section 4, we provide an example in which the online processing
of a DE network is described by the DAG in Fig.(2a).
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Figure 1: Online processing from (a) the viewpoint of node j, (b)
the global viewpoint.

The aggregation of local rules γ= (γ1, γ2, . . . , γN ) is called a
strategy and takes values from the set of feasible strategies given

by ΓG = Γ
G

1
× . . .×Γ

G

N
. The communication load of the system is the

set of all transmitted symbols u , {ui→ j |(i, j) ∈ E} and takes values
from the set U which can be defined in a similar way with that for
Uπ( j). Similarly X takes values from the set X = X1× . . .×XN . This
global view is presented in Figure(1b).

2.2 Problem Definition

Since the online processing strategy γ is a function mapping Y

to X̂ and U, i.e. (U, X̂) = γ(Y), (U, X̂, X) is a random process

with the joint density p(u, x̂, x; γ) =
∫

y∈Y
dy p(u, x̂|x, y; γ)p(x, y)

where “; γ” denotes that the distribution is specified by γ. The
causal operation implies the coupling of local rules to p(u, x̂, x; γ)

through p(u, x̂|x, y; γ) =
∏N

j=1 p(u j, x̂ j |y j, uπ( j); γ j) where it is con-
venient to treat p(u j, x̂ j|y j, uπ( j); γ j) as a finite set of distributions
parameterized on u j and specified by γ j as p(u j, x̂ j|y j, uπ( j); γ j) =
pu j

(x̂ j|y j, uπ( j); γ j) such that

p[γ j(y j,uπ( j))]U j

(x̂ j|y j, uπ( j); γ j) = δ(x̂ j −
[

γ j(y j, uπ( j))
]

X j

) (1)

where [.]A selects the component of its N-tuple argument that takes
values from A, e.g. [(ū j, ˆ̄x j)]U j

= ū j and [(ū j, ˆ̄x j)]X j
= ˆ̄x j. There-

fore, γ j and the distribution family pu j
(x̂ j|y j, uπ( j); γ j) specify each

other accordingly. Moreover, the joint distribution p(u, x̂, x; γ) is
constructed through these distributions.

Having built the joint distribution determined by γ, in the
Bayesian setting, a cost function is selected such that an estima-
tion error penalty for the pair (x, x̂) and a cost due to the cor-
responding communication load u are assigned. Hence, in gen-
eral c : U × X × X → R and there corresponds an objective value
J(γ) = E {c(u, x, x̂); γ} where the expectation is over p(u, x̂, x; γ) for
any selection of γ ∈ ΓG following the discussion above. Therefore,
the problem of finding the best strategy for estimation under com-
munication constraints described by G and c turns to a constrained
optimization problem given by

(P) : min E {c(u, x, x̂); γ} (2)

subject to γ ∈ ΓG

Problem (P) allows a broad range of settings to be expressed
including the conventional star-topology treatment of DE networks.
It is hard to find a global optimum in general, nevertheless the team
theoretic approach which has proved to be useful in solving decen-
tralized detection problems is presented in the next section.

2.3 Team Theoretic Iterative Solution

In a team decision problem, N members taking actions γ j ∈ Γ j with
a single cost function J(γ1, γ2, ..., γN) constitute a team. When it is
hard to find γ∗j ∈Γ j for j=1, 2, ...,N such that J(γ∗

1
, γ∗

2
, ..., γ∗N) is min-

imum, a useful relaxation is to seek a Nash equilibrium satisfying

γ∗j = arg min
γ j∈Γ j

J(γ j, γ
∗
\ j) (3)

for all j∈{1, 2, ...,N} where \ j= {1, 2, ...,N}\{ j}. Such a solution is
also refered to be person by person (pbp) optimal [11]. It can easily
be shown that Algorithm 1, starting initially from γ0

= (γ0
1
, ..., γ0

N
)

where γ j ∈Γ j for j∈{1, 2, ...,N} converges to a pbp optimal strategy.
For the Problem (P) given by Expression (2), provided that cer-

tain assumptions hold the optimality condition in Eq.(3) bears a
structure such that the update step of Algorithm 1 scales with the
number of nodes also admitting a message passing interpretation.



Algorithm 1 Iterations converging to a pbp optimal strategy.

0) (Initiate) l = 0, choose γ0 ∈ Γ where Γ = Γ1 × ... × ΓN ;
1) (Update) l = l + 1;

For j=1, ...,N, γl
j
= arg minγ j∈Γ j

J(γl
1
, ..., γl

j−1
, γ j, γ

l−1
j+1
, ..., γl−1

N
)

2) (Check) If J(γl−1) − J(γl) < ε stop, else GO TO 1;

Moreover, a scalable online processing is implied as well. Consider
the following assumptions:
Assumption 1 (Conditional Independence): Sensor noise processes

are mutually independent resulting p(x, y) = p(x)
∏N

i=1 p(yi|x).
Assumption 2 (Measurement Locality): We assume that, every node
j observes y j due to only x j, i.e. p(y j|x) = p(y j |x j).
Assumption 3 (Cost Locality): The Bayesian cost function is addi-
tive over the nodes, i.e. c(u, x̂, x) =

∑

j∈V c j(u j, x̂ j, x j).
Assumption 4 (Polytree Topology): G = (V,E) is a polytree, i.e. G
is a DAG with an acyclic undirected counterpart.

Proposition 1: For Problem (P), under Assumptions 1-4, given
a pbp optimal strategy γ∗ = (γ∗

1
, ...γ∗

N
) and fixing all local rules other

than the jth, i.e. γ\ j = γ
∗
\ j

, the jth optimal local rule given by Eq.(3)

reduces to

γ∗j(y j, uπ( j)) = arg min
(u j,x̂ j )∈(X j,U j)

∫

X j

dx j p(y j|x j)φ
∗
j(u j, x̂ j, x j; uπ( j)) (4)

with probability 1 such that

φ∗j(u j, x̂ j, x j; uπ( j))∝p(x j)P
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j)+C∗j (u j, x j)
]

(5)

holds where P∗
j
(uπ( j)|x j) = 1, if π( j) = ∅, and otherwise

P∗j(uπ( j)|x j) =

∫

Xπ( j)

dxπ( j) p(xπ( j)|x j)
∏

i∈π( j)

P∗i→ j(ui→ j |xi) (6)

with terms regarding influence of i ∈ π( j) on j given by

P∗i→ j(ui→ j |xi) =
∑

uχ(i)\ j∈Uχ(i)\ j

∑

uπ(i)∈Uπ(i)

P∗i (uπ(i)|xi)p(ui|xi, uπ(i); γ
∗
i ) (7)

where

p(ui|xi, uπ(i); γ
∗
i ) =

∫

Xi

dx̂i

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ
∗
i )p(yi|xi) (8)

and

C∗j (u j, x j) =

{

0 , if χ( j) = ∅
∑

k∈χ( j) C∗
k→ j

(u j→k , x j) , if χ( j) , ∅ (9)

with terms regarding the influence of j on k ∈ χ( j) given by

C∗k→ j(u j→k , x j)=

∫

Xπ(k)\ j

dxπ(k)\ j

∫

Xk

dxk p(xπ(k)\ j, xk |x j)×

∑

uπ(k)\ j

∏

j ′∈π(k)\ j

P∗j ′→k(u j ′→k |x j ′ )I
∗
k (uπ(k), xk; γ∗k) (10)

such that

I∗k (uπ(k), xk; γ∗k)=

∫

Yk

dyk

∫

Xk

dx̂k

∑

uk∈Uk

[

ck(uk, x̂k, xk)+C∗k(uk, xk)
]

p(uk, x̂k |yk , uπ(k); γ
∗
k)p(yk |xk) (11)

Proof: Due to lack of space the proof is not provided here but this
proposition in the detection case1 is proved in [9], and it is possi-
ble to obtain the above expressions from this version by replacing
summations over X js with integrations and changing the order of
summations and integrations appropriately and also assuming that
the links are errorneous.

Given a pbp optimal strategy γ∗, Proposition (1) expresses the
jth local rule in a variational form determined by φ j which bears
the influence of the rules local to the ancestors of node j as well
as that of its descendants. Considering Eq.s(6) and (7) we note that
P∗j(uπ( j)|x j) is the likelihood of x j given the incoming messages from

parents, i.e. uπ( j), and depends on the local rules of all ancestors. A
similar treatment of Eq.s(9)-(11) reveals that C∗

k→ j
(u j→k , x j) is the

expected cost induced on the descendants of j on the branch starting
with k if X j actually takes the value x j and node j sends u j→k to
node k. Hence C∗j (u j, x j) is the total expected cost induced on the

descendants with u j. In Eq.(5), this term is added to c j(u j, x̂ j, x j)
which reflects the cost of u j. Hence, considering Eq.(4) with

1For the detection problem
∣

∣

∣X j

∣

∣

∣ < ∞ holds for all j ∈ V whereas this

condition is not satisfied in the estimation setting.

Expression (5) and realizing that under these assumptions
p(x j)p(y j |x j)P(uπ( j)|x j) ∝ p(x j |y j, uπ( j)), we conclude that the pbp
optimal local rule for node j is to choose the communication and
estimation variables with the minimum total expected cost, given
the measurement y j ∈ Y j and incoming messages uπ( j) ∈ Uπ( j).

It is possible to treat Eq.s(6)-(11) as operators that are valid for
any choice of γ\ j not necessarily optimal. Considering Algorithm

1, the “update step” that determines γl
j can be expressed in terms

of these operators by substituting γl
1
, ..., γl

j−1
, ..., γl−1

j+1
, γl−1

N instead of

their optimal values. Then, utilizing Expression (5) together with
Eq.(4) the corresponding local rule for node j is achieved. Utilizing
this perspective for specifying Algorithm 1 for Problem (P) yields
Algorithm 2. The cost required in the “check” step, i.e. J(γl), which
is the expected risk for the strategy achieved at the lth iteration is
given by J(γl) =

∑

j∈VG j(γ
l
j
) with

G j(γ
l
j) =

∫

X j

dx j p(x j)
∑

uπ( j)∈Uπ( j)

Pl+1
j (uπ( j)|x j)×

∫

Y j

dy j

∫

X j

dx̂ j

∑

u j∈U j

c j(u j, x̂ j, x j)p(u j, x̂ j |y j, uπ( j); γ
l
j)p(y j|x j) (12)

The update step of Algorithm 2 admits a message passing in-
terpretation where in the first pass, starting from parentless nodes,
Pl

i→ js are computed and sent to child nodes j ∈ χ(i) for all i ∈ V

in accordance with the implied ordering. Once all nodes have ob-
tained incoming message likelihoods, in the second pass, starting
from childless nodes, C l

k→ j
s are computed and sent to parent nodes

j ∈ π(k) for all k ∈ V in accordance with the implied backward or-
dering. Local rules are updated as soon as both terms are received.

3. MONTE CARLO APPROXIMATED ITERATIONS

In principle, Algorithm 2 provides a solution to Problem (P) given
the distributions p(xπ( j), x j) ∀ j ∈ V. However, the “update” step
involves integral operators with no closed form solutions in general
so we propose particle representations and approximate computa-
tion schemes through MC integration methods.

3.1 Monte Carlo Integration

In the conventional MC method, we consider i =
∫

X
dx p(x) f (x)

where p(x) is a probability density for X which takes values from
X. Given M independent samples {x(m)}M

m=1
generated from p(x),

i.e. x(m) ∼ p(x) for m = 1, ...,M, an estimate for i is given by

îM =
1
M

∑M
k=1 f (x(k)) which converges to i almost surely. The Impor-

tance Sampling (IS) method is used if it is not possible to sample
from p(x) but from g(x). Given x(m) ∼ g(x) for m = 1, ...,M, the

estimate îM =
1
M

∑M
k=1 ω(k) f (x(k)) where ω(k) = p(x(k))/g(x(k)) con-

verges to i almost surely provided that the support of g is covered
by the support of f . For cases where a small number of weights
dominate the rest,

îM =
1

∑M
k=1 ω(k)

M
∑

k=1

ω(k) f (x(k)) (13)

is preferable altough it is slightly biased for small M [12].

3.2 Iterative MC Optimization Scheme

We utilize the MC methods presented in Section 3.1 in order to
achieve a practically applicable version of Algorithm 2. Consider

Algorithm 2: Iterations converging to a person by person optimal
decentralized estimation strategy.

0) (Initiate)l = 0, choose γ0 ∈ ΓG;
1) (Update) l = l + 1;

For j = 1, ...,N

Using {Pl
i→ j(ui→ j |xi)}i∈π( j), Compute {Pl

j→k
(u j→k |x j)}k∈χ( j);

For j = N, ..., 1

Using {Pl
i→ j(ui→ j |xi)}i∈π( j) and {C l

k→ j
(u j→k, x j)}k∈χ( j)

i) Update γl
j through φl

j

ii) Compute {C l
j→i

(ui→ j, xi)}i∈π( j);

2) (Check) If J(γl−1) − J(γl) < ε, γ∗ = γl STOP, else GO TO (1);



dering Proposition (1), we perform MC approximations to γ∗j keep-

ing the rest fixed at their optimum. We proceed in three steps
starting with the objective function of the variational form given in
Eq.(4) together with Expression (5). Then we consider the compo-
nents of this approximation which couple node-to-node terms and
are given by Eq.s(6) and (9). Finally we approximate the node-to-
node terms at the required sample points. As we express all the
relevant computations utilizing particle representations and approx-
imation schemes, we achieve an approximate pbp optimal local rule
for node j, i.e. γ̃∗j ≈ γ

∗
j . While applying MC methods we consider

having the samples required to be generated independently from
the marginal distributions of X and Y . This provides simplicity for
application since we can avoid subtleties of sampling from a joint
distribution using, e.g. Gibbs Sampling.
Step 1 Considering the objective of the varia-
tional form in Eq.(4) with Expression (5), an ap-
proximation through the classical MC method yields

(1/M)
∑M

m=1 p(y j |x
(m)

j
)P∗j(uπ( j)|x

(m)

j
)[c j(u j, x̂ j, x

(m)

j
) +C∗j (u j, x

(m)

j
)]

where x
(m)

j
∼ p(x j) for m = 1, 2, ...,M. A one step approximate

pbp optimal rule is achieved by replacing the objective function
with this summation in Eq.(4). The terms regarding the local
likelihood and cost are known and given in the problem model. We
approximate to the other required terms in the next step.

Step 2 {P∗j(uπ( j)|x
(m)

j
)}M

m=1
∀uπ( j) ∈ Uπ( j) and {C∗j (u j, x

(m)

j
)}M

m=1

∀u j ∈ U j are of concern. We consider Eq.(6) and assume

that {P∗i→ j(ui→ j |x
(m)

i
)}M

m=1
is known ∀i ∈ π( j), ∀ui→ j ∈ Ui→ j and

x
(m)

i
∼ p(xi) for m = 1, 2, ...,M. We note that exactly these sam-

ples are required to apply Step (1) for these nodes, i.e. i ∈ π( j).

Also x
(m)

π( j)
= (x

(m)

i
)i∈π( j) ∼

∏

i∈π( j) p(xi) holds and hence, it is possi-

ble to apply the IS approximation given in Eq.(13) using weights

ω
(m)(m′)

j
= p(x

(m′)

π( j)
|x

(m)

j
)/
∏

i∈π( j) p(x
(m′)

i
) and obtain

P̃∗j(uπ( j)|x
(m)

j
)=

1
∑M

m′=1ω
(m)(m′)

j

M
∑

m′=1

ω
(m)(m′)

j

∏

i∈π( j)

P∗i→ j(ui→ j |x
(m′)

i
) (14)

for m = 1, 2, ...,M and ∀uπ( j) ∈ Uπ( j). Similarly, consider Eq.(9) for

the case where χ( j) , ∅. Assuming that {C∗
k→ j

(u j→k , x
(m)

j
)}M

m=1
is

known ∀k ∈ χ( j) and ∀u j→k ∈ U j→k , {C∗j(u j, x
(m)

j
)}M

m=1
can be found

without need for any approximation. In the next step, we approxi-
mate the node-to-node terms which are assumed to be known.
Step 3 We approximate to node-to-node terms that are re-

quired for Eq.(14) and {C∗j(u j, x
(m)

j )}Mm=1 for u j ∈ U j. Con-

sider Eq.s(7) and (8) for any parent node i ∈ π( j) and assume

that {P∗i (uπ(i)|x
(m)

i
)}M

m=1
is known ∀uπ(i) ∈ Uπ(i) where x

(m)

i
∼ p(xi) for

m = 1, 2, ...,M. Then, in order to evaluate Eq.(7) ∀ui→ j ∈ Ui→ j and

xi = x
(m)

i
for m = 1, 2, ...,M we need to evaluate Eq.(8) accordingly,

i.e. p(ui|x
(m)

i
, uπ(i); γ

∗
i ). Also considering Eq.(1), it is possible to ap-

ply IS with y
(p)

i
∼ p(yi) for p = 1, 2, ...,P and obtain

p̃(ui|x
(m)

i
, uπ(i); γ

∗
i )=

1
∑P

p=1ω
(m)(p)

i

P
∑

p=1

ω
(m)(p)

i
δ

ui,[γ
∗
i
(y

(p)
i
,uπ(i))]U j

(15)

with ω
(m)(p)

i
= p(y

(p)

i
|x

(m)

i
)/p(y

(p)

i
). After substituting Eq.(15) in

Eq.(7), we obtain P̃∗
i→ j

(ui→ j |x
(m)

i
) and substituting them in Eq.(14)

we obtain a two step approximation to {P∗j(uπ( j)|x
(m)

j
)}M

m=1
.

Secondly, let us consider Eq.s(10) and (11). Substituting Eq.(1)
in Eq.(11) yields

I∗(uπ(k), xk; γ∗k)=

∫

Yk

dyk[ ck( [γ∗k(yk, uπ(k))]Uk
, [γ∗k(yk, uπ(k))]Xk

, xk )

+C∗k( [γ∗k(yk, uπ(k) )]Uk
, xk) ]p(yk |xk)

and an IS approximation is immediately found assuming that

{C∗
k
(uk , x

(m)

k
)}M

m=1
is known for all uk ∈ Uk and y

(p)

k
∼ p(yk) for

p = 1, 2, ...,P by Ĩ∗(uπ(k), x
(m)

k
; γ∗

k
) =

1

M
(m)

k

P
∑

p=1

ω
(m)(p)

k
[ ck( [γ∗k(y

(p)

k
, uπ(k))]Uk

, [γ∗k(y
(p)

k
, uπ(k))]Xk

, x
(m)

k
)

+C∗k( [γ∗k(y
(p)

k
, uπ(k) )]Uk

, x
(m)

k
) ]

where ω
(m)(p)

k
= p(y

(p)

k
|x

(m)

k
)/p(y

(p)

k
) and M

(m)

k
=
∑P

p=1 ω
(m)(p)

k
for

m = 1, 2, ...,M and ∀uπ(k) ∈ Uπ(k).
Having obtained an approximate evaluation of Eq.(11) we con-

sider Eq.(10) and note that likelihood terms for j′ ∈ π(k)\ j are
required. Similar to the reasoning in Step 2, we assume that

{P∗
j′→k

(u j′→k |x
(m)

j′
)}M

m=1
are known ∀u j′→k ∈ U j′→k and x

(m)

j′
∼ p(x j′ ).

Having {Ĩ∗(uπ(k), x
(m)

k
; γ∗

k
)}M

m=1
∀uπ(k) ∈ Uπ(k) and realizing that

x
(m)

π(k)\ j
∼
∏

j′∈π(k)\ j p(x j′ ) where x
(m)

π(k)\ j
= (x

(m)

j′
) j′∈π(k)\ j IS weigths given

by ω(m)(m′)
= p(x

(m′)

π(k)\ j
, x

(m′)

k
|x

(m)

j
)/p(x

(m′)

k
)
∏

j′∈π(k)\ j

p(x
(m′)

j′
) yield

C̃∗k→ j(u j→k , x
(m)

j
) =

1
∑M

m′=1 ω
(m)(m′)

M
∑

m′=1

ω(m)(m′)×

∑

uπ(k)\ j

∏

j′∈π(k)\ j P∗
j′→k

(u j′→k |x
(m′)

j′
)Ĩ∗(uπ(k), x

(m′)

k
; γ∗

k
)

for m = 1, 2, ...,M and ∀u j→k ∈ U j→k. After substituting these val-

ues in Eq.(9) we obtain an approximation to {C∗j(u j, x
(m)

j
)}M

m=1
. After

utilizing all the approximations in Step (1), we obtain an approxi-
mate pbp optimal local rule for node j, i.e. γ̃∗j ≈ γ

∗
j .

The MC framework provided through Steps (1)-(3) yields a MC
optimization method given by Algorithm 3 in a similar way that
Proposition (1) yields Algorithm 2. Starting from an initial strategy
and applying Steps 1-3 for the local rules of all of the nodes, we
obtain Algorithm 3 which corresponds to substituting the particle
representations and the approximate computational schemes in Al-
gorithm 2. We have provided scalability in the number of samples
through employing IS such that sample sets from conditionals or

joint distributions are not required. As soon as {{x
(m)

j
}M

m=1
}N

j=1
where

x
(m)

j
∼ p(x j) and {{y

(p)

j
}P

p=1
}N

j=1
where y

(p)

j
∼ p(y j) are obtained and an

initial strategy γ0 is chosen, the iterations converge to a strategy
which performs computations corresponding to an approximation
to a pbp optimal one, i.e. γ̃∗ ≈ γ∗. Finally we similarly find J̃(γ̃l) ≈

J(γl) by approximating to Eq.(12) usingω
(m)(p)

k
= p(y

(p)

k
|x

(m)

k
)/p(y

(p)

k
)

with

G̃ j(γ̃
l
j)=

1

M

M
∑

m=1

∑

uπ( j)∈Uπ( j)

P̃l+1
j (uπ( j)|x

(m)

j )
1

∑P
p=1 ω

(m)(p)

k

∑P
p=1ω

(m)(p)

k
×

c j ( [γ j(y
(p)

j
, uπ( j))]U j

, [γ j(y
(p)

j
, uπ( j))]X j

, x
(m)

j
)

4. EXAMPLE

In this section, we consider an example scenario in which a DE net-
work comprised of four platforms perform an estimation task. A
random field X= {X1, X2, X3, X4} is of concern and platform j is as-
sociated with X j. We assume the underlying communication struc-
ture described by G= (V,E) in Figure (2a). We note that G includes
partitions of a star topology (induced by nodes {1, 2, 3}), and se-
ries topologies (induced by nodes {1, 3, 4} and {2, 3, 4}. We assume
that the BW constraints renderU1→3=U2→3=U3→4= {0, 1, 2}. The
online processing scheme operates as given in Section 2.1. Since
nodes 1 and 2 are parentless, upon measuring y1 and y2 ∈ R induced
by X1 and X2, they evaluate their local rules as (u1→3, x̂1)=γ1(y1)
and (u2→3, x̂2)=γ(y2) respectively. Upon receiving these messages
and measuring y3 ∈ R induced by X3 node 3 evaluates its local
rule as (u3→4, x̂3)=γ3(y3, u1→3, u2→3) and similarly node 4 evaluates
x̂4=γ4(y4, u3→4). The strategy γ= (γ1, ..., γ4) is subject to design and
we utilize Algorithm 3.

Algorithm 3: Iterations converging to a MC approximate person
by person optimal decentralized strategy.

0) (Initiate) l = 0; choose γ0 ∈ ΓG;
1) (Update) l = l + 1;
For j = 1, ...,N

Using {{P̃l
i→ j(ui→ j |x

(m)

i
)}M

m=1
}i∈π( j), compute {{P̃l

j→k
(u j→k |x

(m)

j
)}M

m=1
}k∈χ( j);

For j = N, ..., 1

Using {{P̃l
i→ j(ui→ j |x

(m)

i
)}M

m=1
}i∈π( j) and {{C̃ l

k→ j
(u j→k , x

(m)

j
)}M

m=1
}k∈χ( j)

i) Update γ̃l
j
;

ii) Compute {{C̃ l
j→i(ui→ j, x

(m)

i
)}M

m=1
}i∈π( j);

3) (Check)If |J̃(γ̃l−2) − J̃(γ̃l−1)| − |J(γ̃l−1) − J̃(γ̃l)| > ε GO TO (1);

else γ̃∗ = γ̃l, STOP;
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Figure 2: (a) Communication topology, (b) MRF representation of
X, (c) Approximate points of the performance curves while λ is
increased from 0, for the example scenario.

The individual costs are in a separable form given by
c j(u j, x̂ j, x j) = cd

j
(x j, x̂ j) + λc

c
j(u j, x j) where cd

j
and cc

j penalize esti-

mation errors and communication respectively. Therefore λ is a unit
conversion coefficient admitting the interpretation of equivalent es-
timation penalty per unit cost of communication and subject to vari-
ation. cc

j(u j, x j) =
∑

k∈χ( j) cc
j→k

(u j→k, x j) where cc
j→k

(u j→k) is the cost

of transmitting the symbol u j→k on the link ( j, k) ∈ E. It is selected
as cc

j→k
(u j→k , x j) = 0 for the case u j→k = 0 and cc

j→k
(u j→k , x j) = 1

otherwise, measuring the link use rate. Hence, U j→k together with
cc

j→k
define a selective communication scheme where u j→k = 0 in-

dicates no communications and otherwise transmission of a 1 bit
message. The estimation error is penalized by cd

j
(x j, x̂ j) = (x j− x̂ j)

2.

Hence the total cost of a strategy is J(γ) = Jd(γ) + λJc(γ) where Jd

is the MSE and Jc is the total link use rate.
The random field of concern is a multivariate Gaussian, i.e.

x ∼ N(0,Cx), and Markov with respect to the graph in Figure (2b)
together with the covariance matrix

Cx =

























2 1.125 1.5 1.125
1.125 2 1.5 1.125
1.5 1.5 2 1.5

1.125 1.125 1.5 2

























(16)

Altough the communication structure of the DE network is not re-
lated with the MRF representation of X and Algorithm 3 would
produce results for any choice, for sake of simplicity we selected
Figure(2b) as the undirected counterpart of the DE network struc-
ture.

The noise processes n j for j ∈ V are additive, mutually inde-
pendent and given by n j ∼ N(0, 0.5), so that the observation likeli-

hoods are p(y j|x j) = N(x j, 0.5)2.
Since separable local cost functions are utilized, Eq.(4) splits

into two minimizations which define local estimation and commu-
nication rules respectively. We will denote these rules by x̂ j =

δ j(y j, uπ( j)) and u j = µ j(y j, uπ( j)) and initiate as follows: Each node
applies a myopic rule by performing local MMSE estimation re-

gardless of incoming messages, i.e. δ0
j
(y j, uπ( j)) =

∫ ∞

−∞
dx x j p(x j|y j).

The initial communication rule for each node is a quantization of
the observation y j, such that µ0

i
(yi, uπ(i)) = 1, 0 and 2 for yi < −2σn,

−2σn 6 yi 6 2σn and yi > 2σn respectively.
For different values of λ, the converged performance point

(Jc, Jd) will be different. Moreover, after a certain value λ = λ∗,
the communication cost λJc will dominate such that the decrease
in the decision cost Jd with the contributions of the communicated
symbols will not be enough to decrease J and symbol 0 will be the
best choice. Consequently, the individual estimators will be the my-
opic rules, since myopic rules with no communications constitute a
pbp optimal strategy. Hence, it is possible to interpret λ∗ as the max-
imum price per bit that the system affords to decrease the estimation
error. As we increase λ from 0 we obtain approximate points from
the performance curve for Problem (P) which lets us to quantify the
tradeoff between the cost of estimation errors and communication.

In Figure (2c) we present approximately computed pairs (J̃c, J̃d)

of the converged strategies for different choices of λ and
∣

∣

∣Ui→ j

∣

∣

∣s,
where Jc is the total link use rate and Jd is the total MSE. The upper
and lower limits are MSEs corresponding to the myopic rule and the

2Considering Cx, each sensor has an SNR of 6dB.

centralized optimal rule3 respectively. Considering (J̃c, J̃d) points
for the 1-bit selective communication scheme, for λ = 0, the trans-
mission has no cost but the link use rate is well below 75% of the
total 3 bits. This indicates that the information of receiving no mes-
sages is successfully maintained in this perspective. Moreover, the
communication stops for λ∗ ≈ 0.355. Similarly approximate points
for 2-bits and 3-bits schemes indicate that, if λ is small enough, we
can achieve less MSE for the same total communication load as we
increase the link capacities.

5. CONCLUSION

We have considered the design problem in decentralized estimation
under communication constraints and adopted a recent approach for
decentralized detection based on a team decision theoretic investi-
gation in a Bayesian setting. With the merit of this framework the
existing approach of quantization for estimation is extended in the
sense that a broader range of constraints are considered. However,
the iterative solution scheme which converges to a person by person
optimal strategy involves integral operators that have no closed form
solutions in general. In order not to compromise model accuracy,
we have utilized approximations and proposed a Monte Carlo opti-
mization method which requires scalable number of samples gener-
ated from only the marginal distributions without any restriction on
their type. It is also possible to quantify the tradeoff between cost of
communications and estimation accuracy through the approximate
performance curves achieved.
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