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Abstract. Ant Colony Optimization (ACO) is a population-based metaheuristic that
can be used to find approximate solutions to difficult optimization problems. It was
first introduced for solving the Traveling Salesperson Problem. Since then many
implementations of ACO have been proposed for a variety of combinatorial opti-
mization problems. In this chapter, ACO is applied to the Vehicle Routing Problem
with Pickups and Deliveries (VRPPD). VRPPD determines a set of vehicle routes
originating and ending at a single depot and visiting all customers exactly once. The
vehicles are not only required to deliver goods but also to pick up some goods from
the customers. The objective is to minimize the total distance traversed. The chapter
first provides an overview of the ACO approach. Next, VRPPD is described and the
related literature is reviewed. Then, an ACO approach for VRPPD is presented. The
approach proposes a new visibility function which attempts to capture the “deliv-
ery” and “pickup” nature of the problem. The performance of the approach is tested
using well-known benchmark problems from the literature.

1 Introduction

Ant Colony Optimization (ACO) is a population-based metaheuristic that can be
used to find approximate solutions to difficult optimization problems [16]. It was
first introduced for solving the Traveling Salesperson Problem (TSP) [15, 18]. Since
then many implementations of ACO have been proposed for a variety of combina-
torial optimization problems such as Quadratic Assignment Problem [34], Schedul-
ing Problems [11], Sequential Ordering Problem [21], and various Vehicle Routing
Problems [5, 6, 14, 22, 30, 31].

The approach is based on the observation of the behavior of real ant colonies
searching for food sources. Real ants deposit an aromatic essence, called pheromone,
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on the path they walk. Other ants searching for food sense that pheromone and use
this information in selecting their path. The quantity of pheromone deposited on a
path is based on the length of the path and the quality of the food source. As more
ants follow a path the level of pheromone on that path will increase, thus increasing
its selection probability by other ants. In ACO, artificial ants are used for searching
good solutions to an optimization problem by taking advantage of this cooperative
learning process.

In this chapter, we apply the ACO approach to the well-known Vehicle Rout-
ing Problem with Pickups and Deliveries (VRPPD). The classical Vehicle Routing
Problem (VRP) involves a set of delivery customers to be serviced by a fleet of ve-
hicles housed at a central depot. The objective of the problem is to develop a set of
vehicle routes originating and terminating at the depot such that all customers are
serviced, the demands of the customers assigned to each route do not violate the
capacity of the vehicle that services the route, and the total distance traveled by all
vehicles is minimized. VRPPD is a variant of the VRP where the vehicles are not
only required to deliver goods to customers but also to pick up some goods from
the customers. Customers receiving goods are called linehauls and customers send-
ing goods are called backhauls. VRPPD may be classified into three categories: (i)
Deliveries First, Pickups Second: the vehicles pick up goods only after they have
delivered their goods; (ii) Mixed Pickups and Deliveries: the vehicles deliver and
pick up goods in any sequence along their routes; and (iii) Simultaneous Pickups
and Deliveries: the vehicles simultaneously deliver and pick up goods [28].

VRP with delivery first, pickup second is the first VRPPD problem introduced in
the literature and is known as the VRP with Backhauls (VRPB). The reason why the
vehicles have to finish delivering their load before they start picking up items may
be due to the difficulty of rearranging the delivery and pickup items on the vehicles,
e.g. rear loaded vehicles. However, it is also possible to perform both tasks in any
order or simultaneously when the vehicle is nearly empty or is designed for both
rear and side loading and unloading. Hence, several variants of this problem have
been proposed over time relaxing the restriction of servicing backhaul customers
after the linehauls as well as introducing multiple-depot cases. In this chapter, we
consider two of these variants: Mixed VRP with Backhauls (MVRPB) and VRP
with Simultaneous Pickups and Deliveries (VRPSPD). In MVRPB and VRPSPD
the objective and constraints are the same as in VRPB except the servicing order of
the customers, which makes the former two problems more complicated because of
the fluctuating loads on the vehicle along the route.

VRPB has been extensively studied in the literature. However, the research on
MVRPB is scant and VRPSPD has only recently received some attention. These
two problems are more realistic and applicable to real-world situations. This chapter
attacks these problems using an ant algorithm and is organized as follows: Section 2
depicts the mechanism of the ACO metaheuristic and summarizes some of the vari-
ants proposed in the literature. Section 3 is devoted to the description of VRPPD
and the overview of various approaches proposed for solving the problem. Section
4 introduces an ACO approach by proposing a new visibility function and Section 5



presents the computational experiments and numerical results. Finally, concluding
remarks are given in the last section.

2 Ant Colony Optimization

ACO is a metaheuristic approach designed for solving hard combinatorial optimiza-
tion problems. Real ant colonies deposit pheromone on the paths they walk while
searching for food sources. If other ants searching for food sense the pheromone on
a path, they are likely to follow it rather than traveling at random, thus reinforcing
the path. As more and more ants follow a path the level of pheromone on that path
will enhance, which in turn will increase its selection probability by other ants. On
the other hand, the pheromone evaporates over time, reducing the chance of other
ants following the path. The longer the path between the nest and the food source
the more the pheromone evaporates. Thus, the pheromone levels remain higher on
the shorter paths. As a consequence, the level of pheromone laid is basically based
on the path length and the quality of the food source.

The experimental setting given in Figure 1 illustrates the above described behav-
ior of the real ants. Figure 1.(a) shows a path that has been formed by ants walking
between the food source A and the nest E. When the path is cut off with an obsta-
cle as shown in Figure 1.(b) the ants located at point B walking from A to E and
those located at point D walking from E to A have to choose either the path pass-
ing through point C or the path passing through point H. Since there is no previous
pheromone trail on any of the two alternative paths, the selection of either path by
the first ants reaching these points is equally likely. Since the path BCD is shorter
than the path BHD the ant that has selected the path through point C will arrive
at point D before the ant that has selected the path through point H. Hence, an ant
returning from E to A and located at point D will find a stronger trail on path DCB

Fig. 1 The natural behavior of real ants [18]



due to the ants that have already selected that path by chance and those walking
through BCD. Therefore, the selection probability of path DCB will be larger than
that of path DHB. Consequently, the amount of pheromone on path BCD will in-
crease faster than the pheromone on path BHD because of the larger number of ants
following path BCD per unit time and the evaporation factor. In time, all ants will
select the shorter path [18].

ACO simulates this natural behavior of real ants to solve combinatorial optimiza-
tion problems by using artificial ants. To apply ACO, the optimization problem is
transformed into the problem of finding the best path on a weighted graph. The
artificial ants incrementally build solutions by moving on the graph using a stochas-
tic construction process guided by artificial pheromone and heuristic information
known as visibility [16]. The amount of pheromone deposited on arcs is propor-
tional to the quality of the solution generated and increases at run-time during the
computation.

The Ant System (AS) is the first ACO algorithm which was applied for solving
the TSP [15, 18]. Given a number of cities and the costs of traveling from any city
to any other city, TSP aims at finding the least-cost round-trip route that visits each
city exactly once and then returns to the starting city. In AS, each ant probabilisti-
cally chooses the next city to visit based on a heuristic combining the distance to
that city and the amount of virtual pheromone deposited on the arc to that city. The
ants explore, depositing pheromone on each arc they cross, until they have all com-
pleted a tour. At this point the ant which has completed the shortest tour deposits
virtual pheromone along its complete tour. The amount of pheromone deposited is
inversely proportional to the tour length; i.e., the shorter the tour, the more amount
of pheromone the ant deposits on the arcs of the corresponding tour.

Although AS provided competitive results its performance was still inferior in
large instances compared to other algorithms specifically designed for the TSP [19].
However, its successful application has led to many extensions for various combi-
natorial optimization problems utilizing a similar construction mechanism. Some
early applications include the elitist strategy for Ant System (EAS) [15, 18], rank-
based version of Ant System (ASrank) [6], MAX-MIN Ant System (MMAS) [35],
Ant Colony System (ACS) [17], and Multiple Ant Colony System (MACS) [22].

In the next section we provide a more detailed explanation of the mechanisms of
AS approach and its extensions applied to the TSP.

2.1 Ant System

In AS , K artificial ants probabilistically construct tours in parallel exploiting a given
pheromone model. Initially, all ants are placed on randomly chosen cities. At each
iteration, each ant moves from one city to another, keeping track of the partial solu-
tion it has constructed so far. The algorithm has two fundamental components:

• The amount of pheromone on arc (i, j), τi j

• Desirability of arc (i, j), ηi j

where arc (i, j) denotes the connection between city i and city j.



At the start of the algorithm an initial amount of pheromone τ0 is deposited on
each arc: τi j = τ0 = K/L0, where L0 is the length of an initial feasible tour and K is
the number of ants. In AS, the initial tour is constructed using the nearest-neighbor
algorithm; however, another TSP heuristic may be utilized as well. The desirability
value (also referred to as visibility or heuristic information) between a pair of cities
is the inverse of their distance ηi j = 1/di j, where di j is the distance between cities
i and j. So, if the distance on the arc (i, j) is long, visiting city j after city i (or
vice-versa) will be less desirable.

Each ant constructs its own tour utilizing a transition probability: an ant k posi-
tioned at a city i selects the next city j to visit with a probability given by
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Here, Nk
i denotes the set of not yet visited cities; α and β are positive parameters to

control the relative weight of pheromone information τi j and heuristic information

ηi j. Note that τα
i j η

β
i j is also referred to as the attractiveness and is denoted as ϕi j.

After each ant has completed its tour, the pheromone levels are updated. The
pheromone update consists of the pheromone evaporation and pheromone reinforce-
ment. The pheromone evaporation refers to uniformly decreasing the pheromone
values on all arcs. The aim is to prevent the rapid convergence of the algorithm to
a local optimal solution by reducing the probability of repeatedly selecting certain
cities. The pheromone reinforcement process, on the other hand, allows each ant to
deposit a certain amount of pheromone on the arcs belonging to its tour. The aim
is to increase the probability of selecting the arcs frequently used by the ants that
construct short tours. The pheromone update rule is the following:

τi j ← (1−ρ)τi j +
K

∑
k=1

Δτk
i j, ∀(i, j) (2)

In this formulation, ρ (0 < ρ ≤ 1) is the pheromone evaporation parameter and
Δτk

i j is the amount of pheromone deposited on arc (i, j) by ant k and is computed as
follows:

Δτk
i j =

{
1
Lk , if ant k uses arc (i, j) on its tour

0 , otherwise
(3)

where Lk is the length of tour constructed by ant k.
Prior to the pheromone update a local search procedure may be applied on the

tours constructed by the ants to reduce the distance traversed. It has been observed
that such a procedure enhances the performance of the AS algorithm. In Figure 2 an
overview of the steps of the algorithm is provided.



Fig. 2 Description of AS

2.2 The Extensions of AS

In the EAS [15, 18] an elitist strategy is implemented by further increasing the
pheromone levels on the arcs belonging to the best tour achieved since the initiation
of the algorithm. That best-so-far tour is referred to as the “global-best” tour. The
pheromone update rule is as follows:

τi j ← (1−ρ)τi j +
K

∑
k=1

Δτk
i j + wΔτgb

i j , ∀(i, j) (4)

Here, w denotes the weight associated with the global-best tour and Δτgb
i j is the

amount of pheromone deposited on arc (i, j) by the global-best ant and calculated
by the following formula:

Δτgb
i j =

{
1

Lgb , if global best ant uses arc (i, j) on its tour

0 , otherwise
(5)

where Lgb is the length of global-best tour.
In the ASrank [6] a rank-based elitist strategy is adopted in an attempt to pre-

vent the algorithm from being trapped in a local minimum. In this strategy, w best-
ranked ants are used to update the pheromone levels and the amount of pheromone
deposited by each ant decreases with its rank. Furthermore, at each iteration, the
global-best ant is allowed to deposit the largest amount of pheromone. The update
rule is the following:

τi j ← (1−ρ)τi j +
w−1

∑
r=1

(w− r)Δτr
i j + wΔτgb

i j , ∀(i, j) (6)

The ACS presented in [17] attempts to improve AS by increasing the impor-
tance of exploitation versus exploration of the search space. This is achieved by



employing a strong elitist strategy to update pheromone levels and a pseudo-random
proportional rule in selecting the next node to visit. The strong elitist strategy is
applied by using the global-best ant only to increase the pheromone levels on the
arcs that belong to the global-best tour:

τi j ← (1−ρ)τi j + ρΔτgb
i j , ∀(i, j) (7)

The mechanism of the pseudo-random proportional rule is as follows: an ant k lo-
cated at customer i may either visit its most favorable customer or randomly select
a customer. The selection rule is the following:

jk =

⎧
⎨

⎩
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j∈Nk

i
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Jk , otherwise
(8)

where z is a random variable drawn from a uniform distribution U[0,1] and z0 (0
≤ z0 ≤ 1) is a parameter to control exploitation versus exploration. Jk is selected ac-
cording to the probability distribution (1). ACS also uses local pheromone updating
while building solutions: as soon as an ant moves from city i to city j the pheromone
level on arc (i, j) is reduced in an attempt to promote the exploration of other arcs
by other ants. The local pheromone update is performed as follows:

τi j← (1− ξ )τi j + ξ τ0 (9)

where ξ is a positive parameter less than 1.
Similar to ACS, MMAS [35] uses either the global-best ant or the iteration-best

ant alone to reinforce the pheromone. It has been observed that using iteration-
best ant at the start of the algorithm and then gradually increasing the frequency
of using the global-best ant for the pheromone update improves the performance.
However, this strategy may cause a rapid convergence to a sub-optimal solution.
Thus, maximum and minimum limits on the pheromone levels are imposed to avoid
stagnation. The interval in which the pheromone may vary is set to [τmin, τmax]. The
pheromone levels are initialized at τmax to allow the exploration of the search space
at the beginning. In addition, the pheromone levels are reinitialized whenever the
system approaches stagnation or no improvement has been achieved after a number
of consecutive iterations.

Gambardella et al. [22] developed a multiple ACS (MACS) for solving the VRP
with Time Windows (VRPTW). VRPTW has two objectives: to minimize the num-
ber of vehicles used and the total tour time. The former is considered to be the pri-
mary objective, i.e. a solution with less number of vehicles but longer travel time is
preferred over a solution with more vehicles but shorter travel time. MACS attempts
to minimize both objectives simultaneously by using two parallel ant colonies. The
first colony, named as ACS-VEI, reduces the number of vehicles while the second,
named as ACS-TIME, minimizes the total tour time by using the number of vehicles



provided by ACS-VEI. Although the two ant colonies run in parallel they use inde-
pendent pheromone trails.

The interested reader is referred to [19] for more details on ACO metaheuristic
and its variants.

3 Vehicle Routing Problem with Pickups and Deliveries

In this section, we first describe VRPPD and present a 0-1 mixed integer linear
programming model following the formulation of [13]. We next review the existing
literature on MVRPB and VRPSPD.

3.1 Problem Description

VRPPD deals with a single depot distribution/collection system servicing a set of
customers by means of a homogeneous fleet of vehicles, i.e. all vehicles have the
same capacity. The customers may require two types of service: a delivery and/or
a pickup. Products to be delivered are loaded at the depot and products picked up
are transported back to the depot. The objective is to find the set of vehicle routes
servicing all the customers with the minimum total distance. A maximum route
length restriction may be imposed on the vehicles.

In VRPB, each customer has either a delivery or a pickup demand to be satisfied
and the vehicle services the linehaul customers first. The main reasoning behind
visiting linehaul customers before backhaul customers is the fact that linehaul cus-
tomers have precedence over backhaul customers in many real world cases and ve-
hicles are often rear loaded. The latter causes problems when rearranging the items
on the vehicle, thus preventing the mixed routes and simultaneous pickup and de-
livery. However, the improved design of vehicles allows side loadings, making the
mixed routes a more practical option since that would provide shorter routes. Thus,
in MVRPB, each customer has either a delivery or a pickup demand and backhaul
and linehaul customers may be visited in any order. On the other hand, servicing
the customers in any order but not allowing simultaneous pickup and delivery is
not practical and realistic in many real world situations. As a result, VRPSPD was
proposed where each customer has both a delivery and a pickup demand and both
services are performed simultaneously. Although the customers can be visited in
any order along the route in both problems they must be serviced exactly once.

From a practical point of view VRPPD models situations such as distribution of
bottled drinks, chemicals, LPG tanks, laundry service of hotels, etc. where the cus-
tomers are typically visited for a double service. In the case of the distribution of the
bottled drinks for instance, full bottles are delivered to customers and empty ones are
brought back either for re-use or for recycling. In the distribution of chemicals case,
some hazardous materials may need to be returned for safe disposal. Regulations



or environmental issues may also force companies to take responsibility for their
products throughout their lifetime and to collect them.

In VRPB, the loads of linehaul customers and backhaul customers can be checked
separately during the delivery route and pickup route, respectively, to ensure that
the vehicle capacity is not exceeded. In MVRPB, however, the decrease or increase
on the vehicle load at each customer must be checked depending on whether the
customer is a linehaul or backhaul customer, respectively. Similarly, in VRPSPD,
the net change (decrease or increase) on the vehicle load at each customer must
be monitored. Therefore, in these two problems the vehicle capacity must not be
exceeded at any arc along the route.

Since VRPB is out of the scope of this study we omit further discussion on the
problem and refer the interested reader to [4, 23, 36] for details.

3.2 Problem Formulation

Mathematically, VRPSPD is described by a set of homogenous vehicles V, a set of
customers J, and a complete undirected graph G(N, A). The graph consists of n+1
vertices where the customers are denoted by 1, 2, ..., n and the depot is represented
by the vertex 0. A = {(i, j): i, j ∈ N, i �= j} denotes the set of arcs that represents
connections between the depot and the customers and among the customers. A cost
(time, distance) ci j is associated with each arc (i, j). Each vehicle has capacity Q and
each customer (node) i is characterized by its geographical location and its delivery
and pickup requests Di and Pi, respectively. Finally, Q, Di, Pi, and ci j are assumed to
be non-negative integers. The VRPSPD determines a set of paths (routes) such that:

1. each vehicle travels exactly one route;
2. each customer is visited only once by one of the vehicles completely satisfying

its demand and supply;
3. the load carried by a vehicle between any pair of adjacent customers on the route

must not exceed its capacity; and
4. total distance given by the sum of the arcs belonging to these routes is minimal.

In addition, a maximum route length (maximum time) restriction may be imposed
on the vehicles.

Following the model in [13] the 0-1 mixed integer linear programming model of
VRPSPD can be formulated as follows:

Decision Variables

L j load of vehicle after having serviced customer j ∈ J

z j subtour elimination variable

xi jv =

{
1 , if vehicle v travels directly from customer i to j

0 , otherwise



Mathematical Model

Minimize z = ∑
i∈N

∑
j∈N

∑
v∈V

ci jxi jv (10)

Subject to

∑
j∈N

∑
v∈V

xi jv = 1 i ∈ J (11)

∑
i∈N

∑
v∈V

xi jv = 1 j ∈ J (12)

∑
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xikv−∑
j∈N

xk jv = 0 k ∈ J,v ∈V (13)
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∑
j∈J

D jxi jv−D j + Pj−M
(
1− x0 jv

)
j ∈ J,v ∈V (14)

Lj ≥ Li−D j + Pj−M

(
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v∈V

xi jv

)

i, j ∈ J, i �= j (15)

∑
i∈N

∑
j∈J

D jxi jv ≤ Q v ∈V (16)

Lj ≤ Q j ∈ J (17)

z j ≥ zi + 1−n

(

1−∑
v∈V

xi jv

)

i, j ∈ J, i �= j (18)

z j ≥ 0 j ∈ J (19)

xi jv ∈ {0,1} i, j ∈ N,v ∈V (20)

where M is a sufficiently large number (e.g. M = max
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The objective function (10) minimizes the total distance traveled. Constraint sets
(11) and (12) assure servicing each customer exactly once. Constraint (13) makes
sure that if a vehicle arrives at a customer, then the same vehicle departs from it.
The load after servicing the first customer is defined with constraint (14) while the
load “en route” is limited with constraint (15). Constraint sets (16) and (17) ensure
that the load when leaving the depot and “en route”, respectively, does not exceed
the vehicle capacity. Constraint (18) is the subtour elimination constraint. Constraint
(19) is the non-negativity constraint and constraint (20) defines the binary variables.

MVRPB may be considered as a special case of VRPSPD in which some of the
customers require only delivery service while the remaining customers require only
pickup service. In other words, we define JL as the set of linehaul customers, JL =
{j: j∈ J, D j > 0, Pj = 0}, JB as the set of backhaul customers, JB = { j: j ∈ J, D j =
0, Pj > 0}, and J = JL ∪ JB. Therefore, the above VRPSPD model also formulates
MVRPB where Pj = 0 for j ∈ JL and D j = 0 for j ∈ JB.

We can prove that VRPSPD and MVRPB are NP-hard in the following way: Let
JB = 	. Then MVRPB reduces to VRP, which is known to be NP-hard. Hence,



MVRPB is also NP-hard. Since MVRPB is a special case of VRPSPD, VRPSPD is
NP-hard as well.

3.3 Literature Review

Although research on VRPSPD has recently gained momentum, there are only a few
papers attacking MVRPB. Golden et al. [24] developed an algorithm which inserts
backhaul customers into the routes formed by the linehaul customers. The algorithm
utilizes a penalty factor which considers the number of linehaul customers left on
the route after the insertion point.

Casco et al. [7] proposed a load-based insertion procedure where the insertion
cost for backhaul customers is determined based on the remaining load to be de-
livered along the route of the vehicle. Salhi and Nagy [33] modified this method
by proposing the cluster insertion of backhauls to solve both MVRPB and VRP-
SPD. In their problem structure, nodes are represented as disjoint delivery or pickup
nodes; thus repetitive servicing is allowed. Salhi and Nagy also investigated the case
with multiple depots. Nagy and Salhi [28] improved their previous approach using
several heuristics in which they first find a solution to the VRP by allowing infeasi-
bilities then modify this solution to make it feasible for the MVRPB and VRPSPD.
The proposed approach is capable of solving both single- and multi-depot problems.

Wade and Salhi [38] proposed an ant algorithm which uses the ACS approach of
Dorigo and Gambardella [17]. However, the computational results were rather poor
compared to those in the literature. Wade and Salhi [39] further enhanced their ant
algorithm by using different mechanisms, and hence, improved their earlier results.
Recently, Ropke and Pisinger [32] developed a unified heuristic for a large class
of VRPPD based on a large neighborhood search (LNS). The proposed heuristic
provides competitive results for both MVRPB and VRPSPD.

VRPSPD was first introduced by Min [26] as a book distribution and collection
problem between a central library and 22 remote libraries in Ohio using two vehi-
cles. Min utilizes a cluster-first route-second approach and solves the TSP to opti-
mality as sub-problems. Halse [25] proposed a cluster-first route-second approach
for VRPSPD as well as for several other variants of VRPPD. In this approach the
nodes are first distributed to vehicles and then the problem is solved using the 3-opt
algorithm. Halse also utilizes Lagrangean relaxation and column generation tech-
niques and discusses the results for single depot instances with 22 to 150 customers.

Angelelli and Mansini [2] addressed the VRPSPD with time windows con-
straints. They developed a branch-and-price approach based on a set covering for-
mulation for the master problem. A relaxation of the elementary shortest path prob-
lem with time windows and capacity constraints is used as the pricing problem.
Branch-and-bound is applied to obtain integer solutions.

Dethloff [13] presented insertion-based heuristics using four different criteria. He
developed 40 instances to test his algorithm. He also compared his results with those
of Salhi and Nagy [33] and reported an improvement on Min’s problem. Vural et al.
[37] reported improvements on the results of Dethloff problems employing a dual



genetic algorithm approach. In this approach first tours are created and partitioned
into sub-tours, then a local search is performed, and finally crossover and mutation
operations are executed.

Crispim and Brandão [12] proposed a hybrid tabu search (TS)-variable neigh-
borhood search approach. The approach uses the sweep algorithm to construct the
initial solution and then performs arc exchanges in the TS procedure. If it is faced
with any overloads it exchanges the order of the customers on the route until it
achieves feasibility. For the improvement phase it uses “insert” and “swap” moves
by penalizing the overloads. Other TS approaches for VRPSPD include Chen and
Wu [8] which presented an insertion-based procedure followed by a hybrid heuristic
based on the record-to-record travel, tabu lists, and improvement procedures; Mon-
tané and Galvão [27] which developed a TS algorithm using “insert”, “exchange”,
“split and splice” (on two routes), and 2-opt; Bianchessi and Righini [3] which pro-
posed constructive algorithms, local search algorithms, and TS algorithms to obtain
approximate solutions fast; and Wassan et al. [40] which designed a reactive tabu
search metaheuristic. The last approach provides competitive results.

In what follows we propose an ACO algorithm for efficiently solving MVRPB
and VRPSPD and test its performance against the approaches presented in the above
mentioned papers.

4 An Ant Algorithm for VRPPD

An initial solution is first obtained using the nearest-neighbor heuristic: start at the
depot and then select the not yet visited closest feasible customer as the next cus-
tomer to be visited. A customer is feasible if visiting her next does not violate the
capacity constraint (and the maximum route length restriction, if any). If no feasible
customer is available then the route is terminated at the depot and a new route is
initiated. The procedure is repeated until all customers are serviced. This solution
is used to initialize the pheromone trails on the arcs as follows: τ0 = n/L0, where L0

is the length of the nearest-neighbor heuristic solution. Note that this heuristic does
not guarantee feasibility if a limit on the number of vehicles is imposed.

4.1 Heuristic Information

In the classical ant approaches developed for solving TSP and VRP the visibility
value between a pair of customers is the inverse of their distance. On the other hand,
[6, 14] employed the savings function as the visibility function for solving the VRP.
While the latter utilized the classical Clarke and Wright savings function ([10]) the
former used the Paessens’ parametrical savings function ([29]). The classical sav-
ings function calculates the savings in distance achieved by serving two customers
i and j on the same route instead of serving them on different routes using the fol-
lowing formula:

Si j = (c0i + ci0 + c0 j + c j0)− (c0i + ci j + c j0) = ci0 + c0 j− ci j (21)



where ci0 (c0 j) is the distance of customer i (j) to the depot and ci j represents the
distance between the customer i and j. Since a high value of savings indicates that
visiting customer j after customer i is a desired choice the tour length is expected to
be shorter if the probability of moving from customer i to customer j increases with
the savings value.

Paessens’ formulation aims at collecting more information about the distribution
of the customers in an attempt to avoid the circumferenced formation of routes. The
proposed parameterized formulation is as follows:

Si j = ci0 + c0 j−λ ci j + μ
∣
∣ci0− c0 j

∣
∣ (22)

where λ and μ are non-negative constants.
In our approach, the visibility function consists of two components. The first

component is an enhanced savings function developed by [20]:

Si j = ci0 + c0 j−λ ci j + μcos(θi j)
∣
∣c0i− c j0

∣
∣ (23)

where θi j is the angle formed by the two rays originating from the depot and cross-
ing the customers i and j, and λ and μ are non-negative parameters. The proposed
savings function (23) can be regarded as a more general enhancement to Paessens’
savings formulation and was shown to perform better on various problem sets.

The second component takes into consideration the load of the vehicle on its
route. This component is equal to the largest of the ratio of delivery to customer j
to the average value of all deliveries and the ratio of pickup from customer j to the
average value of all pickups if total deliveries or total pickups so far have exceeded
half of the vehicle capacity; and is equal to 1 otherwise. The idea is to basically give
more chance of selection to customers requiring larger delivery or pickup quantities.
Our motivation in doing so stems from the “put first larger items” approach used in
[1]. The reason why we start employing this approach after half of the vehicle capac-
ity is used up is to let the first component determine the selection of the customers at
the early stages of the route construction in an attempt to not adversely affect the in-
fluence of this heuristic information on building a shorter route. In other words, the
first component acts as a primary heuristic information whereas the second compo-
nent starts playing a role after we have already constructed a partial tour using only
the distance criterion. The computation of the second visibility value is as follows:

R j =

⎧
⎪⎨

⎪⎩

max
(

Pj

P
,

Dj

D

)
, if min

(

∑
k∈Vq

Pk, ∑
k∈Vq

Dk

)

> Q
2

1 , otherwise

(24)

Here, D (P) is the average delivery (pickup) and Vq is the set of customers already
visited by the associated vehicle q. Note that the first component is static whereas
the second depends on the current load of the vehicle. The visibility function is then
the following:

ηi j = Si j×R j (25)



4.2 Route Construction

The route construction process uses the pseudo-random proportional rule of ACS
depicted in Section 2.2. In addition, a candidate list is used in selecting a customer
to visit, i.e. Nik consists of a number of customers that have not been visited yet and
have the largest attractiveness values.

After an ant has constructed its tour, a local search is performed in an attempt
to further improve the solution. In our algorithm we use the “swap” and “move”
procedures sequentially. In swap two customers are exchanged whereas in move a
customer is removed and inserted into another arc. These procedures are applied
both within routes and between different routes.

4.3 Pheromone Update

Our pheromone update consists of a rank-based MMAS strategy. In this strategy, w
best-ranked ants of each iteration along with the best-so-far ant are used to update
the pheromone trails. The pheromone reinforcement of each ant is proportional to
its rank. Our pheromone update rule is as follows:

τi j ← (1−ρ)τi j +
w

∑
r=1

(w− r)Δτr
i j + wΔτgb

i j (26)

Here, Δτr
i j=1/Lr for all arcs (i, j) belonging to the tour built by the rth best ant

where Lr is the length of the corresponding tour. gb denotes the global-best ant.
If the pheromone level on any arc drops below an explicit lower limit or exceeds
an explicit upper limit it is set equal to that limit. In other words, if any τi j < τmin

(τi j > τmax) then τi j = τmin (τi j = τmax). The aim in using this MMAS approach is
to reduce the risk of a premature convergence.

5 Experimental Study

The proposed algorithm is coded using C++ and executed on an Intel Pentium T2130
1.86 GHz processor with 1 Gb RAM. The parameters in the savings function are
λ = μ = 1. The parameters of the ACO algorithm are set according to initial experi-
mental runs as: z0 = 0.7,α = 1,β = 4,ρ = 0.1,τmax = n/ρLgb, and τmin = ρτmax/50.
For consistency, the same parameter values are used for solving both VRPSPD and
MVRPB. The number of best ants used for the pheromone reinforcement and the
size of the candidate list used in the selection of the next customer to be visited are
proportional to the number of ants and the number of customers, respectively, and
their values are set to w = n/10 and s = n/5, respectively. Since setting the number of
ants equal to the number of customers has been observed to perform well in the lit-
erature (see e.g. [19]) we also adopted the same strategy. For each problem instance
we performed 10 runs, each carried on for 100 iterations.



Table 1 Results for the VRPSPD data set of Dethloff [13]

ACO
Problem MG Avg Best %Gap
SCA3-0 640.55 640.47 636.06 -0.71
SCA3-1 697.84 708.59 700.50 0.38
SCA3-2 659.34 662.72 659.86 0.08
SCA3-3 680.04 685.13 680.04 0.00
SCA3-4 690.50 691.26 690.50 0.00
SCA3-5 659.90 673.27 662.75 0.43
SCA3-6 653.81 661.08 653.69 -0.02
SCA3-7 659.17 668.83 659.17 0.00
SCA3-8 719.70 724.62 720.06 0.05
SCA3-9 681.00 687.91 682.33 0.20
SCA8-0 981.47 992.60 978.10 -0.34
SCA8-1 1077.44 1085.45 1079.92 0.23
SCA8-2 1050.98 1058.43 1046.20 -0.46
SCA8-3 983.34 1027.30 1006.59 2.31
SCA8-4 1073.46 1098.11 1077.01 0.33
SCA8-5 1047.24 1081.44 1067.29 1.88
SCA8-6 995.59 1004.30 990.44 -0.52
SCA8-7 1068.56 1088.35 1079.20 0.99
SCA8-8 1080.58 1100.73 1086.72 0.57
SCA8-9 1084.80 1091.19 1074.40 -0.97
CON3-0 631.39 619.30 617.98 -2.17
CON3-1 554.47 562.89 558.69 0.76
CON3-2 522.86 522.55 519.11 -0.72
CON3-3 591.19 591.63 591.19 0.00
CON3-4 591.12 597.08 590.49 -0.11
CON3-5 563.70 572.44 564.88 0.21
CON3-6 506.19 504.51 501.34 -0.97
CON3-7 577.68 591.48 585.51 1.34
CON3-8 523.05 524.51 523.14 0.02
CON3-9 580.05 591.57 588.84 1.49
CON8-0 860.48 873.67 861.40 0.11
CON8-1 740.85 772.33 753.81 1.72
CON8-2 723.32 729.46 725.54 0.31
CON8-3 811.23 852.86 835.77 2.94
CON8-4 772.25 795.59 775.67 0.44
CON8-5 756.91 781.35 769.20 1.60
CON8-6 678.92 701.69 695.43 2.37
CON8-7 814.50 819.04 811.96 -0.31
CON8-8 775.59 795.40 775.56 0.00
CON8-9 809.00 834.63 826.95 2.17
Average 764.25 776.64 767.58 0.39



5.1 Benchmark Problems and Results for the VRPSPD

The performance of the algorithm for VRPSPD is tested using two well-known
benchmark problem sets from the literature. The first problem set was proposed by
Salhi and Nagy [33] based on the 14 VRP problems proposed in [9]. The num-
ber of customers in this data varies from 50 to 199 and problems CMT6-10 and
CMT13-14 impose a maximum route length restriction for the vehicles. For each
VRP instance in [9], Salhi and Nagy generated a VRPSPD problem by splitting the
original demand between demand and pickup loads. Another instance was obtained
by exchanging these demand and pickup loads of every other customer. Thus, two
classes of problems were generated and referred to as problem classes X and Y.

The second problem set was presented by Dethloff [13] where random instances
with 50 customers were generated considering two different geographical scenarios:
In scenario SCA, the coordinates of the customers are uniformly distributed over the
interval [0,100]. In scenario CON, half of the customers are distributed in the same
way as in SCA while the coordinates of the other half are uniformly distributed over
the interval [100/3,200/3]. The delivery demand D j of the customers is uniformly
distributed over the interval [0,100]. The pickup demand Pj are computed by using
a random number r j that is uniformly distributed over the interval [0,1] such that Pj

=(0.5+ r j)D j. Instances with different vehicle capacities were generated by choos-
ing the minimal number of vehicles μ . Then, the corresponding capacity was set to
C = ∑s∈J Ds/μ where μ was chosen to be 3 or 8.

Table 11 compares the best-so-far distances for Dethloff’s problems to the aver-
age and best distance values found using ACO. Avg and Best columns denote the
average distance and best distance, respectively. %Gap column shows the percent-
age difference between the best-so-far distances and ACO distances and calculated
as (Best-so-far/ACO Best)-1. We note that only Ropke and Pisinger [32] and Mon-
tané and Galvão [27] utilize this data set in their experiments; however, the former
only reports the average results. Thus, we compare our results to those of [27] which
are better than those of [13] in all instances. We observe that the ACO improves the
solutions of 10 problems and matches 5. Although the overall performance of [27]
is better the average gap is only 0.39%. On the other hand, ACO requires more com-
putational effort: 18 seconds versus 3.7 seconds (using Athlon 2.0 GHz processor).

Table 2 provides a comparison of the best solutions published by Dethloff [13],
Chen and Wu [8], Montané and Galvão [27], Wassan et al. [40] and those obtained
by ACO for Salhi and Nagy problems. In this table column n denotes the number
of customers and Veh is the number of vehicles. Note that Nagy and Salhi [28]
and Ropke and Pisinger [32] reported only their average results (the former for
all problems and the latter for class X only). Hence, we cannot make a detailed
comparison.

However, we include their results in Table 3 where we make a comparison of the
average solutions. Note also that none of the results in [12] is any better than those
published in the literature. Thus, we do not use them as benchmarks. Furthermore,

1 In all the tables presented in this section, the first letter of the names of the corresponding
authors are used for referencing.



Table 2 Comparison of results for the VRPSPD data set of Salhi and Nagy [33]

D CV MG WWN ACO
Problem n Veh Best Veh Best Veh Best Veh Best Veh Best
CMT1X 50 3 501 3 478.59 3 472 3 468.30 3 479.94
CMT2X 75 7 782 6 688.51 7 695 6 668.77 6 707.87
CMT3X 100 5 847 5 744.77 5 721 4 729.63 5 729.27
CMT4X 150 7 1050 7 887.00 7 880 7 876.50 7 914.65
CMT5X 199 11 1348 10 1089.22 11 1098 9 1044.51 11 1133.92
CMT6X 50 6 584 - - - - 6 556.06 6 556.68
CMT7X 75 11 961 - - - - 11 903.05 11 901.22
CMT8X 100 9 928 - - - - 9 879.60 9 865.51
CMT9X 150 15 1299 - - - - 15 1220.00 14 1184.34
CMT10X 199 19 1571 - - - - 19 1464.58 18 1444.90
CMT11X 120 4 959 4 858.57 4 900 4 861.97 4 898.35
CMT12X 100 6 804 6 678.46 6 675 5 644.70 6 678.08
CMT13X 120 11 1576 - - - - 12 1647.51 11 1596.01
CMT14X 100 10 871 - - - - 10 823.95 10 821.75
CMT1Y 50 3 501 3 480.78 3 470 3 458.96 3 475.37
CMT2Y 75 7 782 6 679.44 7 700 6 663.25 6 699.89
CMT3Y 100 5 847 5 723.88 5 719 4 745.46 5 733.82
CMT4Y 150 7 1050 7 852.35 7 878 7 870.44 7 894.11
CMT5Y 199 11 1348 10 1084.27 10 1083 9 1054.46 10 1112.66
CMT6Y 50 6 584 - - - - 6 558.17 6 555.43
CMT7Y 75 11 961 - - - - 11 903.36 11 901.22
CMT8Y 100 9 936 - - - - 10 917.42 9 865.50
CMT9Y 150 15 1299 - - - - 15 1213.11 14 1184.05
CMT10Y 199 19 1571 - - - - 18 1419.79 18 1437.07
CMT11Y 120 4 1070 5 859.77 5 910 4 830.39 4 933.59
CMT12Y 100 5 825 6 676.23 6 689 6 659.52 5 676.21
CMT13Y 120 11 1576 - - - - 11 1647.04 11 1597.03
CMT14Y 100 10 871 - - - - 10 823.34 10 821.75
Average 1010.79 912.64 921.43

Table 3 Comparison of the average results for the VRPSPD data set of Salhi and Nagy [33]

Problem Type D NS CV RP MG WWN ACO
CMT-X no distance restriction 899 - 775 - 777 792 756

distance restriction 1113 - - - - 1053 1071
All 1006 991 - 919 - 922 914

CMT-Y no distance restriction 918 - 765 - 778 789 755
distance restriction 1114 - - - - 1052 1069
All 1016 989 - - - 921 912

since the maximum route length constraints were not considered in [8, 27] we only
compare the unrestricted problems. The results show that ACO improves 10 best-so-
far distances. In addition, ACO finds best-so-far distance and number of vehicles in



Table 4 Improvements on the best-so-far solutions for the VRPSPD data set of Salhi and
Nagy [33]

Best-so-far ACO
Problem Reference Veh Dist Veh Dist
CMT7X WWN 11 903.05 11 901.22
CMT8X WWN 9 879.60 9 865.51
CMT9X WWN 15 1220.00 14 1184.34
CMT10X WWN 19 1464.58 18 1444.90
CMT14X WWN 10 823.95 10 821.75
CMT6Y WWN 6 558.17 6 555.43
CMT7Y WWN 11 903.36 11 901.22
CMT8Y WWN 10 917.42 10 865.50
CMT9Y WWN 15 1213.11 14 1184.05
CMT12Y WWN 6 659.52 5 676.21
CMT14Y WWN 10 823.34 10 821.75

problems CMT9X, CMT10X, and CMT9Y. Although the distance is not improved
in CMT12Y, the best-so-far distance is obtained using 5 vehicles. The improvements
on the best-so-far solutions are summarized in Table 4. We also observe in Table 2
that the average gap in the performance of ACO is inferior to that of Wassan et al.
[40] but the difference is less than 1%. On the other hand, we note that ACO requires
more computational effort: an average of 615 seconds versus 221 seconds in [40]
using UltraSPARC-IIIi 1062 MHz Solaris 9.

5.2 Benchmark Problems and Results for the MVRPB

To test the performance of our algorithm for MVRPB we used the benchmark prob-
lems generated by Salhi and Nagy [33] based on 14 VRP problems proposed in [9]
and the problems proposed by Goetschalckx and Jacobs-Blecha [23]. For each VRP
instance Salhi and Nagy generated three MVRPB problems replacing every second,
forth, and tenth delivery customer with a backhaul customer and assigning a pickup
quantity equal to its original delivery quantity. Thus, three classes of problems were
generated for 50%, 25%, and 10% of backhauls, respectively, and were referred to
as problem classes H, Q, and T, respectively. The data set of [23] consists of 63
instances with the number of customers varying from 25 to 150.

Since only Salhi and Nagy [33] reported the individual results we base our com-
parisons on those results in Table 5. The results show that the performance of ACO
is significantly better. However, the average computation time in [33] is less than 4
seconds on a VAX 4000-500 computer whereas our average is 672 seconds. If we
investigate the average results of each type of data given in Table 6, we see that ACO
outperforms the more recent results of Nagy and Salhi [28]; however, the average
results of Ropke and Pisinger [32] are better.



Table 5 Results for the MVRPB data set of Salhi and Nagy [33]

ACO
Problem SN Avg Best Veh %Gap
CMT1T 541 522.66 520.93 5 -3.71
CMT2T 839 817.50 802.75 9 -4.32
CMT3T 903 831.36 826.20 7 -8.51
CMT4T 1111 1045.28 1023.20 11 -7.90
CMT5T 1423 1306.66 1295.34 15 -8.97
CMT6T 571 556.66 555.43 6 -2.73
CMT7T - 906.92 903.05 11 -
CMT8T 911 869.81 865.54 9 -4.99
CMT9T 1164 1201.22 1181.34 14 1.49
CMT10T 1418 1469.37 1447.59 18 2.09
CMT11T 1075 1060.00 1042.46 7 -3.03
CMT12T 827 818.65 804.89 9 -2.67
CMT13T 1600 1608.66 1587.17 11 -0.80
CMT14T 866 840.18 829.76 10 -4.18
CMT1Q 557 497.64 492.79 4 -11.53
CMT2Q 860 756.82 745.64 8 -13.30
CMT3Q 918 778.05 764.88 6 -16.68
CMT4Q 1164 969.08 947.19 9 -18.63
CMT5Q 1477 1228.70 1213.41 13 -17.85
CMT6Q 594 558.86 556.68 6 -6.28
CMT7Q - 903.37 900.69 11 -
CMT8Q 918 871.30 865.50 9 -5.72
CMT9Q 1178 1202.60 1187.16 14 0.78
CMT10Q 1477 1461.64 1452.52 18 -1.66
CMT11Q 1075 990.50 976.04 6 -9.21
CMT12Q 843 755.57 747.94 7 -11.28
CMT13Q 1613 1610.48 1588.68 11 -1.51
CMT14Q 873 827.75 823.11 10 -5.71
CMT1H 594 469.17 465.02 3 -21.71
CMT2H 873 672.76 664.82 6 -23.85
CMT3H 915 748.75 735.43 4 -19.63
CMT4H 1164 896.41 875.15 7 -24.82
CMT5H 1509 1095.15 1080.69 9 -28.38
CMT6H 594 558.40 556.68 6 -6.28
CMT7H - 901.28 901.22 11 -
CMT8H 915 867.82 865.51 9 -5.41
CMT9H 1164 1200.56 1191.53 14 2.37
CMT10H 1509 1458.58 1446.11 18 -4.17
CMT11H 1120 868.44 852.62 4 -23.87
CMT12H 850 686.47 671.51 5 -21.00
CMT13H 1546 1616.59 1598.75 11 3.41
CMT14H 866 827.69 821.75 10 -5.11
Average 1036.28 955.60 944.63 -8.85



Table 6 Comparison of the average results for the MVRPB data set of Salhi and Nagy [33]

Problem Set SN NS RP ACO
10% (T) 2008 1011 955 978
25% (Q) 2050 1034 922 947
50% (H) 2088 1045 881 909

Table 7 compares our average distances to those of Wade and Salhi [39]. In this
table, n1 and n2 columns denote the number of linehaul and backhaul customers,
respectively, and column Q denotes the vehicle capacity. The results show that our
ACO approach outperforms the ant system algorithm of [39] in 28 instances out of
46. The average improvement is 0.22.

In Table 8, we report our best distances and compare them to the best distances re-
ported by Halse [25] and Wade and Salhi [39]. The results reveal that ACO improves
17 best-so-far solutions. In addition, ACO finds best-so-far distance and number of
vehicles in problems f1, l4, and h1. We also observe that ACO provides very com-
petitive results: the average improvement of ACO on Wade and Salhi’s results is
0.03% and on Halse’s results is 0.65%. On the other hand, ACO’s performance is
surprisingly poor on problem instance j4.

5.3 Sensitivity of the Results to the Parameter Setting

In the initial experimental study that we conducted for determining suitable param-
eter values we observed that the algorithm was robust in the sense that fairly good
solutions could be obtained for varying parameter values. This is mostly due to the
contribution of the local search strategy to the overall solution quality. As men-
tioned in Section 4.2, we apply the local search at each iteration after each ant has
constructed its tour. This exhaustive local search procedure has a significant con-
tribution in achieving relatively short distances fast. To illustrate the effect of the
local search mechanism we provide in Figure 3 the results for 5 sample runs of a
medium size problem instance with 100 customers, namely CMT3X. This figure
also shows the convergence pattern with regard to the 100 iterations. Note that all
parameter values are kept same as in the earlier experimental study. We see that
the local search procedure provides a significant improvement in the total distance
traversed.

To investigate the robustness of the proposed method with respect to the param-
eter set we show the variations in the solutions of problem CMT3X for various
parameter values in Figure 4. The charts (a)-(d) in this figure report the average dis-
tance of 10 runs for different values of the (a) heuristic information parameter β , (b)
evaporation rate ρ , (c) pseudo-random proportional rule parameter z0, and (d) num-
ber of best ants used for the pheromone update w, respectively — ceteris paribus.
We observe that z0 and w have more effect on the solution quality compared to β and
ρ : the maximum deviations from the best distance are 2.6% and 3.4% in the case of



Table 7 Comparison of the average distances of MVRPB data set of Goetschalckx and
Jacobs-Blecha [23]

Problem n1 n2 Q WS Avg ACO Avg %Gap
a1 20 5 1550 223374 225002 0.73
a2 20 5 2550 169797 169500 -0.17
a3 20 5 4050 142126 142034 -0.06
b1 20 10 1600 234514 231667 -1.21
b2 20 10 2600 179760 181391 0.91
b3 20 10 4000 145702 145702 0.00
c1 20 20 1800 240126 237979 -0.89
c2 20 20 2600 197287 199002 0.87
c3 20 20 4150 165710 166858 0.69
d1 30 8 1700 307383 309454 0.67
d3 30 8 2750 224598 223616 -0.44
d4 30 8 4075 - 184171 -
e1 30 15 2650 225927 223172 -1.22
e2 30 15 4300 191342 191240 -0.05
e3 30 15 5225 184621 184136 -0.26
f1 30 30 3000 251364 244671 -2.66
f3 30 30 4400 218818 212939 -2.69
f4 30 30 5500 202280 199993 -1.13
g1 45 12 2700 311057 304590 -2.08
g2 45 12 4300 236623 235416 -0.51
g3 45 12 5300 215133 213154 -0.92
g5 45 12 6400 203777 204068 0.14
g6 45 12 8000 190572 190128 -0.23
h1 45 23 4000 241850 239730 -0.88
h2 45 23 5100 220532 215634 -2.22
h4 45 23 6100 208693 206046 -1.27
h5 45 23 7100 203647 199589 -1.99
i1 45 45 3000 336501 332321 -1.24
i2 45 45 4000 281864 283803 0.69
i3 45 45 5700 241102 245197 1.70
j1 75 19 4400 341272 337791 -1.02
j2 75 19 5600 301779 300712 -0.35
j3 75 19 8200 261264 265131 1.48
j4 75 19 6600 278866 284264 1.94
k1 75 38 4100 370134 369437 -0.19
k2 75 38 5200 327324 326044 -0.39
k4 75 38 6200 308065 302954 -1.66
l1 75 75 4000 418644 412875 -1.38
l2 75 75 5000 377962 374397 -0.94
l4 75 75 6000 339020 350558 3.40
m1 100 25 5200 381006 382016 0.26
m3 100 25 6200 354797 345619 -2.59
m4 100 25 8000 311410 312310 0.29
n1 100 50 5700 387926 392479 1.17
n3 100 50 6600 349555 366509 4.85
n5 100 50 8500 332754 336372 1.09
Average 263064 260906 -0.22



Table 8 Comparison of results for the MVRPB for the data set Goetschalckx and Jacobs-
Blecha [23]

ACO WS H
Problem Best Veh Best Veh %Gap Best Veh %Gap
a1 223088 8 223088 8 0.00 227725 8 -2.04
a2 169500 5 169500 5 0.00 169497 5 0
a3 142034 3 142034 3 0.00 142032 3 0
b1 229403 7 233001 7 -1.54 233950 7 -1.94
b2 179194 4 179258 4 -0.04 182326 4 -1.72
b3 145702 3 145702 3 0.00 145699 3 0
c1 233087 7 239192 7 -2.55 242931 7 -4.05
c2 197278 5 196883 5 0.20 197276 5 0
c3 164891 3 164891 3 0.00 167663 4 -1.65
d1 307110 11 307110 11 0.00 307875 11 -0.25
d3 220751 7 224598 7 -1.71 222195 7 -0.65
d4 182496 5 - - - - - -
e1 220742 7 223774 7 -1.35 222518 7 -0.80
e2 191135 4 190559 4 0.30 190048 4 0.57
e3 183197 4 182804 4 0.21 187793 4 -2.45
f1 243496 6 248333 7 -1.95 254977 6 -4.50
f3 210629 4 217317 5 -3.08 215575 5 -2.29
f4 198709 4 200964 4 -1.12 203448 5 -2.33
g1 298882 10 301235 10 -0.78 304106 10 -1.72
g2 234242 6 235920 6 -0.71 235220 6 -0.42
g3 212841 5 214534 5 -0.79 213757 5 -0.43
g5 202282 4 203233 4 -0.47 202610 4 -0.16
g6 188696 3 189922 3 -0.65 201875 4 -6.53
h1 237631 6 241619 6 -1.65 235269 6 1.00
h2 213756 5 220305 5 -2.97 215649 5 -0.88
h4 203441 4 208412 4 -2.39 202971 4 0.23
h5 197875 3 203193 4 -2.62 201896 4 -1.99
i1 326706 10 327168 10 -0.14 329237 10 -0.77
i2 279396 7 278727 7 0.24 289501 7 -3.49
i3 240974 5 238626 5 0.98 244782 5 -1.56
j1 331175 10 332471 10 -0.39 337800 10 -1.96
j2 296918 8 292698 8 1.44 298432 8 -0.51
j3 260619 6 259243 6 0.53 280070 7 -6.95
j4 280140 7 261066 7 7.31 257895 6 8.63
k1 365664 10 360954 10 1.30 361287 10 1.21
k2 322150 8 323979 8 -0.56 320012 8 0.67
k4 297570 7 298518 7 -0.32 296766 7 0.27
l1 405412 10 416167 11 -2.58 412278 11 -1.67
l2 371012 8 360018 8 3.05 362399 8 2.38
l4 343574 7 337620 7 1.76 341304 7 0.67
m1 377846 10 370920 10 1.87 372840 11 1.34
m3 343133 9 335486 9 2.28 336011 9 2.12
m4 307990 7 310567 7 -0.83 305118 7 0.94
n1 386780 10 370690 10 4.34 385978 10 0.21
n3 357552 9 349516 9 2.30 352992 9 1.29
n5 329462 7 323698 7 1.78 319811 7 3.02
Average 257743 259011 -0.03 260698 -0.65



Fig. 3 Sample results of 5 runs for problem CMT3X (a) without local search, (b) with local
search

Fig. 4 Average distance of 10 runs of CMT3X for different parameter values of the (a) heuris-
tic information parameter β , (b) evaporation rate ρ , (c) pseudo-random proportional rule pa-
rameter z0, and (d) number of best ants used for the pheromone update w



z0 and w, respectively, whereas the maximum deviations are 1.2% and 1.6% in the
case of β and ρ . Note that these solutions are obtained by varying the value of one
parameter only and keeping the remaining parameters at the already determined val-
ues. As expected, changing the values of multiple parameters simultaneously would
lead to inferior solutions. These results reveal that a different selection of parameter
values would not deteriorate the solution quality much due to the contribution of the
local search. Nevertheless, the best distances are achieved by using the values we
employed in our experimental study: β = 4,ρ = 0.1,z0 = 0.7, and w = 100/10=10.

6 Conclusions

In this chapter, we addressed two types of VRPPD, namely MVRPB and VRPSPD
which have a growing practical relevance in the reverse logistics literature. The com-
putational complexity of these problems necessitates good heuristic solution proce-
dures. We developed an ant colony algorithm equipped with a new visibility function
in an attempt to capture the delivery and pickup nature of these two problems. The
experimental analysis reveals promising results compared to the results published in
the literature. Furthermore, improvements on some of the best-so-far solutions are
obtained as well.

Although a fair comparison of the computational efforts cannot be made because
of the use of different processors we observed that our computation times are fairly
long compared to other heuristics presented in the literature. We observed that the
local search procedure takes a significant amount of time. Thus, further research
may focus on reducing the computation times, for instance by decreasing the ant
colony size, using a candidate list, and/or by carrying out an elitist local search using
only some best-performing ants. More efficient pheromone trail update procedures
and visibility functions specific to the problem type may also be investigated to
improve the solution quality.
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