Impossibility of unconditionally secure scalar products

Thomas B. Pedersen *, Erkay Savas

Facuity of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

ABSTRACT

The ability to perform scalar products of two vectors, each known to a different party, is a
central problem in privacy preserving data mining and other multi-party computation
problems. Ongoing search for both efficient and secure scalar product protocols has
revealed that this task is not easy. In this paper we show that, indeed, scalar products
can never be made secure in the information theoretical sense. We show that any attempt
to make vunconditionally secure scalar products will inevitably allow one of the parties to
learn the other parties input vector with high probability. On the other hand, we show that
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SEfUI'I'W and privacy under various assumptions, such as the existence of a trusted third party or the difficulty of
Data mining discrete logarithms, both efficient and secure scalar products do exist. We proposed two

scalar products new protocols for secure scalar products and compare their performance with existing
secure scalar products.

1. Introduction

For almost three decades the cryptographic community has known that any distributed algorithm we may think of can, at
least in theory, be solved securely with standard multi-party computation techniques |33,16,4). However, the communica-
tion and computation cost of these standard techniques are too high for most commercial applications. Recently, researchers
in areas such as privacy preserving data mining have proposed special purpose protocols to overcome these inefficiency is-
sues. The solutions presented fall in two categories: solutions which perturbs the data in ways which preserves the statistical
properties of interest while hiding sensitive information (first introduced in | 1], see |31] for a more recent example), and
solution which rely on cryptographic primitives. In this paper we focus on cryptographic approaches approach.

A quick survey of the research in data mining will soon reveal that some problems occur again and again; as for example
secure two-party computation of scalar products. Scalar products are useful in a wide range of modern applications of secure
computation such as privacy preserving data mining, scientific computing, and web personalisation. Indeed, Kargupta and
co-workers |9], motivated by the importance of this problem in data mining, propose an efficient algorithm for estimating
the top-I scalar products between distributed vectors. Also motivated by the usefulness of scalar products, but this time from
a security perspective, Goethals et al. [14] give a secure implementation of scalar products between distributed vectors.

There are many concrete examples of the use of scalar products in data mining and machine learning. Support vector ma-
chines and page ranking, for instance, directly uses scalar products. Yang and Wright |32,30] use a secure scalar product pro-
tocol in privacy preserving computation of Bayesian networks. In |2] the authors use an (insecure) scalar product to compute
correlation coefficients between random variables held by different parties, and to compute linear regression models of dis-
tributed data. Clifton and Vaidya show how to securely perform the apriori algorithm used in association rule mining by
using secure scalar products |28]. In |29] the same authors show how to combine state of the art query processing algorithms
with cryptographic techniques to securely compute kth element score. Their algorithm relies on secure set intersection,
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which can efficiently be computed with scalar products [13]. In [27] Vaidya show how to perform privacy preserving linear
programming. A central element of his approach is the secure scalar product protocol from [14].

The standard ways to compute scalar products are to use homomorphic encryption, secret sharing, or solutions based on
oblivious transfer | 14]. However, some researchers have expressed concern that these techniques give too much communi-
cation and computation overhead. Instead of using the standard techniques these authors propose ad. hoc. protocols for se-
cure scalar products [2,28,17,24,20].

Unfortunately, many of the proposed scalar products are insecure. Goethals et al. |14] demonstrate attacks on two of the
proposed protocols [28,2]. In this paper we show that no unconditionally secure scalar product protocol exists — even when the
adversary is semi-honest, Our result strengthen the claim of Goethals et al. | 14] that: “In almost all solutions |which do not
rely on extra assumptions), one can construct a system of linear equations based on the specification of the protocol, and
solve it for the secret values.” As a consequence, extra assumptions, such as the difficulty of factoring, are needed to construct
secure scalar products.

It is no big surprise that unconditionally secure scalar products are impossible. The special case of computing the scalar
product of binary vectors can be used compute Boolean and gates. However, unconditionally secure computation of and
gates is impossible |5]. To investigate the possibility of scalar products in fields larger than the Boolean field, we turn to
the well-known fact that commitment schemes cannot be unconditionally secure. We prove the impossibility of uncondition-
ally secure scalar products by showing a reduction from commitment schemes to scalar products. More than that, we show
that, without extra assumptions, any two-party scalar product protocol between Alice and Bob has an n such that Alice learns
approximately n scalar products, while Bob learns Alice’s vector with probability 1/n. However, the reduction also suggests
that secure scalar products exist in alternative models where commitment schemes have been demonstrated.

Goethals et al. [14], and Wright and Yang |30,32] propose computationally secure scalar product protocols. In many cases
these scalar product protocols have less communication overhead than the protocols proven insecure in |[14). This is in con-
trast to the initial motivation of the authors of the previous scalar product protocols; namely that standard cryptographic
techniques were suspected to give protocols which are too inefficient for practical purposes. In this paper, we further reduce
the communication overhead of the scalar product protocol from |14] in the case of computing scalar products over small
fields.

1t is common in the privacy preserving data mining literature to assume that the parties involved in the protocol are semi-
honest and non-colluding (e.g. [28,17,2]). We propose a new scalar product protocol which is secure in this model, and has a
communication overhead of only 0(n'%) when computing scalar products of vectors of n-bit integers. The hidden constant is
very small, and the resulting protocol is efficient enough to be of interest in practical protocols.

Our contributions are: (1) the impossibility of scalar products, secure against semi-honest adversaries without extra
assumptions, (2) a lower bound on the information leaked in any scalar product protocol when the adversary is computa-
tionally unbounded, and (3) two efficient scalar product protocols which are secure in two different models.

This paper is organised as follows: In Section 2, we give a brief discussion of the model we work in. In Section 2.3, we
show an attack on commitment schemes, when no extra assumptions are made. Our first main result is the reduction of com-
mitment schemes to scalar products in Section 3 which proves the impossibility of unconditionally secure scalar products,
and in Section 4, we apply our bound to the scalar product from |20]. In Section 5, we give two efficient and secure scalar
product protocols, the first is an improvement of the protocol from |14/, the second is a new scalar product protocol. We
show test results supporting our claim that our proposed scalar products perform considerably better than previously pro-
posed scalar product protocols. We give some concluding remarks in Section 6.

2. Preliminaries

When implementing cryptologic protocols it is important to be precise about the model which guarantees security of the
protocol. The contribution of this paper is to show that scalar products cannot be securely computed by two parties when no
extra assumptions are made, but that efficient and secure implementations exists in other models.

2.1. Security models

In our setting, two parties, Alice and Bob, try to compute a function without help from any external party. They both have
unlimited time and space available for their computations. We prove the impossibility of scalar products even for semi-hon-
est parties. That is: they do exactly as the protocol is describing, but collect information during the execution of the protocol,
which they use to gain information about the other parties inputs. Limiting our attention to semi-honest parties is not a
restriction, since this gives the strongest statement: No scalar product can be secure against semi-honest adversaries if no extra
assumptions are made, The impossibility results automatically apply to adversaries who actively try to cheat, since any pro-
tocol which is secure against active adversaries is also secure against semi-honest adversaries.

In the following we give an informal overview of the cryptographic definition of secure protocols. For more details see
|15]. Suppose that Alice and Bob have private (secret) inputs drawn from random variables A and B, respectively. The random
variables A and B can have any distribution which fits the way inputs are chosen when the protocol is being used in a real
world setting. In particular, it may be wellknown that the input of Alice is, i.e. an odd number, or English text, The aim of



Alice and Bob is toe compute a well-known function® f{A, B}, such that as little information about their private inputs as possible
is leaked. Note that the distributions A and B may carry information in themselves {i.e. we know that A is a vector of integers).
The output f{A, By may also carry information about the inputs. We can never prevent information which is computable from
the input distributions, and the output from being computed. However, we do not wish that anything else can be computed.

The natural way to model a distributed algorithm for computing a function, f, is with two randomised Turing machines,
H}* and Hf, which share a communication tape [15]. By the statement “Alice sends message m to Bob,” we mean that the Tur-
ing machine H}* writes m to the communication tape, and that the Turing machine H? reads (and removes) it. In this formal-
ism semi-honest simply means that Alice and Bob really do run the Turing machines H}“ and Hf and not Turing machines
devised to cheat. Clearly any non-trivial function f requires that Alice and Bob communicate. The question is: does the com-
munication and other things observed by Alice allow her to learn something about the input of Bob, which she should not
have learned (and vice versa for Bob)? Formally, the things observed by Alice are described by random variable views which
contains the input {A), output {f{A, B}}, random choices {the Turing machine H}* is probabilistic), messages seen by Alice dur-
ing the execution of the protocol, and prior knowledge {and views is defined in a similar fashion). [deally we want to guar-
antee that Alice cannot compute anything from her view that she cannot compute from her own input, A, and the output
fi{A, Bi. Notice that this is the same as saying that view, could be generated from A and f{A, B) without ever executing the
protocol {and thus without view,). Clearly, if we can device an algorithm which can simulate viewy from A and f{A, B), then
viewy does not leak any unwanted information at all. Formally we require the existence of a probabilistic polynomial time
sirmulator S such that for all distinguisher functions D

Pr[D(S(A, f(A, B))) = 1] - PrD{viewa) = 1]| < €. )

[n the unconditional case, this means that no algorithm, D, should be able to tell the difference. In other words: the proba-
bility distributions of the simulated and the real view are close to within €. In this case we write

S(A.f(A, B)) = view,. (2)

If € = 0 the simulation has exactly the same probability distribution as the real view. In this case we write
S(A.f(A, B)) = view,. (3)

Finally, if no probabilistic, bounded error, polyniorial tire distinguisher, D, can tell the difference {except, possibly, with neg-
ligible probability, and under the condition of a computational assumption, like the RSA assumption) we say that the pro-
tocol is computationally secure. In this case we write

S(A.f(A, B)) = view,. (4)

A protocol for computing f is secure, if a simulator § exists for both Alice and Bob.

The claim of this paper is thus that there is no protocol for scalar products for which there exists a pair of simulators capa-
ble of simulating the views of Alice and Bob perfectly, or even approximately, except if extra assumptions are put on the
distinguisher {that it is computationally bounded), or on the model itself {i.e. the presence of a third party).

2.2. Commitrient schemes and oblivious transfer

A class of protocols of particular interest in this paper are commitment schemes. [n a commitment scheme Alice “com-
mits” to a value a in a way that Bob does not learn g, but such that, at a later time, Alice can prove that it was a she committed
to. The standard metaphor for commitment schemes is a safety vault. Alice locks a document with the text “a” into the vault,
and gives the vault to Bob, but keeps the key. To prove that she committed to g, she gives the key to Bob who can then open
the save and verify her statement. We give a more precise definition in the next section. For now we just have to note that
the semi-honest model is not meaningtul for commitment schemes. The whole peint of a commitment is to make sure that
Alice will not lie about her choice of a. If she were semi-honest, a commitment scheme would not be needed, since she can
just tell Bob about a whenever needed. Instead we use a “hybrid” adversarial model, where we assume that Alice is semi-
honest during the commitment phase, but that she tries to change her mind in the opening phase.

We will not study oblivious transfer in detail in this paper, but the strong relationship between commitment schemes,
scalar products, and oblivious transfer makes it useful to have a short look at ablivious transfer. [n one-out-of-two oblivious
transfer (OT}) Alice (the sender) has two input messages mg and i, and Bob (the receiver) wants to learn my. An OT} pro-
tocol is such that Bob learns exactly m,, and nothing else, while Alice learns nothing at all {in particular she does not know
which message Bob received). [t can be shown that both commitment schemes and oblivious transfer can be implemented
with scalar products. This suggests that secure scalar products may be implemented in models where secure oblivious trans-
fer exists. Even though oblivious transfer cannot be unconditionally secure, secure implementations have been demon-
strated under several assumptions. [t is known that oblivious transfer based on different kinds of noisy channels exist
[7.6.8]. Rivest showed that oblivious transfer can be implemented with the help of a trusted initiator - a trusted third party

! Sealar product, in our case.



who only participates in a setup phase [25]. In [21] the authors show how oblivious transfer is possible if the role of the
sender is distributed amongst several parties. And, of course, many oblivious transfer protocols exist in the computational
model [23,12,3].

All protocols presented in this paper work with inputs and outputs from a finite field F, even though the section about
commitment schemes is valid for any set. Throughout the paper we use the notation x<;$ to denote that x is chosen at ran-
dom from the set § according to the uniform distribution.

2.3. Commitment schemes — formal definition

A commitment scheme consists of two protocols: (1) a commitment protocol, and {2} an opening protocol. [n the com-
mitment protocol Alice has an input “string” s from a finite field F, and at the end of the commitment protocol Bob has some
output state commit(s). At the end of the opening protocol Bob learns 5. We require two things of a commitment scheme:

Hiding. At the end of the commitment protocol Bob knows nothing about s (that he did not know in advance) — formally,
there exists a simulator, 5, such that 5(L1) = viewy, where L means no input (either perfect, statistically, or
computationally).

Binding. At the end of the opening protocol Bob learns s exactly - formally, there exists a polynomial time verifier, ¥V such
that V{commit{s),open{s’)) =1, if and only if s = 5"

The hiding and binding properties can be either perfectly, statistically, or computationally bounded. 1t is well-known that
at least one of the properties has to be computationally secure, but in the following theorem we give a quantitative bound of
the information leaked to an computationally unbounded adversary:

Theorem 1. For all commitment schemes, in oll commitments there exists a set S C [ known to both Alice and Bob, such that, ofter
the commitment protocol:

« Bob krnows that Alice committed to sorie s € §, and
o Alice can open to any & € S.

Proof. Suppose that Alice has committed to the string s. Let ¢ describe the conversation between Alice and Bob during the
commitment protocol {all messages sent forth and back), and let views describe the view of Bob after the commitment pro-
tocol, but before the open protocol {the random choices made by Bob, his private knowledge, and the conversation c).

Let Vg(s'} be the set of all views Bob can have after a commitment to s'. Define 5y = {5’ € F|viewg = Vg(s'}} as the set of all
strings which have a commitment that would give Bob viewg. Observe that

o If astring &' € Sg, then there would be a commitment to § where Bob would have views. Thus, Bob cannot distinguish if the
current cammitment is to s or §'.
« If Alice can open to a string s' = s, then s' € 5p.

Now let C(s'} be the set of all possible conversations when committing to &', and let $; = {s' < F|c € C{s")} be the set of all
strings which have a commitment with conversation ¢. Observe that

o Ifs' £ 5,, for some 5’ = s, then c is a valid conversation for a commitment to s'. So, when opening, Alice can pretend that she
had committed to s’ and can thus open to s'.
« If Alice can open to & = 5, then ¢ must be a possible conversation when committing to s (since ¢ is part of views), so 8’ € Sa.

We finally show that § = 54 = Sg. First assume that s’ € 54, then Alice can open to &', but this implies that s’ € Sg, s0 54 C Sg.
Now, let s’ € Sg, then there is commitment to s which would give Bob viewg. But then the conversation which is part of viewg
is a valid conversation for both s and ¢/, so " € 54, implying that Sp C54. O

It follows from the theorem that any unconditionally hiding commitment scheme must be such that § = F {all strings are
consistent with what Bob has seen during the commitment protocol). An unconditional binding commmitment scheme, how-
ever, must be such that § = {s} after committing to s (so that Alice cannot open to another string s’ = s). It is a corollary to
this theorem that if a commitment scheme has either unconditionally hiding or binding, the validity of the other property
must rely on an extra assumption.

3. No unconditionally secure scalar product

In a scalar product protocol Alice and Bob have d-dimensional input vectors v, w & FY, respectively. They wish to compute
the scalar product
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without revealing “toe much” about their input vectors.?

Several variants of scalar product protocols can be defined, depending on the outputs of the two parties. One approach is
to give the scalar product as output to Bob (trivial SP). Alternatively, we can require that Alice and Bob each gets an additive
secret share of the scalar product (secret shared 5P or 555P). 1n this paper we use a third approach where we let Alice choose
her own part of the additive secret sharing in S55P (so that, as cutput, Bob gets the scalar product minus Alice's share) — we
call this approach determined S55P. Fig. 1 shows the determined S55P protocol.

[t is easily seen that determined SSSP and S55P are equivalent. We can turn an implementation of S8SP into a determined
SSSP by letting Alice set her own secret share to a value « of her choice. She then computes §' = & — &', where ¢ is the secret
share she got from the S5SP, and sends §' to Bob. Bob sets his own secret share to be £ + . Vice versa, given a determined
SS55P, Bob chooses a random number o' and sets his own share to § — «'. Bob sends o' to Alice, who sets her share to « + a'.
The reason that we use determined SS5P in this paper is that it gives more natural and efficient implementations of scalar
products in Section 5.

The special case of SSSP over the binary field is the computation of a Boolean and gate. It has long been known that it is
impossible to compute and gates with unconditional security [5], however, in this paper we do not only show impossibility,
but also a bound in the amount of information leaked by the more general scalar product protocols.

3.1. Commitment schemes from scalar products

We now show that a commitment scheme can be implemented by one call to determined S55P. We reduce a commitment
scheme over the field G to determined SSSP over [, for any dimension d > 1. The base field of the vector space does not have
to be the same as the field of the commitment scheme.

Let A = G be the random variable describing the input of Alice to the commitment scheme, and let F* be a vector space
such that |F7] is at least as large as the support of A. Furthermore, letf : F¥ — G be an arbitrary surjective function. To commit
to a string @ € G, the sender chooses a vector Vegf~'{a) at random, and a random value & < F. The receiver chooses a vector
wegF? at random. Sender and receiver then call the scalar product protocol with vectors ¥ and W, respectively, and the sender
sets his chosen secret share to o. The output, 8, of the scalar product is the commitment.

To open the commitment the sender sends {¢, ¥) to the receiver, who verifies that « + § = ¥ w. [f the tests passes, he
opens a = f(¥). An outline of this protocol can be seen in Fig. 2.

Lemama 1. Given a scalar product protocol which is secure against semi-honest adversaries, the commitment scheme in fig. 2 is
perfectly hiding and binding when the parties ore semi-honest in the commitment protocol.

2 Mote that scalar products over finite fields are nat inner products — they do not have the usual geometrical interpretation. In particular, a vector over a finite
field can be “orthogonal” to itself.



Proof. Since the two parties are semi-honest in the commitment protocol the only information that the receiver gets is f,
which is random, so the commitment is hiding.

Now assume that the sender can open to both a # @’ ¢ T, and let (. v) and (z'. v') be the two open messages. Since both
will be accepted we have that  + i —v-w and 2 + ff — v - w. Subtracting the two equations gives us the scalar product
o' o= (Vv v)-w.Since f{v) —a # a — f{v') the two vectors are different, so v' - v = 0. This means that the sender knows a
non-trivial scalar product with the input vector of the receiver, This contradicts the security of the scalar product, and thus
the sender can only open to one message. So the protocol is binding. |

Since the reduction does not rely on any assumptions, a secure implementation of determined SSSP will immediately give a
commitment scheme with the same security. The fact that no unconditionally secure commitment scheme exists implies that
no unconditionally secure SP exists either. We now see that it was no coincidence that all the scalar product protocols ana-
lysed in [14] were insecure. The following theorem, which is our first main result, shows how, with high probability, at least
one of the two parties in a scalar product will be able to learn non-trivial information about the input vector of the other party.

Since the commitment protocol in Fig. 2 only consists in one call to a scalar product protocol, the information leakage of
the commitment scheme can be directly translated into information leakage in the scalar product.

Theorem 2. In any scalar product protocol, after each invocation, there exists a natural number 0 < n < % and an algorithm E
such that Alice learns at least n 1 scalar products with w and Pr E(viewg) — v = 1/n.

Proof. Let a scalar product protocol be given, and let V ¢ ¥ be the random variable describing the input vector of Alice. We
implement a commitment scheme where Alice commits to a value from the same vector space, Y. Let f be any permutation
of the vectors in F Alice’s input to the commitment scheme is described by random variable A, where
PrA —a —PrV —f '(a), so that the distribution of the vector in the reduction will be the same as the original input distri-
bution to the scalar product.

From Theorem 1 we know that there exists a set SC [, known to both Alice and Bob, such that Bob knows thata ¢ § and
Alice can open to any @ ¢ S. Let {{z; v;)} be the set of all opening messages, where v; — f '(a;), for a; ¢ S.

As in the proof of Lemma 1 above, we see that Alice learns (v; — v;)- w — % — %; for all openings (%, v;) and (%, v;}. Though
some of these scalar products may be identical, by fixing i, and letting j vary over all other § 1 values, we see that Alice
learns at least § 1 distinct scalar products.

Let E be the function which takes the view of Bob, computes the set S, and picks a random element a’ ¢ S, and returns
f 'a'). The probability, Pr E(viewy) — v, that @ —a is 1/, since ac¢ S, and a' is chosen uniformly at random, and
independently of g, from S. Setting n — S yields the desired result. |

No matter what the value of n is in a given invocation of a scalar product protocol, it can clearly never be unconditionally
secure without extra assumptions.

Corollary 1. No unconditionally secure scalar product exists.

4. Application to previous scalar product protocol

In the paper |20] Malek and Miri propose a protocol for scalar products and prove that it is information theoretically se-
cure over small sets. More precisely, they claim that the probability that computationally unbounded Bob can guess the in-
put vector of Alice is 1/{{p> 1){p* p)) and the probability that computationally unbounded Alice can guess the input
vector of Bob is 1/p? 2, where input vectors are from the field F,.. g — p", of characteristic p. However, we show that the
probability that Bob can guess the input vectoris 1/p? > 1/((p* - 1)(p*  p)), which coincides with the bound of Theorem 2.

In the protocol by Malek and Miri vectors from I’ﬁ are mapped into elements from s (these two objects are, of course,
isomorphic). A basis of [y over [ is a set of elements {;..... %y} ¢ [y such that any element u ¢ [ can be written as a
unique sumu — Uy %y - -+ - Ugdly, forus. ..., uy ¢ Fg Given abasis {%...., o} we define the natural mapping from the vector

space ] to the field Fyy as by, (1) = ¢

£

Let [y be a finite field and let Fx be an extension field of ;. The trace of [ » over [y is the function Tr: T+ Iy,

-8

Triu) — ut',
i

(6)

=]

The trace function gives rise to the definition of dual bases, where bases {x...., %4} and {f,,.... 4} are dual if Tr{z:f;) — d;;

{where 4;; is Kronecker's delta). It follows (see [20] for details) that for two vectors v. w ¢ F;‘ and for two dual bases
{%..... %} and {f;..... fi4}, the scalar product of v and w is:

Vew = Trhy, an (V)R g (W) (7)

In the protocol by Malek and Miri the input vectors of Alice and Bob are from the vector field I'z The protocol uses (7) to
compute the scalar product in the field F ;. The protocol proceeds as shown in Fig. 3 (the notation is slightly difference from
the notation in |20]).
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Fig. 3. Scalar product protocol from |20].

The information leakage of this protocol is almost exactly what is guaranteed by Theorem 2, except that Alice learns one
more scalar product than guaranteed by the theorem. This shows that our information leakage bound is (almost) tight.

Theorem 3. In the protocol from [20] Alice learns ¢° scalar products with W and Bob can compute v with probability 1/q2.

Proof. First, note that

-1 _1 1 n
—~ b X — d _ _b _civ—d_1cv=v__ @
b a—d 'c ba-d'c bla—d'c
s0 V is a linear combination of the two elements X and Y. Since h is an isomorphism ¥ is also a linear combination of
h{_ﬂ:1 .Ofd}(x} and h{_ocl.,...:acd}(yl

Next, note that
aTr(XW) + STr(YW) = Tr((aX + BYOW) = (g, L )+ B,y (Y)) -3, (9)

for all &,  Fy.

We consider twa cases: {1) X = Y, where both are non-zero, and (2) X =Y, or either X or Y is 0.

If X = Y are non-zero, then (8) is a linear combination of two non-zero elements, and Bob has to guess the two coefficients
to find . By choosing two coefficients at random, Bob will get the right ones with probability 1,/q2. Alice can use (9) to
compute g% distinct scalar products with w.

If X =Y, or if either X or Y is 0, then (8) only has one unknown coefficient, so Bob can guess w with probability 1/q.
Similarly {9) only allows Alice to compute g scalar products. O

The nature of the information leakage in this protocol depends on the scalar field. In small scalar fields considerable infor-
mation is leaked to Bob, while Alice only gains limited information. Vice versa, over large scalar fields, the probability that
Bob can guess the input vector of Alice is small, while Alice a large number of scalar products.

5. Efficient and secure scalar products under various assumptions
5.1. Encryption based

A computationally secure implementation of the scalar product was given by Goethals et al. [14]. Their protocol can be
based on any semantically secure additively homomorphic public-key encryption scheme {E{x)E{y) = E{x + ¥}). Let {G,E, I}
be such an encryption scheme and assume that both Alice and Bob know the public key of Bob, but only Bob knows the cor-
responding secret key. If Alice and Bob have vectors ¥ = {v,,...,vy) and W = {wy,...,wy), respectively, the scalar product
proceeds as shown in Fig. 4.

A good candidate for the homomorphic encryption is the Paillier encryption scheme [22], which takes plaintexts from 7,
and gives ciphertexts in 7, where n is an RSA prime. Goethals et al. use the Paillier scheme in their paper.

One of the primary arguments against using schemes based on homomorphic encryptions is the blowup in the message
size. If we use Paillier encryption to perform scalar products over binary vectors, each bit is encrypted in 2048 bits, which is
unacceptable when working with massive data sets. To overcome the large communication overhead, we need an alternative

A B
E(w1),...,E(waq)

acpF__ C=E(-9) TIL E(w:)"

Fig. 4. Computationally secure scalar product protocol. Setting § = Dic) gives  + f =¥ W,



Table 1

Time consumption of scalar product based on FlGamal

Bilsize Alice {ms) Bob (ms) Brute-force (ms)
1 63 Negligible Negligible

2 46 Negligible Megligible

3 47 Negligible 62

4 62 16 406

5 62 16 1125

6 | Megligible 11,875

7 31 Megligible 24,094

8 62 16 92,859

homomorphic encryption which has less overhead when computing scalar products over small fields. To this end we propose
to use a modified version of the ElGamal encryption scheme|11] over elliptic curves which encrypts a 160-bit message to a
640-bit ciphertext for the same level of security as 1024-bit RSA.

The encryption of a message x in the elliptic curve ElGamal cryptosystem is defined as (rP,rQ = xG) where P and G are two
generators in the elliptic curve group, rc¢gZ, is a random integer, and n is the order of the elliptic curve group. The elliptic
curve point Q — sP is the public key of Alice while s is her private key. Therefore, the encryption of (w;..... wy) by Bob will

result in (r:P,r;:Q - wiG) foric {1...., d}, which are sent to Alice. Upon receiving these elliptic curve point pairs, Alice per-

forms elliptic curve point multiplication and obtains (v;r:P. v;(:Q ~ wiG)) fori¢ {1,....d}. She then computes the encryption
of her secret share zcgl: {rP.7Q « «G), and performs elliptic curve additions to obtain ((r + Y vir)P.(r - Y vir)Q
{2+ > vyw;)G). Decryption of this ciphertext by Bob will result in {37 v;w;)CG from which the scalar product is calculated
by using brute-force. Brute-force is necessary since discrete logarithm is difficult to compute in this elliptic curve. If the mes-
sages are chosen over a small field, the brute-force does not pose a problem as shown in the timing results below.

We conducted tests to see how practical it is to use the ElGamal encryption scheme as a building block for scalar products.
We used the MIRACL library [19] to implement the secure scalar product protocol on an Intel Dual-Core Centrino PC with
2 MB cache, 2 GB RAM, and 1.83 GHz clock speed. We used vectors of length d — 10 over fields with different bit lengths.
The timing results are listed in Table 1, where the term brute-force denotes the method to compute the discrete logarithm
which is necessary to decrypt the message. The tests shows that for vector spaces with entries of up to 8 bits it is possible to
use the ElGamal encryption scheme.

We implemented the Paillier scheme using the same experimental setting and found that Alice and Bob spends about 500
and 50 ms, respectively, in the secure scalar product computation, independent of the bit lengths of the vector entries (up to
the maximum of 160 bits).

When the ElGamal scheme is used for scalar products of binary vectors, the overhead is a factor of 640. When using the
Paillier scheme for vectors of 4-bit element, the overhead is 2048/4 — 512, A hybrid scheme, which uses ElGamal for vectors
over small fields, and Paillier for large fields, we can thus guarantee a worst case overhead of a factor of 640. Compared to the
overhead of the suggested efficient protocol of Atallah and Du [2] which has a communication overhead of approximately
160 times of the original message size when computing scalar products in 753, (and is insecure), we see that scalar products
based on encryption are not as inefficient as some might fear. By using a trick for “batch” computation of scalar products
suggested by Goethals et al,, the communication overhead can be further reduced.

5.2. Trusted third party

In this section we present a new secure scalar product protocol which uses a secure arithmetic circuit evaluation to com-
pute field multiplication in =, Under normal circumstances secure arithmetic circuit evaluation protocols are too inefficient
to be of practical use. However, our protocol relies on three ideas which makes it efficient:

1. Use an arithmetic circuit evaluation protocol over shares inspired by the Boolean circuit evaluation of Goldreich |15, Sec-
tion 7.1.3.3.]. The circuit evaluation protocol is secure for semi-honest players and relies on oblivious transfer to multiply
bits as described below.

. Use the Karatsuba multiplication algorithm |18] to reduce the number of and-gates.

. Use the oblivious transfer by Rivest [25] which is considerably more efficient than other oblivious transfer protocols, but
assumes the presence of a “trusted initializer” (this is the extra assumption we use to make a secure protocol possible).

Wbk

The Boolean circuit evaluation protocol of Goldreich [15, Section 7.1.3.3.] is easily generalised to an arithmetic circuit
evaluation protocol. An arithmetic circuit over a field [ is an acyclic, directed graph where nodes are arithmetic gates (e.g.
multiplication or addition) or input/output gates and edges are wires. Arithmetic gates have one or two input wires and multi-
ple output wires. Input gates only have output wires, and an output gate only has a single input wire. The value of an arith-
metic gate is the result of performing the arithmetic operation associated with that gate on the values of the source gates of
the two input wires. To make it easier to refer to gate inputs we write value of a wire as shorthand for value of the source gate



of a wire. To prevent anyone from seeing the values of non-output gates, the value of each arithmetic gate is additively secret
shared between the two players. This means that after evaluating a gate g Alice and Bob get values g, and g,, respectively,
such that the {secret) value of gate g is g, + g, . Before starting the circuit evaluation we say that all wires are inactive. When a
gate has been evaluated its output wires are said to be active. When all input wires of a gate are active, the gate can be eval-
uated, and in turn it'’s output wires become active. At the beginning of the circuit evaluation (when all wires are inactive) the
input gates (which have no input wires) are evaluated to activate their output wires. The value of an input gate is the secret
input value of either Alice or Bob. To evaluate an input gate g the value of which belongs to Alice, say, Alice chooses a random
field element g, and sends it to Bob. Alice keeps g, = a — g, where @ € F is her secret input. Input gates that belong to Bob
are teated in the same fashion.

For the purpose of this paper we distinguish between four kinds of arithmetic gates: addition of twao secret field elements,
multiplication between two secret field elements, multiplication of a secret field element from a subfield G CF and a bit
known to one party (bit-multiplication for short), and multiplication of a secret field element with a known constant. To
evaluate an addition gate, each party simply adds his shares of the values of the input wires. To evaluate a gate which mul-
tiplies a known constant with a secret field element, each party multiplies his share of the value of the input wire with the
known constant. To multiply two secret field elements, we use the Karatsuba multiplication algorithm explained below to
replace the multiplication gate with a sub-circuit consisting of addition, multiplication by constants, and bit-multiplication
gates.

To multiply a secret field element from G C F with a bit known to one party we use one invocation of an oblivious transfer
protacol. Suppose that Bob has an input bit b € {0, 1}, which we have to multiply with secret value a = a3 + 2, € G, where
Alice knows g, and Bob knows a,. Since ab = apb + a1 b, Bob can compute ;b by himself, and all we have to do is to compute
new values zo +2' = aob, such that Alice only knows zg and Bob only knows 2, and then set the secret sharing of the bit-mul-
tiplication gate to zp and z; =z + a1 b for Alice and Bob, respectively. To this end we call a 1-out-of-2 oblivious transfer where
Alice is the sender and Bob is the receiver. Alice first chooses a random field element z; = 5, and computes messages
m; = iay — 2, for i =0, 1. Alice uses inputs mg, m; to the oblivious transfer, and Bob uses input b. As a result, Bob gets
Z=my=>"bay—z, and sets z; =2 +ba;. Now Alice and Bob have the required additive secret sharing
Zo+71 =20 +Z +bay = ab.

A multiplication gate of arbitrary field elements can be reduced to a sub-circuit consisting of addition, multiplication by
constant, and bit-multiplication gates. Since each bit-multiplication requires one call to oblivious transfer, while the other
gates require no interaction, we need a sub-circuit which requires as few bit-multiplications as possible. To this end we
use a modified version of the Karatsuba multiplication algorithm which uses an expected number of n'#%:3! bit-multiplica-
tions to multiply two elements from Fy. To multiply x, ¥ € F» we fix a basis {a, 1} for Fp» over F,w: {for simplicity we assume
that n is a power of 2), we can then split x and y into smaller parts, x, X1, ¥,. ¥ € Fone, such thatx = axy + X, and y = gy, + ¥,
and recursively compute the three multiplications A=x,y, B=xy. and €= {x, +x){y, +¥). The product is
Xy = 0°A + a{C — A — B) + B, which can be computed with addition and multiplication with constant when the secret values
A, B, and C have been computed. At the bottom of the recursion, the multiplication of two 1-bit integers is simply a bit-mul-
tiplication as described above.

While most implementations of oblivious transfers are too inefficient for our purpose, the oblivious transfer proposed by
Rivest [25] gives a very efficient scalar product protocol. The oblivious transfer by Rivest relies on a trusted initiolizer - a third
party who only participates in the protocol in an initialization phase, and does not collude with any of the other players. In
the oblivious transfer by Rivest, the trusted initializer generates two random strings x, x; € G, and a random bit b < {0,1}.
He sends {xg, x1) to the sender, and (b, x,) to the receiver. The sender and receiver now have a “random instance” of an obliv-
ious transfer. To realize a real ablivious transfer of messages my, my € G the receiver sends the bit ¢ = ¢ & b to the sender,
where c is the index of the message he wants to learn. The sender replies with the message {mj, m| ), where m} = m; + Xeqi.
for i = 0,1. The receiver can NOW recover m, = M, — Xpq = M, — Xp. For proof of security and other details see [25].

Putting together the peaces above, we can compute the scalar product of two vectors ¥ = (vq,... vy and w = (wy, ..., wy)
known to Alice and Bob, respectively. The scalar product of the two vectors is done by the arithmetic expression

o
VW= viw, (10)
=1

which is easily converted inte an arithmetic circuit. The circuit has 2d input gates, one for each entry in each of the two vec-
tors. Foreach i € {1,...,d} we have a multiplication gate where the input wires are the output wires of input gates v; and w;.
[nternally the d multiplication gates are translated into Karatsuba multiplication circuits as described above. The cutput
wires of the d multiplication gates are connected to a binary tree of addition gates. The output of the root of the addition
tree is connected to the final output gate of the circuit.

5.2.1. Security

The only interaction which takes place in our scalar product protocol is the initial additive secret sharing of the inputs,
and during the oblivious transfer. If Alice and Bob are semi-honest, and the oblivious transfer protocol is secure, then
their outputs from each oblivious transfer are additive secret sharings of bit-multiplications. Clearly this does not reveal



any information about the input at all (since Alice chose her share uniformly at random). The security of the protocol thus
relies on the security of the oblivious transfer protocol used (Rivest oblivious transfer in our case).

5.2.2. Efficiency

To multiply two elements from the field [',:, Karatsuba needs approximately n'*#% bit-multiplications. Each bit-multipli-
cation requires one Rivest bit-oblivious transfers, which requires 7 bits of communication (2 bits from the third party to each
of Alice and Bab, one bit from Bob to Alice, and 2 bits from Alice to Bob). In the scalar product protocol we first have to share
the 2d field elements, and then perform d multiplications, so we expect to send approximately 2dn + 7n'%:'*d bits to com-
pute the scalar product of two vectors over ['5. As an example, it will take 1765d bits of communication to perform scalar
products between vectors in M.

Since the oblivious transfers only depend on the inputs of Alice and Bob, they can all be done in parallel, so we only need
one round of communication.

The computational cost of the algorithm is minimal, since no cryptographic operations are involved - only simple field
arithmetic,

5.3. Comparison of scalar product protocols

We evaluate the performance of the two proposed scalar product protocols in a real-world scenario, and compare them to
the scalar product based on Paillier encryption |14], and a trivial (insecure) scalar product.

The apriori algorithm is commonly used in association rule mining. Clifton and Vaidya showed |28] how to securely
implement the apriori algorithm on vertically partitioned data by using a secure implementation of scalar products. To give
a realistic comparison of the performance of the compared scalar products we have implemented the apriori algorithm pro-
posed in |28] and applied it to the “Congressional Voting Records” dataset from the UCl Machine Learning Repository |26].
The voting records dataset consists of 232 records, each with 17 binary records. When using the protocol from |28] on this
dataset, the scalar products are computed on 232-dimensional binary vectors. We are aware that the case of binary vectors is
the best case for both the ElGamal based scalar product presented in Section 5.1 and the third party based protocol presented
in Section 5.2. However, the benefit earned by the ElGamal based protocol is only in the brute-force decoding step, and the
benefit in the third party based protocol is only in the number of parallel executions of the Rivest oblivious transfer. In both
cases, the benefit earned is small compared to the overall timings in distributed environment shown below,

Our experimental setting consists of four virtual machines running on a quad-core computer. One of the virtual machines
is a software router, which we use to control the bandwidth and latency between the three remaining computers, which run
Alice, Bob, and the third party, respectively. We use Debian linux installed on VMware for the three virtual application com-
puters, and FreeBSD installed on VMware as software router. The application computers are located on each their virtual net-
work, and use the FreeBSD software router as internet gateway, thus giving full control over bandwidth and latency. A
tutorial for setting up the software router can be found at [10]. The host computer is an Intel Core 2 Quad QG600 with
2.4 GHz CPU and 4 GB of ram memory running Debian. Each virtual machine is given only 256 MB of memory to prevent
swapping on the host computer.

Fig. 5a shows the time it takes to perform the apriori algorithm on the voting records dataset for different bandwidth
when the node to node latency is fixed at 50 ms. Fig. 5b shows the effect on latency on the timing when then bandwidth
if fixed to 100 kbps. All timings are computed as average of five experiments.

Fig. 5a clearly shows that the improvement proposed in Section 5.1 (marked ElGamal in the figure) gives a considerable
speedup over the method proposed in | 14] which is based on Paillier encryption. It can also be seen that the method based on
a trusted third party, proposed in Section 5.2, has the best performance among the secure protocols for bandwidth.
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Fig. 5. Timing results. (a) Time vs. bandwidth. Latency fixed at 50 ms. (b) Time vs. latency. Bandwidth fixed at 100 kbps.



Fig. 5b shows similar results. However, the performance of the third party based protocol drops considerably for high
latencies. This is due to the fact that each Rivest oblivicus transfer in each scalar product needs four rounds of communica-
tion compared to only two rounds for all the other protocols. High latency therefor punishes the third party protocol. Notice
that a more careful implementation of Rivest oblivious transfer, where Alice and Bob get all the randomness needed from the
third party in one message at the beginning of the protocol would reduce the number of communication rounds to two per
oblivious transfer, plus one large bulk message in the beginning of the protocol. With this modification the third party pro-
tocol would perform best in all scenarios.

6. Conclusion

We show that no unconditionally secure protocol for scalar product exists for two semi-honest parties without extra
assumptions. It follows from this result that some of the scalar product protocols suggested in the literature are not secure.
In particular, we show that in any attempt to implement a scalar product protocol without any extra assumptions, either
Alice learns n — 1 scalar products with Bob’s input vector, or Bob learns the input vector of Alice with probability 1/n.

On the other hand, we demonstrated two efficient scalar product protocols which are secure in alternative models. The
first scalar product protocol is an improvement of the computationally secure protocol previcusly presented in [30,14,32).
The other scalar product protocol is a novel protocol which is very efficient compared to excising protocols, and whose secu-
rity relies on a “trusted initializer”.
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