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ABSTRACT

We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our
method is motivated by the observation that neighboring or coupling objects in images generate configurations
and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs
coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-
variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape
distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on
such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm
based on active contours. Our technique provides significant improvements in the segmentation of weakly con-
trasted objects in a number of applications. In particular for medical image analysis, we use our method to
extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challeng-
ing segmentation problem. We also apply our technique to the problem of handwritten character segmentation.
Finally, we use our method to segment cars in urban scenes.

Keywords: segmentation, active contours, shape prior, relative pose prior, kernel density estimation, moments.

1. INTRODUCTION

The availability in recent years of a broad variety of 2D and 3D images has presented new problems and chal-
lenges for the scientific community. In this context, segmentation is still a central research topic1–4 . A signifi-
cant amount of research was performed during the past three decades towards completely automated solutions
for general-purpose image segmentation. Variational techniques4,5 , statistical methods6,7 , combinatorial ap-
proaches8 , curve-propagation techniques9 , and methods that perform non-parametric clustering10 are some
examples.

In contour-propagation approaches, which our framework is also based on, an initial contour estimate of the
structure boundary is provided and various optimization methods are used to refine the initial estimate based
on the input image data. This approach, called active contours, is based on the optimization of an energy
functional using partial differential equations. In the definition of the energy functional, earlier methods use the
boundary information for the objects of interest9,11 . More recent methods use regional information on intensity

Further author information: (Send correspondence to O.S.)
G.U.: E-mail: uzunbas@su.sabanciuniv.edu, Telephone: ++1(609)5587016
O.S.: E-mail: octavian@sabanciuniv.edu, Telephone: +905457952874
M.C.: E-mail: mcetin@sabanciuniv.edu, Telephone: +902164839594
G.U.: E-mail: gozdeunal@sabanciuniv.edu, Telephone: +902164839553
A.E.: E-mail: aytulercil@sabanciuniv.edu, Telephone: +902164839543
D.U.: E-mail: devrim.unay@philips.com, Telephone: +31-40-274 6156
A.E.: E-mail: ahmet.ekin@philips.com, Telephone: +31-40-274 5848
Z.F.: E-mail: zfirat@yeditepe.edu.tr, Telephone: +902165784363



statistics such as the mean or variance of an area12,13 . In most recent active contour models, there has been an
increasing interest in using prior models for the shapes to be segmented. The proposed prior models are based on
distance functions, implicit representations, and relationships among different shapes, including pose and other
geometrical relationships3,14–21 .

In this context, there are numerous automatic segmentation methods that enforce constraints on the un-
derlying shapes. In Ref. 14, the authors introduce a mathematical formulation to constrain an implicit surface
to follow global shape consistency while preserving its ability to capture local deformations. Closely related
with Ref. 14, in Ref. 16 and 17, the authors employ average shapes and modes of variation through principal
component analysis (PCA) in order to capture the variability of shapes. However, this technique can handle only
unimodal, Gaussian-like shape densities. In Ref. 16, the image and the prior term are well separated, while a
maximum a posteriori (MAP) criterion is used for segmentation. In Ref. 17, a region-driven statistical measure
is employed towards defining the image component of the function, while the prior term involves the projection
of the contour to the model space using a global transformation and a linear combination of the basic modes of
variation. In Refs. 18,19, and 20, the authors use shape models that refer only to an average shape in an implicit
form, and the prior terms refer to projection of the evolving contours via similarity transformations.

As an alternative solution to PCA limitations, Ref. 22 proposes a principal geodesic analysis (PGA) model.
As another solution to the limitation of PCA and unimodal Gaussian distribution models, techniques based on
nonparametric shape densities learned from training shapes have been proposed in Refs. 4,23. In these works, the
authors assume that the training shapes are drawn from an unknown shape distribution, which is estimated by
extending a Parzen density estimator to the space of shapes. The authors formulate the segmentation problem
as a MAP estimation problem, where they use a nonparametric shape prior. In particular, the authors construct
the prior information in terms of a shape prior distribution such that for a given arbitrary shape one can evaluate
the likelihood of observing this shape among shapes of a certain category.

Simultaneous multi-object segmentation is an important direction of research, since in many applications the
objects to be segmented are often highly correlated. This information can be used to impose further constraints
on the boundary estimation problem. Although nonparametric priors have been successful in capturing non-
linear shape variability, until now they have not been used in multi-object segmentation techniques. In this work,
we demonstrate the potential of nonparametric priors towards accurate multi-object segmentation, by modeling
both the shapes and the inter-shape relationships among the components. An integration of these relationships
into the segmentation process can provide improved accuracy and robustness24–26 . A limited amount of work
has been performed towards automatic simultaneous detection and segmentation of multiple organs. In Ref. 24,
a joint prior based on a parametric shape model is proposed to capture co-variations shared among different
shape classes, which improves the performance of single object based segmentation. With a similar approach
and using a Bayesian framework, in Refs. 25,26, joint prior information about multiple objects is used to capture
the dependencies among different shapes, where objects with clearer boundaries are used as reference objects to
provide constraints in the segmentation of poorly contrasted objects.

Among spatial dependencies between multiple objects, one basic aspect is inter-shape pose analysis27 . Neigh-
boring objects usually exhibit strong mutual spatial dependencies. In this context, Ref. 28 proposes a solution
for the segmentation problem in the presence of a hierarchy of ordered spatial objects. In Ref. 29, the authors
model the shape and pose variability of sets of multiple objects using principal geodesic analysis (PGA), which
is an extension of the standard technique of principal component analysis (PCA) into the nonlinear Riemannian
space. In these works, joint analysis of the objects is advocated over individual analysis.

Bearing in mind that segmentation is equivalent to extracting the shape and the pose of the boundary
of the object, prior information on both shape and pose would be helpful in segmentation. Moreover, the
relative shape arrangements among these neighbors can be modeled employing statistical information from a
training set. In this paper, we introduce such statistical prior models of multiple-objects into an active contour
segmentation method in a nonparametric MAP estimation framework. In this framework, we define two prior
probability densities: one on the shape and the other one on the inter-shape (or relative) pose of the objects of
interest. Both of the densities are evaluated during the evolution of active-contours, aiming an energy functional
minimization. Our multi-object, coupled shape prior computation is an extension of the work in Ref. 4 and 23,
where nonparametric density estimates of only single object shapes are computed. We use multivariate Parzen



density estimation to estimate the unknown joint density of multiple object shapes. Our coupled shape prior
allows for simultaneous multi-object segmentation. As compared to existing methods in Refs. 24, 26, which
are based on multi-object priors, our approach takes advantage of nonparametric density estimates in order
to capture non-linear shape variability. In addition to shape priors, we also introduce inter-shape pose priors
into segmentation. We compute the probability distribution of inter-shape pose using nonparametric density
estimation, again. For inter-shape pose representations, we use standard moments, which are intrinsic to shape
and have natural physical interpretations30 . Standard moments describe, among other features, the size, the mass
center, and the orientation of the analyzed objects. In addition, the evaluation of moments is computationally
attractive. We observe that our inter-shape pose prior helps the active contours evolve towards more accurate
boundaries. To the best of our knowledge, our approach is the first scheme of multi-object segmentation,
which employs coupled nonparametric shape and inter-shape pose priors based on moment computations in a
probabilistic framework. We present experiments in a number of applications involving medical, natural, and
handwriting imagery.

2. SEGMENTATION BASED ON SHAPE AND POSE PRIORS

We propose a shape prior and an inter-shape pose prior model embedded in an active contour framework. We
advocate the use of these tools, bearing in mind that shape and inter-shape priors can be efficiently learnt and
modeled31 and the active contour framework is a convenient tool in managing the evolution of the segmenting
curves and surfaces.

First, in Section 2.1, we introduce a general segmentation framework. Next, in Section 2.2, we describe our
formulation for coupled shape prior based segmentation. In Section 2.3, we describe our inter-shape pose prior
on top of coupled shape priors in the same framework. In Section 2.4, we summarize the overall segmentation
algorithm and provide implementation details.

2.1 A Probabilistic Segmentation Framework Based on Energy Minimization
In a typical active contour model, the segmentation process involves an iterative algorithm for minimization of
an energy functional. We define our energy (cost) functional in a maximum a posteriori (MAP) estimation
framework as

E(C) = − log P (data|C) − log P (C), (1)

where C is a set of evolving contours
{
C1, ..., Cm

}
that represent the boundaries of m different objects. In the

following, we will refer to Ref. 12 as C&V. We choose the likelihood term P (data|C) as in C&V. P (C) is a
coupled prior density of multiple objects. In this work, we focus on building P (C).

The coupled prior is estimated using a training set of N shapes of the objects {C1, ...,CN}. The essential
idea of using such a prior is that the set of candidate segmenting contours C will be more likely if they are
similar to the example shapes in the training set. We define the joint prior P (C) in terms of the shape and pose
parameters of multiple objects

P (C) = P (C̃,p) = P (C̃) · P (p|C̃). (2)

Here, p is a vector of pose parameters (p1, ..., pm) for each object. Each pi (i = 1, 2, ..,m) consists of a set
of translation, rotation, and scale parameters and C̃ represents the aligned version of C with respect to p. In
particular, we have C̃ = T [p]C, where T [·] denotes an alignment operation. In this context, the coupled shape
density P (C̃) represents only shape variability and does not include pose variability. On the other hand, P (p|C̃)
captures the joint pose variability of the objects. We decompose the pose information into global and inter-shape
(i.e. relative) pose variables:

p = (pglb,pint) =
(
pglb, p

1
int, ..., p

m
int

)
, (3)

where pglb denotes the overall pose of the objects of interest and pint =
(
p1

int, ..., p
m
int

)
represents inter-shape

pose information among these objects.

Substituting Equation (3) into (2) , we have

P (C̃, p) = P (C̃) · P (pglb, p
1
int, ..., p

m
int|C̃) (4)



We model pglb and pint = (p1
int, ..., p

m
int) as independent variables, since global pose of objects and inter-shape

pose are two different pieces of information that are not usually related:

P (C̃, p) = P (C̃) · P (pglb|C̃) · P (pint|C̃) (5)

Here, P (pglb|C̃) is assumed to be uniform since all poses pglb are equally likely. ∗ Then, we can express P (C) as

P (C) = P (C̃) · γ · P (pint|C̃), (6)

where γ is a normalizing scalar. Substituting P (C) into Equation (1), we obtain

E (C) = − log P (data|C) − log P (C̃) − log γ − log P (pint|C̃) (7)

Given Equation (7) , the focus of our work is to learn and specify the priors P (pint|C̃) and P (C̃).

For the sake of simplicity of exposition, and without loss of generality, our development of these priors in the
following two subsections is based on two objects (i.e. m = 2). However, the framework we develop is general
enough to be applied to an arbitrary number of objects. We mention that the full derivations are available in
Ref. 32.

2.2 Coupled Shape Prior for Multiple Objects
In this section, we construct a coupled nonparametric shape prior density P (C̃) for two different classes of objects.
We choose level sets as the representation of shapes33 and we use multivariate Parzen density estimation34 to
estimate the unknown joint shape distribution. Consider m = 2 and define the joint kernel density estimate of
two shapes as,

P (C̃1, C̃2) =
1
N

N∑

i=1

m=2∏

j=1

k(d(φ
C̃j , φC̃j

i

), σj) (8)

where N is the number of training shapes and k(., σj) is a Gaussian kernel with standard deviation σj . In
Equation (8) , φ

C̃j is the candidate signed distance function (SDF) of the jth object, which is aligned to the
training set, and φ

C̃j
i

is the SDF of the ith training shape of the jth object. Note that, given a distance measure

d(., .), we can construct the kernel for joint density estimation, by multiplying separate kernels k(., σj) for each
object. Our nonparametric shape prior, which is defined in Equation (8) , can be used with a variety of distance
metrics. Following Ref. 23, we employ the L2 distance dL2 between SDFs. In order to specify the kernel size σj

of the jth object, we use maximum likelihood kernel size with leave-one-out method (see Ref. 35).

When referring to the shape kernel, we use the shorthand notation, kj
i for

kj
i = k(dL2(φC̃j , φC̃j

i

), σj) =

exp

(

− 1
2σj

2

∫
(

φ
C̃j (x) − φ

C̃j
i

(x)
)2

dx

)

√
2πσj

2
. (9)

Next, we define a gradient flow for the joint shape prior in Equation (8). We use one contour for each object,
which is represented implicitly by its corresponding SDF. Then, we compute the gradient flow in the normal
direction that increases most rapidly for each object contour. Using the L2 distance in kernels, we find that the
gradient directions for the contours C̃j , are

∂φ
C̃j

∂t
=

1
σj

2

N∑

i=1

λi(C̃1, C̃2)(φ
C̃j

i

(x, y) − φ
C̃j (x, y)) (10)

where j = 1, 2, λi(C̃1, C̃2) = k1
i k2

i

N ·P (C̃1,C̃2)
, and

N∑

i=1

λi(C̃1, C̃2) = 1. Note that φ
C̃j is a function of iteration time t

and φ
C̃j is a shorthand notation for the evolving level set function φ

C̃j (t). Equation (10) defines the evolution of

∗In some applications where certain global poses are more likely a priori, a non-uniform density could be used.



the contours toward shapes at the local maximum of the coupled shape prior of two objects. Note that training
shapes that are closer to the evolving contour influence the evolution with higher weights. Note also that the
structure of λi(C̃1, C̃2) conveys the coupled nature of the evolution. In particular, the closer the active contour
corresponding to one of the objects is to a training sample, the higher the weight of this training sample on the
second active contour evolution is.

2.3 Moment-Based Relative Pose Prior for Multiple Objects

Aiming multi-object segmentation, we model relative pose (i.e. the pose after global alignment) of each object
by a four dimensional vector pj

int = [A, cx, cy, θ] , where A is the area, cx and cy are the coordinates of the
object, and θ is the relative orientation of the object to the global ensemble. We compute the pose of the
individuals as related to their common mass center (after global alignment, see Equation (3)) via moments.
Following Ref. 30, the two-dimensional moment, m, of order p + q, of a density distribution function, f (x, y) ,
is defined as mp,q =

∫ ∞
x=−∞

∫ ∞
y=−∞ xpyqf (x, y) dxdy. The two-dimensional moment for a (N × M) discretized

image, f (x, y) , is mp,q =
∑N−1

x=0

∑M−1
y=0 xpyqf (x, y) . We compute moments of objects that are defined by their

boundaries. These boundaries define domains of integration (or summation in the discrete case), which we denote
by Ω. We adjust the support of the input functions to an implicit representation in which f (x, y) = 1 if (x, y)
is inside the object and 0 otherwise. With these choices, we compute the two-dimensional moment, m, of order
p + q, using the formula mp,q =

∫
Ω

xpyqdxdy.

Let M0 = {m0,0} , M1 = {m1,0,m0,1} , and Mn = {mi,j |mi,j ∈ M, i + j = n} for any n ≥ 0. In addition,
define the complete set of moments of order up to order two by M2 = M0

⋃
M1

⋃
M2. Following Ref. 36, define

the inertia moments as Ixx = m0,2, Ixy = Iyx = m1,1, and Iyy = m2,0. Let θ be the angle between the eigenvectors

of I =
(

Ixx −Ixy
−Ixy Iyy

)
and the coordinate axes. Then, we have θ (C) = 1

2 arctan
(

2(m1,0m0,1−m1,1m0,0)

(m0,2−m2,0)m0,0+m2
1,0−m2

0,1

)
.

We construct pj
int as the set of internal pose parameters, where Cj is a contour defining object j, i.e. pj

int =[
m0,0,

m1,0
m0,0

,
m0,1
m0,0

, θ
]
. Here, m0,0 corresponds to area, m1,0

m0,0
,

m0,1
m0,0

correspond to horizontal and vertical positions
relative to the center of mass, and θ corresponds to the canonic orientation of the object j relative to the
orientation of the ensemble. Bearing in mind that we model shapes as zero level sets of the SDFs, these zero
level sets define the integration domain of the standard moments. Following Section 2.2, we estimate

P (pint|C̃) =
1
N

N∑

i=1

2∏

j=1

k
(
d

(
pj

int, p
ji
int

)
, σj

)
, (11)

using Parzen kernel density estimation, where k is a Gaussian kernel. Here, d(pj
int, p

ji
int) = (pj

int − pji
int)

T · Q ·
(pj

int − pji
int), where Q is a diagonal weighting matrix. Note that we employ the weighting coefficients in order

to balance the influence of different pose parameters in the distance computation. In the following, we use the
shorthand notation kj

i for the moment based kernel k
(
d

(
pj

int, p
ji
int

)
, σj

)
†.

The gradient flow of Equation (11) is
∂φ

C̃j

∂t = 1

P (pint|C̃)·N

N∑

i=1

k1
i k2

i

−σj
2 MPF (j, i), where

MPF (j, i) =
(
mj

0,0 − m0,0
ji
)
+

∑

m
j
r,s∈M2,r+s=1

(
mj

r,s

mj
0,0

− mr,s
ji

m0,0
ji

) (
xrysmj

0,0 − mj
r,s

)

(
mj

0,0

)2
+

(
θ̃j − θ̃ji

) 2∑

r=0

2−r∑

s=0

xrysMθj
rs (12)

for each j ∈ {1,2}. Here, mj
r,s denotes moments of the globally aligned evolving contour and mji

r,s means
the moments of the ith aligned training image, whereas the rotation angles θ follow similar conventions. In
Equation (12) , the term Mθj

r,s depends on θ. The complete definitions and details of Mθj
r,s can be found in

Ref. 32.
†Although we use the same kernel notation for shape and inter-shape pose prior modeling, we use it in different sections

only, and the distinction is clear from context.



Following Section 2.2, the same observation related to the product in Equation (8) holds for (11) . The product
in Equation (11) also has the role of coupling between the multiple object segmentations, this time through their
relative pose dependencies.

2.4 Segmentation Algorithm

In this section, we describe the segmentation algorithm via a diagram of modules and their channels of com-
munication. The modules work in parallel iterations. We illustrate our algorithm in Figure 1. We show the
modules that compute the data, the shape, and the inter-shape pose forces. Note that we initialize segmenting
contours corresponding to separate objects. For a certain amount of iterations, we drive the curves using only
data force with curve length penalty until they reach reasonable shapes (before computing prior forces). After
this stage, at each iteration, we continue to update the SDFs by adding to the C&V, the coupled shape, and the
inter-shape pose forces using the training information.

During iterations, we relate active segmenting contours to the training set samples via T [p], where C̃ = T [p]C.

We add the shape and inter-shape pose forces on the aligned contours C̃. The updated contours are retranslated
into their original domain for visualization and evolution tracking using the T−1[p] transform.

Figure 1. Segmentation Algorithm - In each step, three forces are evaluated: C&V, Coupled Shape (see Section 2.2), and
Inter-Shape Pose (see Section 2.3)

3. EXPERIMENTAL RESULTS

We present segmentation results of natural images of cars in urban scenes, handwritten characters in words,
as well as magnetic resonance (MR) images of the head of Caudate Nucleus and Putamen of Basal Ganglia
structures. In our experiments, we demonstrate the effects of coupled shape and inter-shape pose prior in
comparison with the C&V method. In all the experiments, we use the same data term in each method.

Our ground truths are binary images. We show a registration result of a set of ten binary images of cars
in Figure 2. For natural images and handwriting we use the LabelMe toolkit37 . The medical ground truths
are created by medical operators who manually segmented the Caudate Nucleus and the Putamen of real brain
MR images. For manual segmentation of medical images, we designed and implemented a user guided interface
following our medical operators’ requirements. The interface is implemented in Matlab. We implemented our
segmentation scheme using C++ and Matlab.

3.1 Experiments on Natural Images of Cars

Our database of cars includes more than fifty images downloaded from LabelMe, the open annotation tool37 and
fifty images that we captured in the Sabanci University campus. Here, we present an experiment in which we
use ten annotated cars in the training set. We segmented each one of the ten cars into two objects: the body
and the tires, using the annotation tool. We present results of segmentation of two of the ten cars. When an
image of a car is selected for testing purposes, the training set used consists of the other nine cars. We show our



Figure 2. Aligned training data for the car segmentation experiment. The left image shows a set of ten binary car images
super-imposed. The right image shows the binaries of the aligned images, which are super-imposed in the left image.

segmentation results in Figure 3. In Figure 3, the leftmost column is initialization, the second one shows results
achieved using the C&V method, and the rightmost column shows the steady state result of our method.

We observe that the C&V method fails to produce reasonable segmentation results in these complicated
scenes. This is due to two reasons. First, the intensity structure of the regions is much more complicated
than the piecewise constant structure assumed by the C&V data term. Second, the C&V method uses only
the curve length penalty to constrain the shapes, which is certainly not sufficient to drive the curves towards
the boundaries of the objects of interest. Our approach provides improvements on this second issue through
the shape and pose priors used in our framework. In particular, we note that our approach provides reasonable
localization of the objects as well as fairly accurate estimation of a significant portion of the boundaries. This
is a major improvement over C&V. However, our results are clearly not perfect. We believe the major reason
is that the data term we use in segmentation (which is the C&V data term, and which is not the focus of this
particular paper) is not very well matched to the object intensity patterns in these scenes (as noted in the first
point above). For example, strong intensity contrasts caused by illumination variability apparent in the car
surfaces (especially in the scene in the bottom row) have the effect of driving the curves towards illumination
boundaries rather than the object boundaries. This issue can be resolved by using a more advanced data term
built upon better statistical (e.g. learning-based) models of object intensity distributions. We do not pursue
this extension here, as it is out of the scope of the current work. However, despite this particular issue related
to the data term, our results still demonstrate the positive impact of our shape and pose priors on segmentation
quality.

3.2 Experiments on Handwriting Data

Our database of handwriting images consists of two sets of ten images of the words “on” and “an”. The “an” set
consists of two subsets of five images. The first subset consists of five capital letter words while the second one
consists of small letters only. When segmenting one of the “on” words, we consider a training set that comprises
all other nine images from its dataset. For “AN” and “an”, we present segmentation results on capitals or
small letters disjointly, while using the capital or small letter subsets for training, respectively. When we select
an image of a word for testing purposes, we build a training set of all other images, i.e. we use nine words for
training “on” and four words for training “AN” or “an”. We show segmentation results in Figures 4 and 5. In all
handwriting images, the leftmost column represents initializations, while the middle and the rightmost columns
show the results of the C&V method and our proposed method, respectively, both in steady state.

In the first and second line in Figure 4, while the C&V method cannot distinguish the two letters, a result
which is expected, our method provides distinct and accurate boundaries for the two letters involved. The third



Figure 3. Segmentations of car images. The leftmost column illustrates initializations. The second column represents the
result achieved by the C&V method. The rightmost column illustrates the final result achieved by our method.

and fourth lines represent experiments in the presence of occlusions. These experiments show the capability of
our approach to recover the shapes of the letters despite occlusions. We believe the segmentation accuracy of
our approach could be improved by using a richer set of training data than the one used in these preliminary
experiments. In Figure 5, we present the results of a low-SNR scenario. Under these conditions, the C&V
method does not provide reliable segmentations, while our approach can still recover the letter boundaries to a
certain extent.

3.3 Experiments on Medical Data

In this section, we show and compare results of segmentation on real MR data. We present results on T2 and
proton density (PD) MR images. Especially PD modality presents challenges due to its low contrast. We show
the results using C&V and our method.

In particular, we present the segmentations of the complete head of Caudate Nucleus and Putamen. We
demonstrate the results of this experiment in Figure 6. We show the input MR images, their ground truths, and
the results obtained in steady state. We use a training set of twenty binary shapes that include the structures
of interest. The C&V method results in inevitable leakages for both Caudate Nucleus and Putamen (see third
column). However, the proposed coupled shape prior based approach segments both structures more effectively
due to the coupling effect between shapes (see the rightmost column in Figure 6). The benefit of using a coupled
prior is expected to be greater when the boundary of some objects is not well supported by the observed image
intensity (see Putamen results in the second row, which is T2 MR modality).

4. CONCLUSION

In this paper, we have proposed a multi-object segmentation approach that employs coupled shape and inter-
shape pose prior information. We employ an active contour framework towards evolving different contours in
parallel. We employ training-based priors to estimate the coupled shape information as well as the inter-shape
pose information among objects of interest. The priors are modeled using Parzen density estimation. We
present segmentation results of cars in urban scenes, handwritten characters in words, and two Basal Ganglia



Figure 4. Handwriting segmentation experiment involving contiguous handwritten text and occlusions. The leftmost
column shows the initializations. The middle column shows the results of the C&V method. The rightmost column shows
the results of our method.



Figure 5. Handwriting segmentation experiment in the presence of severe noise. The leftmost column shows the initial-
izations. The middle column shows the results of the C&V method. The rightmost column shows the results of our
method.

structures, Caudate Nucleus and Putamen, captured in MR images. We have demonstrated our approach in
several experiments, in which poorly contrasted difficult shapes are segmented. We have also experimentally
shown the occlusion recovery capabilities of our approach.
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