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Abstract

We construct a �nancial network based on the correlations of the assets.

Referred to as a correlation network, its nodes are the assets and its edges

are the pair-wise correlations. The network is inspected by both spectral

and statistical analyses. We �nd that these analyses provide complementary

information regarding the interactions of securities in the market and their

clustering as well as a hierarchy in the market structure. Market portfolio

dominating behavior indicates scale free type of interactions where a small

number of assets linked to many others accounts for most of the activities.

We further introduce a pricing model that uses the interrelations of emerg-

ing dominant correlational motifs. Those that are in accord with piecewise

stationary behavior are found to successfully de�ne the future price bounds.
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Özet

Tez çal�³mas�nda �nansal varl�klar�n birbirleri ile olu³turduklar� kar³�l�kl�

ili³kileri gösteren bir a§�rl�kland�r�lm�³ a§ yap�s� olu³turulmaktad�r. Bu a§

yap�s�nda varl�klar dü§üm olarak ve bu dü§ümler aras�ndaki ba§ da kar³�l�kl�

ili³kileri, istatistiki terim ile korelasyonu göstermektedir. A§ yap�s� istatis-

tiksel ve �ziki tayf olarak incelenmi³tir. Yapt�§�m�z çal�³malar istatistiksel

ve �ziki tayf analizlerinin herhangi bir �nans marketinin hiyerar³ik ve grup

yap�s�n� ortaya ç�karmakta ve birbirini tamamlayan ve do§rulayan analizler

oldu§unu göstermektedir. Market porföyünün bask�n hareketi az say�da var-

l�§�n di§er çok say�da varl�k ile ölçümden ba§�ms�z bir etkile³imi i³aret et-

mektedir. Ayn� zamanda çal�³mada kar³�l�kl� olarak geli³en bask�n korelasyon

a§ yap�lar�n�n kullan�lmas� ile olu³turulmu³ yeni bir getiri üretme ve �yat-

lama modeli tan�t�lmaktad�r. Bu modelin parçal� durgun hareket eden a§

yap�lar�n�n gelecek �yat aral�klar�n� daha iyi belirledi§i gösterilmektedir.
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1 Introduction

1.1 Objectives

Recent years have witnessed the growing interest in the motions of �nan-

cial markets as a research area, the interest arising from the fact that they

involve many sub-systems. We can de�ne a �nancial market as a union or

intersection of sub �nancial markets. Stock exchange markets, currencies,

bonds, derivatives can be listed as examples of sub-�nancial markets. We

can classify the motions of a sub-�nancial market into two main groups.

The �rst one is a�ected by the motion of the whole �nancial market and

the interactions between the other sub-�nancial markets. The second one

is the clustering motion. There are some clusters within each sub-market

which move together and are a�ected by the same kind of information. This

phenomenon constitutes a hierarchical structure in the market.

Many researchers have tried to �gure out this hierarchical structure of the

�nancial market by approaching the problem from di�erent point of views.

When Mantegna put forward his studies by working on a network, the con-

cepts started to be constructed on a more tangible basis[16]. First, he trans-

formed the �nancial market into a network concept by representing the assets

by nodes and the correlation coe�cients by edge weights. Correlation net-

works give useful structural properties to analyze the market. Bouchaud et

al.and Stanley et al. and Boccaletti et al. who have worked on correla-

tion matrix found that the correlation matrix is di�erentiated from random

matrix by having hierarchical structures.[1, 3, 19]

These two studies motivated us to direct our studies to discovering the
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hierarchical structures of the �nancial market. We therefore aim to �nd

out the special properties and enriched parameters as alternatives to the

simple mean-variance parameters. In our analysis we utilized several tools to

join the di�erent perspectives. For instance, we used physical statistics and

network statistics. During our research we recognized that some properties

of networks change by the frequency of data. We also realized that using

di�erent time periods cause signi�cant changes in the correlation networks,

and the resulting properties In the light of the foregoing, we developed a

scenario generation model.

1.2 Data Set

During our research, we combine our theoretical studies with real life data.

We utilized from two data samples. The �rst is obtained from Istanbul Stock

Exchange Market (ISE) and is used for constructing a matrix which consists

of all the correlation coe�cients. The set of data is formed by 211 assets

(stocks) which includes daily closing prices from 18.10.1999 to 31.05.2007.

We use ISE data in di�erent intervals. We use 1,2,5,10 and 20 day price

intervals to calculate the rate of returns which are used to construct the

correlation networks.

The second data set is used in the last part of thesis these are we also

use data of some commodities, a currency and the index of New York stock

market. We will de�ne the second data set in more detail in the corresponding

chapter.
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1.3 Organization of the Thesis

The thesis is divided into three parts. In the �rst part, we �rst construct

the correlation matrix which will be used in both the spectral and statis-

tical analyses and followed by the study of the spectral properties of the

correlation network. In the second part, we form the minimum spinning tree

and study its statistical behavior in addition to that of correlation network.

To discover the underlying properties that may have been masked by either

the market portfolio or the noise, we reconstruct the correlation matrix and

correlation network. We combine the results of spectral and statistical anal-

yses to obtain more accurate results. The �nal part, we develop a pricing

scenario model based on generating networks of cross-correlations between

assets. The novelty is in using equally divided, stationary pieces of the time

series so as to allow for the rewiring of the networks, instead of concentrating

on the data available as a whole. This approach enables us to observe the

emergence of certain motifs that dominate the cross-correlations, leading to

a more reliable portfolio generation. The implications of our �ndings as well

as an outline of future work are presented in the �nal chapter.
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2 SPECTRAL ANALYSES

In this chapter, spectral properties of the correlations which are obtained

by data with di�erent frequencies are analyzed. First of all, probability

distribution function of the eigenvalues for di�erent intervals is determined.

Secondly, the eigenvector � sector analysis is conducted.

2.1 Basic Terminology and Literature Review

The focus of this chapter is the spectral properties of the data correlations.

First of all, the correlation matrix and its properties are examined. Then

the probability distribution function of the eigenvalues is determined for the

data with di�erent frequencies. Finally, the eigenvector � sector analysis is

conducted. Some of the key concepts from statistical physics have been used

in the explanation of �nancial systems. In order to analyze the �nancial

markets, we started our studies by using the spectrum analysis concept of

statistical physics. Recently, spectrum analysis is used for complex �nancial

systems especially spectra of correlation matrix has been studied in detail

with motivating results.[3, 10, 17, 19]

The correlation coe�cient ρij of two random variables such as i and j,

with expected values of rate of return and standard deviations σi and σi is

de�ned as follows:

Cij =
〈rt

ir
t
j〉 − 〈rt

i〉 × 〈rt
j〉√[

〈(rt
i)

2〉 − 〈rt
i〉2
]
×
[
〈
(
rt
j

)2
〉 − 〈rt

j〉2
]

In this study our aim is to focus on the global behavior of the market
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rather than focusing on the local interactions of assets. To do that, we

�gure out the interactions of all assets which a�ect the motion of the system.

Since the spectrum of correlation matrix gives constructive information about

the �nancial assets, we directed our analysis to gaining the spectra of the

correlation matrix. To obtain the motion of the market and clusters, the

spectral analysis with eigenvalue decomposition method is appreciably new

and useful in �nance domain. The eigenvalue problem �rstly came across

during the rope motion studies of Johann, Bernoulli and d'Alembert in the

18th. Then Euler focused on the importance of the principal axes while his

study on rotational motion and Cauchy used principal axes in explaining

the quadratic surfaces and generalized it to arbitrary dimensions. Although

the eigenvalue concept had been studied by several researchers since 18th

century, the word �eigen� was introduced by Hilbert in 1904 to cover the

meanings "own", "peculiar to", "characteristic", or "individual".[11]

Eigenvalue decomposition is a factorization method for complex matrix,

used for transformation of the eigenvalues and associated eigenvectors in

several applications in statistics.

The eigenvalue equation is given below:

C × U = U ×D

D is a matrix which includes eigenvalues in its diagonals and the U is the

eigenvectors' matrix corresponding to the eigenvalues. Eigenvalue decom-

position is used by many authors to measure the correlations of stock price

change and motion of the assets in these correlation concepts.[3, 19] Stanley

and Rosenow applied the eigenvalue decomposition method in random ma-

trix theory (RMT) to demonstrate the validity of the universal predictions
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of RMT for eigenvalue statistics. (Figure 23 in Appendix.) In all stud-

ies, �rstly they gained the eigenvalues and �gured out the distribution of

the eigenvalues.[19] Bouchaud plotted the distribution of the eigenvalues and

suggested that the largest eigenvalue corresponds to the motion of the whole

market. [3] In an ine�ective market the largest eigenvalue gets larger values

in comparison to the more e�ective markets. We tried to observe this rela-

tionship between ine�ective markets and the biggest eigenvalue by changing

the frequency of the data. (�gure 2). The researchers have focused on the

distribution of eigenvalues to explain this spectrum. [14, 3, 10] They have

worked to analyze the main motion of dynamic systems by considering the

noises. Bouchaud stated that the eigenvector corresponding to the biggest

eigenvalue shows the main dimension of the market and Pafka et al put up

the argument of small eigenvalues symbolize the noises. Whereon Kertesz et

al [10] discussed the eigenvalue spectrum by review of Bouchaud and Pafka's

studies and developed a model for the explanation of the market behavior

by spectral properties of eigenvalues. The model proposes that the largest

eigenvalue de�nes the motion of market; the small eigenvalues are associated

with noisy of the interactions of nodes, and intermediate eigenvalues carry

important information about assets moving together, such as a cluster which

is corresponding to a sector. Saramaki et al [17], integrated spectral proper-

ties with approach of clique of percolation which is used to interpret set of

communities (clusters) by Palla et al.[7] As it can be seen form the wealth of

literature review, spectral analysis is a promising topic for new researches.
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2.2 Spectral Analyses

First of all we obtained the correlation matrix and decomposed it into eigen-

values and eigenvectors by eigenvalue decomposition technique. Eigenvalues

are the attributes that characterizes the spectra of the �nancial data. Then

we exposed the probability density function of these eigenvalues which is

shown in Figure 1.

Figure 1: The probability density function of the eigenvalues.
These eigenvalues obtained by decomposing cross-correlation of matrix of 211
companies which are trading in ISE during the period 11.1999-05.2007. The
inset shows the largest value among all eigenvalues.

Below, the classi�cation of the eigenvalues according to the probability

density function analysis is presented[10]:

1. There is a quasi continuum of small eigenvalues which can be described

by random matrix theory corresponding to noise and majority of them fall

into this category

2. The largest eigenvalue is far from rest and it corresponds to the global

7



behavior of the market.

3. The discrete spectrum of intermediate eigenvalues carries important

information about the correlation that can be related to market taxonomy.

As mentioned above, we will investigate the areas that will show us the

clustering information on the motion of the market. It is obvious that the

largest eigenvalue is distinguished and this picture will lead us to obtain the

entire market's correlation. [3] Market's behavior is examined by the plot of

probability distribution functions of di�erent frequencies of data which are

shown in Figure 2.
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Figure 2: The probability density function of the eigenvalues
We construct our cross-correlation of matrices by using di�erent intervals of
price time series. For instance, while we form the 5-day correlations we use

changes on price in 5-day interval.

The reason that we observe the behavior of di�erent frequencies is to

understand whether our data is informative or not. We conclude that as
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we increase the frequency, the largest eigenvalue gets smaller and reaches to

equilibrium and at the same time the ratio of smaller eigenvalues gets larger.

For example for our data the largest eigenvalue was 69 and after we increased

the frequency it converged to 42. This results shows that the dynamics of

the system behaves as expected.

2.3 Clustering/Sector Analysis with Eigenvectors

Financial markets show di�erent types of motions. In order to observe the

source of these di�erent motions, it is important to understand the dynamics

of the market. One of those main motions is the dynamic of co-moving and

clusters. Spectral analysis suggests a method to analyze the clusters of the

market. In eigenvalue decomposition, it is stated that the largest eigenvalues

except for the largest one, can be correlated to the clusters of the market.

It is also stated that eigenvectors of those eigenvalues can be informative

about the clusters. Onnela et al. who studied on eigenvalue and clustering

relation. They proposed a methodology to relate the clusters to eigenvalues

and eigenvectors.

The methodology is as follows:

1. Correlation matrix is decomposed into eigenvalues matrix and eigen-

vectors matrix with eigenvalue decomposition method.(n*n)

2. The sector vector is created by sector numbers which companies belong

to. (1*n)

3. Normalize the sector vector to which is composed by 13 rows refers to

sectors and 211 columns refers to companies and normalize variables refer to

the relation between each company and each sector.
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4. Obtain the inner products of normalized sector matrix and eigenvectors

matrix. (k*n)

Normalized sector matrix is a k*n matrix, corresponds to k di�erent sec-

tors in rows and n companies in columns. The matrix includes normalize

variables such that, there is
√

1/m2 in each column, m identi�es number of

nodes in each sector.

To sum up the methodology; on eigenvectors matrix, components of eigen-

vectors are associated with each asset and then we take the summation of

sector-speci�c assets' components times normalization term. Finally we reach

the weight of the sectors on the eigenvectors. This analyze is only applica-

ble for the eigenvectors corresponding to the largest eigenvalues. Sector-

speci�cation is one of the main parts of our analysis. Since the data we used

starts in November 1999 and lasts in May 2007, we found assets which were

trading continuously. To cluster the assets, we applied ISE sector-speci�c

indexes. ISE has 20 sector-speci�c indexes, which are shows in Figure 25 in

appendix. Since there are very few assets in some clusters we merged them

and decreased to 13 sectors.
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Table 1: The inner product of normalized sector matrix and eigenvectors
matrix.
Normalized sector matrix is a 13*211 matrix, corresponds to 13 di�erent

sectors in rows and 211 companies in columns. Normalized sector matrix is
a k*n matrix, corresponds to k di�erent sectors in rows and n companies in

columns. The matrix includes normalize variables such that, there is√
1/m2 in each column, m identi�es number of nodes in each sector. The

last operation is to take inner products of these two matrix.

We determine the matching between the eigenvectors and sectors. The

eigenvector which belongs to the biggest eigenvalue is a�ected by large sec-

tors in a uniform way. It is an expected result. On the other hand, the

eigenvectors which belong to other discrete big eigenvalues are expected to

be a�ected by only a unique sector. The idea says that, the largest eigenvalue

refers to the variance of its own eigenvector. The largest eigenvalue corre-

sponds to the global behavior of the market, and then it must be a�ected

by sectors of the market by the proportion of their size. Additionally, other

large eigenvalues correspond to eigenvectors for each sector and it is expected

12



to be a�ected only one sector.

Table 2: Eigenvector analysis results for di�erent frequencies of data

When we analyze the data with di�erent frequencies, we aimed to �nd

more informative intervals. Therefore we applied the clustering analysis and

achieved important results. The bold values show the biggest values which

are obtained by the summation of sector speci�c components of each eigen-

vector. It shows the e�ect of each eigenvector to the corresponding sector.

As we decrease the frequency of the data the bold values starts to have more

distinct values from remaining values and we see that each sector starts to

match an eigenvector. Getting more distinct values shows that our data gets

rid of noisy which is a desired result for our analysis. The details of this

13



�nding will be studied in statistical properties chapter. In order to iden-

tify visually apparent structure, we have utilized the minimal spanning tree

method introduced by Mantegna by de�ning a new parameter which will be

mentioned in the next chapter.
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3 STATISTICAL ANALYSIS OF THE MAR-

KET

3.1 Basic De�nitions and Literature Review

Network concept is an e�ective representation technique to visualize the set

of connections within complex systems. The Financial market is one of these

complex and dynamic systems since it has so many di�culties in modeling

of �nancial systems. To be able to model �nancial systems, correlation is a

fundamental variable to de�ne the system and interactions in multivariate

model. Covariance is a multivariable which depends on the correlation. It can

be used to model the whole system whereas some forecasting methods have

local variables such as moving averages models and autoregressive conditional

heteroscedasticity process. A correlation network can also be de�ned as a

weighted network. In network terminology, the assets are the nodes and

the correlations between the assets are the weights of the arcs (links). The

weighted network is constructed by studying di�erent methods. The purpose

of using di�erent methods during the formation of the network is to observe

the relationship of clusters and �nd the most informative illustration of the

network.

Correlation network was de�ned by Mantegna in 1999 for the �rst time.

He wanted to demonstrate the whole market and the interactions of the as-

sets. The Correlation network was constructed with using cross � correlations

of the changing stock prices on the same interval. There are several �nan-

cial networks which are constructed by the help of correlation. Some of the

recent methods which are used to illustrate the �nancial networks are a min-

15



imal spanning tree [16], an asset graph with a threshold [10, 9], a maximal

spanning tree [17] and a planar maximally �ltered graph [21]. According

to correlation network models, a minimal spanning tree di�erentiates by a

new parameter which is used while constructing the network. Mantegna has

introduced a new parameter �distance� which is in inverse proportion to the

correlation coe�cient. The distance parameter represents the high correla-

tion between the assets with a short distance in the network.[16]

A �nancial network branches into two main parts called tree network and

graph. The di�erence between them is that the graph is allowed to include

cycles while the tree is not allowed. To visualize the clustering, tree network

concept is more e�cient and apparent. We have used minimal spanning

tree (MST) to visualize the correlation network of Istanbul Stock Exchange

market.

Although network visualization is an informative method for searching

statistical properties, we have also analyzed the network in order to reach

meaningful statistical metrics or enriched properties of assets-nodes on the

network. We applied some network metrics used on concrete network such as

air-transportation network and scienti�c collaboration network which were

studied by Vespignani and Barrat.[22] Strength, neighbors degree, next neigh-

bors degree and clustering coe�cients are some of the statistical parameters

which have been used for analyzing complex networks. [9] In addition to these

studies, we conducted enriched statistical parameters. We have also stud-

ied network properties, such as topologically di�erent growth types, number

and size of clusters and also growth types of clusters cited by Onnela and

Kertesz.[9]
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3.2 Minimal Spanning Tree and Application for Istan-

bul Stock Exchange Data

The minimum spanning tree is an e�ective tool for discovering the hierarchi-

cal structure of the network. In a fully network, some information cannot be

seen easily. Many links between nodes makes it harder to obtain the required

results. Using the minimum spanning tree algorithms, we can �gure out the

basic structure of the data. It can be considered as a �ltering tool.

The study started by constituting a matrix consisting of all the correlation

coe�cients for a set of the Istanbul Stock Exchange Market (ISE). The set

of data is formed by 211 assets (stocks) which include daily closing prices

between (October 18, 1999) and (May 31, 2007). The assets are separated

into 13 main sectors. The sectors, number of companies corresponding to

each sector and color of the nodes referring to the companies is given in

Figure 3:

Figure 3: The sectors, number corresponding to each sector and color of the
nodes which referring to the sectors in the minimal spanning tree.

A minimal spanning tree was used for �nancial implementation for the
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�rst time by Mantegna in 1999. MST has been applied to Istanbul Stock

Exchange Market sample data.

After constructing the correlation matrix, we used the distance metric of

Mantegna to construct the distance matrix, d which is de�ned as the distance

between node i and node j.

dij =
√

2× (1− ρij)

This metric is expected to ful�ll the metric axioms which are explained

below:

1. d(i, j) = 0 if and only if i = j; The diagonal of distance matrix is zero

because ρii = 0.

2. d(i, j) = d(j, i) ; Distance matrix is a symmetric matrix .

3. d(i, j) ≤ d(i, k) + d(j, k); The third axiom is proved by [13].

3.3 Minimum Spanning Tree Calculations and Results

Aminimum spanning tree is a sub-graph which ensures that all nodes connect

to each other. Among many algorithms to generate sub-graphs from network,

Kruskal algorithm is the most general and simple algorithm to construct

a MST from a fully connected graph.[4, 15] The principle of the Kruskal

algorithm is to add an edge with minimum weight as long as it does not

create a cycle. We use Kruskal algorithm to convert a �nancial network

which is a connected and undirected graph into a MST and �nd out the

statistical properties our network.
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Algorithm 1 Pseudo code of Kruskal algorithm which is used in �nancial
correlation network

The minimum spanning tree is obtained by implementing the Kruskal al-

gorithm in Matlab software and displayed by YED graph visualization pro-

gram. In addition to the Kruskal MST algorithm, we also di�erentiate the

nodes with respect to their sectors and sizes. The color of a node shows

the sector that node belongs to and the size of a node shows the strength of

that node. The �rst input of the algorithm is the distance matrix which is

obtained by correlation matrix according to Mantegna distance metric. Sec-

ond input is the vector of assets. It takes numbers between 1 and 13 which

represents the sector that a node belongs to.

By applying the Kruskal algorithm in Matlab and YED visualization

program to our data we have obtained the minimum spanning tree given in

Figure 4. The contact number of each node is given in the inset of the graph.

We will use this contact number for comparison of minimum spanning trees

which are gained by data with di�erent frequencies.
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Figure 4: Minimum spanning tree of Istanbul Stock Exchange Market
Minimum spanning tree of Istanbul Stock Exchange Market's correlation
network by daily price change. There are some sector-speci�c groups colored
in a pool which are indicated strong relation with their position in the tree.
(Inset: Probability distribution function of contact number of each node in
minimum spanning tree) 20



A minimal spanning tree �gures out the dynamic system of the market.

The �rst result is the sector-speci�c clusters are not shown clearly. The

tree has a centralization motion and very few clusters, the clusters are also

not sector-speci�c. In the previous chapter it was stated that the spectral

analysis of 1-Day data did not give us clear clustering information. This

result is proved by the tree, too. We can also see the subsystems which can

be called clusters are moving in same the dynamics and are a�ected by each

other.

Another important result is about central nodes and strength of the nodes.

The tree provides us to see the big system, clusters in the system, central

of the clusters and motion from the central to the branch. It also gives us

motivation to research if there is a lag or e�ect from central to the branches.
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Figure 5: Comparison of MST's of di�erent frequencies of same data
Left:Istanbul Stock Exchange Market Correlation Network by 1-Day Price

Change, Right:By 20-Day Price Change

The Figure 5shows the minimum spanning trees, which are obtained by

using di�erent time intervals. In our analysis, we used 1-Day, 2-Day, 5-Day,

10-Day, 20-Day price change data but only the results of 1-Day and 20-Day

analysis are displayed. We can see that the tree reduces to decentralized

system and includes more hubs when we decrease the frequency of data.

This result shows in right and middle parts of the Figure 7 by the probability

distribution of contact numbers. The contact number of the node had the

largest contact number is decreased by decreasing frequency of data. We

obtained a similar result with the eigenvector analysis. The common result

of those two studies is that the larger intervals give us more information

about clusters and interaction in these clusters or blocks. For instance, when
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we increase the interval of data, the probability density function of contact

numbers can be changed dramatically. The number of nodes which have only

one neighbor and the maximum contact number reduce, while the number of

nodes with neighbors di�erent than 1 gets larger. (Figure 7). This situation

explains the increasing hub structure of the trees which is shown in the

visualization of MST.

When we observe the minimum spanning trees, we can see the discrete

hubs while decreasing frequency of data. We will analyze the statistical

properties of these hubs such as the clustering coe�cient and strengths in

the next sub-chapters.

3.4 Re-Construction of the Correlation Matrix

In recent research the market behavior has been symbolized by the largest

eigenvalues. We want to �lter this main motion to look into the inside of the

hierarchical structure in detail. We started by decomposing the C correlation

Matrix of the market by eigenvalue decomposition and then we equaled to

zero the largest eigenvalues and discrete eigenvalues. We constructed the

new C correlation matrix by only small eigenvalues. After we obtained a

new C matrix which was �ltered the market behavior, we apply to minimum

spanning tree algorithm and �gure out the new hierarchical structure and

graphs for di�erent frequencies of data. We see in Figure 6 that, the tree is

decentralized and there are much more than a few hubs and small groups.

We can see the same result in the left panel of Figure 7. When we �lter the

dominant motion the market we can see the blocking and clustering motion

as well as background noises.
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Figure 6: Comparison of MST's of di�erent frequencies of the reconstructed
data.
Left:Istanbul Stock Exchange Market Correlation Network by 1-Day Price

Change. Right: By 20-Day Price Change

The decentralization and the secession attribution are repeated in recon-

structed correlation of the minimum spanning tree of di�erent intervals of

data.
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Figure 7: Comparison of the pdf of contact degrees of nodes in minimum
spanning tree. (Left: Original data, right: Reconstructed data).

In addition we can reconstruct the C matrix by eigenvalue decomposi-

tion and then equal to 0 all eigenvalues except the largest eigenvalues and

construct C matrix again. When we draw the minimum spanning tree of

this new correlation network we get the centralized minimum spanning tree

which is shown in Figure 8. By this method we have �ltered all the details of

the hierarchical structure. Figure 8 shows that a node symbolizes the capital

asset market portfolio and this node acts like the �rst neighbor of all other

nodes.
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Figure 8: Minimum spanning tree of Istanbul Stock Exchange Market's cor-
relation network reconstructed by only the largest eigenvalue.

We will study to discover the statistical properties of all correlation net-

works and the minimum spanning trees. We will combine our results of

statistical and spectral properties at the end of the chapter.

3.5 Enriched Parameters of the Statistical Properties

On the networks, we need some parameters to assign the structural proper-

ties. In some physical real networks such as supply chain network or science

collaboration network, some appropriate metrics have been de�ned to merge

weighted and topological evidence that enable us to characterize the com-

plex statistical properties of links and nodes. Aim of the study on statistical

properties to obtain the information about groups and clusters and also de-

�ne topological structure of the clusters. We expect to �nd out enriched

properties of clusters and compare with minimum spanning tree. Strength,
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neighbor degree, next neighbor's degree and clustering coe�cients are some

of the statistical parameters which have been used for analyzing the complex

�nancial correlation networks. [9, 8, 18]

In addition, to �lter information from noise in correlations, a threshold

value, p is used in our analysis. The p value is a ratio of the number of

edges which are greater than the threshold correlation value to the number

of all possible edges. We use this threshold obtained by spanned graph order

analyses.

In our study we also analyze statistical properties by changing the fre-

quency of the data. We use 5 di�erent frequencies of data. The �rst one is

1 day interval and the others stand as 2, 5, 10 and 20 days interval.

3.5.1 Strength of Nodes

Strength distribution varies according to the network's nature. For instance,

on a transportation network, some nodes would be covered more than others

or some settling areas would be visited more than others. Another example

can be a science collaboration network. The number of references given from

the papers would not be the same for all. The nature of the network would

be structured by the characteristics of the case. In the �nancial network case,

strengths increase with high correlations and also in central nodes (assets).

The strength of the node is de�ned as;

Si =
∑N

j aijρij

This quantity measures the strength of nodes in terms of the total corre-

lations between their connections.[22, 9]
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Figure 9: Probability disribution functions of strengths in di�erent data

The ρij is the correlation between node i and node j. The aij matrix

is the binary matrix for a special p value as a threshold, it has speci�ed

the existing links after threshold. Strength is an e�ective measure and can

be used without any threshold. Strength generally used for providing the

standardization with remaining statistical properties and to eliminate the

nodes has low strengths and they can be accepted as noisy. In our study we

�gure out probability distribution function of strength with threshold and

without threshold. Figure 9shows the probabilty distribution of the strength

of the nodes. This �gure obtained by without threshold. This measure

shows the common increase on the whole correlations when we decrease the

frequency of data. The distribution becomes low and spreading case in 20-

Day interval data.
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3.5.2 Neighbors andWeighted Average Nearest Neighbors Degree

Of Nodes

A node degree or de�ned as neighbors degree of node is

ki =
N∑
j

aij

which is the number of the nodes connected to i in speci�c p value. In

fully network which is without a threshold the k is the total number of nodes

minus one for all nodes. To reach informative results, threshold has to be

used. This threshold gives us the information about central nodes. We can

also compare the largest strength of the node and the largest degree of the

node.

To perform a local weighted average of the nearest-neighbor degree ac-

cording to the normalized weight of the connected edges, the weighted average

nearest the neighbor degree is introduced as; [22]

kw
nn,i = 1

Si

∑N
j aijρijkj

In Figure 10 we can obtained the result that, while nearest the neighbors

degree are increasing the strength of nodes are decreasing. Their neighbors

have less connection and at the same time large strengths. It is similar for

all intervals of data but this reverse pattern gets lost in big intervals such as

20-day data.
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Figure 10: Scatter plot of weighted average nearest neighbors degree of nodes
to strengths.

3.5.3 Clustering Coe�cient and Weighted Clustering Coe�cient

The clustering coe�cient is a metric of strength and local cohesiveness. The

cohesiveness around node i can be observed by the clustering coe�cient Ci,

de�ned as the ratio between the number of triangles of node i and the max-

imum possible number of such triangles:[1]

Ci = 4i

ki(ki−1)/2
=

∑
j,h

aijajhahi

ki(ki−1)

a is binary adjacency matrix. Hence Ci = 0 if none of the neighbors of a

node are connected, Ci = 1, if all of the neighbors are connected.

In some cases all nodes or links do not have the same features. Some

nodes have more strength and can be located in central of the network. So,

the parameter of Vespignani et al. provides that some of nodes are more

important.[22]
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Figure 11: PDF of weighted clustering coe�cients in di�erent frequencies
and Scatter plot of weighted clustering coe�cient and strength

The weighted clustering coe�cient Cw
i measures the local group cohesive-

ness and is de�ned for any node i as the fraction of connected neighbours of

i.[18, 9, 22]

Cw
i =

1

Si(ki − 1)

N∑
j,h

(wij + wih)

2
aijaihajh

Clustering and also weighted clustering coe�cients are normalized on the

interval[0,1]. If Ci > Cw
i then, the topological clustering of the network is

generated by links with low weight. On the contrary, Ci < Cw
i the intercon-

nected triples, are more likely to be formed by the links with larger weights.

In Figure 11 the value of weighted clustering coe�cients increases by

decreasing the frequency. The other important result is the p ratio value

which is connectivity, is increased. The most important result is visible in

Cw
i &Si �gure. While Clustering Coe�cients are getting bigger the strength

of nodes are decreasing.

It has shown that, clustering coe�cient and weighted average neighbors'

degree increase at the same proportion, while the clustering coe�cient in-

creases the strength decreases but nearest the neighbors degree increases.
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3.6 Synthesis of Spectral and Statistical Analyses

The correlation matrix is di�erentiated from the random matrix by having hi-

erarchical structures and special properties[3]. Minimum spanning tree and

statistical properties of a correlation network are used to �gure out these

special properties. Meanwhile, eigenvalue analysis enabled us to expose the

hierarchical structures of correlation network. As expected, we observed that

the correlation matrix is di�erentiated from a random matrix by eigenvalues

distribution. By considering the results of the analysis, we reconstructed our

correlation network by using two di�erent methods, and tried to �nd out

the special properties. In the previous subsection we introduced the statis-

tical properties of original network which have spectacular patterns. Figure

10 Now, we will demonstrate the statistical properties of the reconstructed

correlation networks.

First of all to compare the results easily knnw
i versus Si �gured in this

sub-section.

The correlation matrix �rstly decomposed and then composed with only

largest eigenvalue and statistical properties and minimum spanning tree are

achieved, at the same time.

We see patterns in Figure 12clearly. Statistical properties of reconstructed

network are separated from original network by de�nite patterns.

We applied second reconstruction method which is composed with only

small eigenvalues. We have almost di�erent properties �gured out in right

parts of the Figure 12.

The most important result is that the largest eigenvalue carries all infor-

mation about the patterns and properties. Minimum spanning tree instances
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Figure 12: Top �gures: Weighted average nearest neighbors degree versus
Strength for original network and reconstructed networks. Bottom �gures:
Weighted clustering coe�cient versus Strength for original network and re-
constructed networks.

support our �ndings about the largest eigenvalue.(Figures 8, 6). We recon-

struct the correlation network to purify the information about clustering and

local interactions from general behavior of the market. Our last �gure says

that without market behavior there is not any pattern in statistical prop-

erties. This result can be helpful to mention about the market e�ciency.

(Figure 12)
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4 REWIRED PRICING MODEL

4.1 Basic Terminology and Literature Review about Es-

timation Methods and Rewired Networks

Estimation of the future has always been an enigmatic topic. Uncertainty of

future is intrigued by scientist from di�erent disciplinary such as economics

and �nance. Prediction of uncertainty in dynamic systems is a more di�cult

topic compared to the static systems. Finance is an example of dynamic and

multi-disciplinary systems that can be a�ected from di�erent type of infor-

mation. Financial market is a huge and union system which can be de�ned by

the union of sub �nancial markets and intersection of them. Stock markets,

derivative markets, commodities, bond and futures are main and well-known

markets which form the �nancial market. Since each market is adequately

huge, analysis usually conducted on the clusters or groups of the sub-market

which is an open system and can be a�ected by other sub systems. When we

started to research on stock market we easily realized that the sub market

assets or nodes behave as an integrated or non-stationary time series. This

result shows us that to the sub-systems' behavior di�ers from Gaussian mo-

tion which is a desideratum condition by �nance analysts, economists and

all forecasters. A time series is stationary if it is probability distribution

function invariant under time shift [13] and data �uctuates around a con-

stant value. However time series of nodes are integrated or as we called in

our study they are piecewise-stationary. When we move the asset from the

cluster or sub-�nancial market to the union market, the system becomes a

closed system and more stationary. So the studies which are about time series
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shows that the predictability of time series become easier when the system

is stationary. Nobel laureate scientist Grange emphasizes that many pairs of

macroeconomic series seem to be stationary on linear combination of them,

as it is suggested by economic theory.[1] This �nding certi�es our conjecture

which states that union �nancial market called closed system behaves more

stationary according to sub �nancial markets which are open systems. Ana-

lysts usually work on time series which are only a node or clusters or a stock

market which we have studied in previous chapters. Estimation of time se-

ries of assets which are accepted non-stationary is relatively more di�cult to

predict. Although estimation of the future is not an easy topic in �nance, we

can use some basic forecast methods such as auto-regressive moving average

models, generalized auto-regressive conditional heteroskedasticity, decision

trees, arti�cial neural networks and other several methods which are recently

have been researched. Time series forecasting is a harder problem because

of the fact that it is nonlinear and integrated. Since integrated time series

are predicted relatively in a more di�cult way, performances of forecasting

methods are a�ected detrimentally. On the contrary the stationary series can

be estimated easier by the help of the trend or seasonality. Unfortunately,

di�erent to product demand series or detective product series, �nancial time

series which is formed by daily closing price of assets have integrated motions

such as random shocks, short trends and lots of noises. Auto-regressive mov-

ing average model (ARMA) sometimes called Box-Jenkins is a time series

prediction model that was pioneered by George Box and Gwilym Jenkins. It

includes two parts. First one is AR part which principal is p and the second

part is MA part which is represented by q. When p=1, weight is in part
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p equal 1 and all q part is equal to 0 then the last state become random

walk formulation. Other univariate forecasting model which considers the

volatility of returns was �rst introduced by Engle who is the Nobel laureate

in 2003[5, 6]. Autoregressive conditional heteroskedasticity (ARCH) model

considers the variance of the current error term to be a function of the vari-

ances of the previous time period's error terms. ARCH relates the error

variance to the square of a previous period's error. It is employed commonly

in modeling �nancial time series that exhibit time-varying volatility cluster-

ing, i.e. periods of swings followed by periods of relative calm. Generalized

form of ARCH, GARCH, considers the previous time period's variances at

the same function.

Financial time series must be considered as multivariate models, since co-

relation, co-integration and co-movement terms are the central part of the

time series in �nancial markets. Researchers have taken into consideration

the structure of market while modeling a forecasting method to increase the

accuracy. Therefore it is important to extend the considerations to multivari-

ate GARCH (MGARCH) models. Multivariate GARCH models are mostly

used by Bollerslev et al[2],for asset pricing based on the covariance of the

assets in a portfolio, and risk management.

4.2 Principle of Rewiring

For the studies which are explained in detail in the previous chapters, we

always used the correlation coe�cient and statistical properties of the cor-

relations. However the correlation coe�cient is only a value and it changes

by the scale of data range and also by frequency. For instance, when we
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take two time series and �nd the linear relation of these time series such as

correlation between them and if we divide each time series into two equal

parts and �nd the linear relation of each part of time series, we can �nd two

di�erent correlation coe�cients. The coe�cients can be di�erent and may be

reverse of each other. It is our point of origin. We will explain this point by

principal of rewired network or Small World which was de�ned by Strogatz

S.H. and Watts D.J.[20]. They states that in a network if a link between

node i and node j had rewired and resulted in a new link between node i and

node k, hierarchical properties of network will changed dramatically. We can

compare this principal to our correlation coe�cients. By using the informa-

tion above, we can say that if there is a correlation coe�cient in set of earlier

time series it can be changed in the later part of time series or the relation

may disappear. Correlation coe�cient is a matter which can be utilized for

a lot of statistical properties. But taking only a value which is changing in

sub intervals of time series can be decreased forecasting accuracy. We can

consider it like principal of small world theory. Since, change on the structure

of network triggers modi�cation on enriched properties of network.

The above example is used to explain the small world theory on a ring. In

the �rst network, edges are in a regular sequence and the weight is assumed to

be 1. In the second network, the edge between node 1 and node 4 disappears

and an edge between node 1 and node 3 arises. We can expound this situation

as there is a relation between two time series. The co-relation between two

nodes can be perceived as the relationship between two time series. If the

co-relation between two nodes disappears then we expect that there is a

new co-relation between two other nodes or the co-relation is disappeared
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Figure 13: Sample rewired network. The 1-4 link is �ip ped to 1-3.

forever. If the co-relation between two nodes does never disappear then

we can say that correlation between two nodes is same and high all the

time. This condition is accepted as stationary behavior or co-integration

between two nodes. Constant high relation means that two time series are

moving together and linear combinations of time series must be closer to

the stationary condition. The assumption of stationary behavior makes the

prediction of time series easier. Unfortunately, in many associated time series

the correlation changes in di�erent part of time series. We will call to this

condition as `rewiring' in the rest of the study. In this chapter we will de�ne

some of networks which are rewired in length of time. Then we search for

the windows length to de�ne rewiring clearly, such as to de�ne state more

e�cient. We will use the states to introduce the length of interval in which
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correlation coe�cient is constant or in low volatility. Setting the states is

main part of our Rewired Pricing Model. We must take into consideration

smooth correlation coe�cients in this interval and also �nd this condition in

all correlations which take place on networks. Then we introduce our pricing

model which works with multivariate forecasting parameters and rewiring

principle. We will apply our model to three networks from di�erent �nancial

markets or clusters. We compare results and performance of model. At the

end of chapter we will discuss our lacking parts and also why the model

behaves dissimilar in various networks.

4.3 Rewired Pricing Model

Time series prediction is a hard and interesting topic for research. The

literature includes many studies which predict the future values by using only

one time series. Especially �nancial analysts use di�erent methods such as

technical analysis, univariate models, historical Monte Carlo and multivariate

models. We will try to develop a historical Monte Carlo method to generate

future time series by using rewiring principals. As we mentioned in the

previous topic, we want to identify the relationship of several time series and

develop a model which re�ects the relations between those time series. The

model is based on the fact that the correlation network changes in di�erent

time intervals as �gure out in time series which are below.

For instance, we have 4 price time series. When we divide into 4 equal

intervals these time series and construct the correlation network, we gained

di�erent correlation values between the assets in Figure 14.
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Figure 14: Asset price time series and corresponding correlation networks
in di�erent time intervals. Red edge denotes the negative correlation, bold
blue is strong positive correlation (C>30) and black one refers to correlations
between 0.29 and 0.10

In the �gure the blue lines represents the strong correlation, black lines

represents the weak correlation and red lines represents the negative cor-
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relation between the assets. In the second network we see that there is a

strong correlation between gold and oil but in the third network this relation

between those assets disappears.

We raised some interesting questions; by answering those questions we

try to develop our model. The questions can be summarized as follows:

1. How can we identify the time intervals or as we will call windows

length hereafter?

2. How can we de�ne periods which we call states hereafter?

3. Which factor of states can a�ect the model of accuracy?

4. Which multivariate data generation model can we use?

4.4 Factors A�ecting Information Content of the Anal-

ysis

4.4.1 Stationarity in Correlation Time Series

Multivariate data generation methods use covariance matrix and the corre-

lations between variables. For gaining su�cient results from simple multi-

variate data generation, �rst we have to be sure that the correlation stays

constant during the time. Therefore we can estimate the adequacy of the

forecasting by the stationary of the correlation time series. Stationary in

a correlation time series can be identi�ed in two ways. We can either �nd

the parameters, mean and variance, by looking at the data partially or by

moving on the data. We will use moving correlation of time series which has

been a critique issue since the late 1920s. [12]
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4.4.2 Window Length and State Length in Optimal Piecewise Sta-

tionarity

Volatility is estimated by sample standard deviation of returns over a short

period. However determining this short period requires a lot of work. Engle

said that: `But, what is the right period to use? If it is too long, then

it will not be so relevant for today and if it is too short, it will be very

noisy. Furthermore, it is really the volatility over a future period that should

be considered the risk, hence a forecast of volatility is needed as well as a

measure for today�.[6] This problem is very similar to the problem that we

face for the measurement of linear relation of two time series which is the

correlation coe�cient. We will try to �nd an adequate window length by

analyzing the relation of two time series. The window length should be as

small as possible in order to ignore the convergence of the correlation to a

mean variable and it should be as large as possible in order to prohibit the

noisy.

We started our analysis by calculating the correlation of �rst ten data

points of each time series. Then we added the next data point and found

the corresponding correlation. This procedure is applied until we found the

correlation of 100 data points. In other words, we �rst found the correlation

of the variables 1 to 10. Then we found the correlation of the variable 1

to 11 and it continued until we found the correlation between the variables

1 to 100. The above �gure shows the correlations which were obtained by

this technique. This �gure shows that the statement of Engle is viable for

correlations, too. When we look at the earlier part of each curve, the part that

we use small window length, we observed a lot of noisy. We see that when we
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Figure 15: Correlation time series by increasing the window length of time
series which is considered.

add a data point to the window length the correlation changes dramatically.

In an e�cient time interval, the e�ect of adding one data point should not

be as large as we observe in the earlier part. For example the correlation

of gold-oil was calculated as nearly -0.5 for the �rst window length but it

becomes almost zero for the second window length. We search for a window

length which provides us the change in con�dence bounds. Since, our model

will consider the changes on correlations, we do not want to a steady attitude,

too. For example if the window length is so large then a correlation can lose

sensitivity of adding the data points. It may not re�ect the current relation

of time series.

As an alternative to increasing window length, we also conducted our

analysis with constant window length. We will utilize the moving correlation

concept which is an old topic studied earlier than 1930(Simon Kuznets). We

move on time series by our window length and get the moving correlation
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Figure 16: Moving correlation time series for di�erent window length

time series. For example, for window length 20, we calculated the correlation

of the data 1 to 20, then 2 to 21 and continued until we found the correla-

tion of all data. The above �gure shows the results of the analysis that we

performed for di�erent window lengths: 10, 20, 30 and 40. When we look at

the curves of moving correlation time series, we observe the same behavior

with the previous analysis. Although the earlier part of the curves is very

sensitive to addition of a new point, the curves are getting more stable as

we move through the data. We call the behavior of the curves as unrewire

after position 30. In topmost �gure, the volatility of correlation time series

is huge, but the volatility is reducing as we get down of the �gure. In most

bottom �gure which is 40-window-length, curves reached the stable form.

By combining the results of these two analyses, we decided to use 20 data
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point as the window length of our studies. After we de�ne the window length

we directed our studies to the de�nition of the state and state length which

gives us the rewiring period clearly. We search for some piecewise stationary

in the correlation time series. Our aim is to recognize the rewiring between

these stationary pieces and pick the corresponding time interval which has

the lowest volatility and more stable in the correlation network. For de�ning

an interval as stable, we have to make sure that all the correlations de�ned

in that interval should show similar behavior to stable correlation series. For

our example, gold-euro, euro-oil, gold-oil correlations should be all stable in

a time interval. As long as the correlations between the assets stay constant

we keep in the same time interval but when we observe a change in the re-

lations of the assets or as we called when we observe rewiring we move to

a di�erent time interval. To obtain the technical information we also apply

autocorrelation of moving correlation time series in Figure 17. For instance

we took moving correlation time series of 5, 10, 20, 30, and 40 window length

and �nd out the autocorrelations of the each series from lag 1 to 20. We

try to �gure out auto memory of each moving correlation time series. We

want to pick a window length to have a memory in lenght of window which

it corresponds.

As the �rst step of our analysis, we performed the moving correlation

time series with 20-Month-Window-Length. We analyzed the correlation of

all time series in the network. In the below �gure, the blue points re�ect the

correlation values for 80 month data. When we analyze the graph, we �gured

out that the correlation coe�cients take similar values during 5 months pe-

riod. For the second step, we calculated the average correlation coe�cients
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Figure 17: Autocorrelations of moving correlation time series for assets in
di�erent window length.

of the groups that include 5-months data and highlighted them with pink.

Finally we pooled 4 of those data groups under one unit and de�ned those

units as state. So we came up with 4 states which include 4 data groups.

We characterized the states with a correlation value that cover the average

correlation coe�cients of all four groups within the state. In the �gure, those

values are shown with yellow lines.

46



Figure 18: Euro-Oil Correlation time series and de�ning the states

To improve the aim we will constitute the moving correlation time series

by consider the 20-Month-Window. We analysis for all correlation time series

in network, it is 6 for our simple network, and pick the stationary parts as

states. To de�ne states we develop a metric, it is 5-month average time series.

It considers the average of 5 data point for helping in de�ning of states. Then

to inspect an average correlation value which cover the 5-month time series.

In our study we have choose the state length which has 20 correlation data

point. We set the state correlation network by considering the visual average

(not numerical) of 5-month average time series.
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Figure 19: Moving corelation time series of assets in 20-month-window-length
To de�ne states we use 5-month average metric. It considers the average of
5 data point for helping in de�ning of states. Then we try to inspect an
average correlation value which cover the 5-month time series. In our study
we have choose the state length which has 20 correlation data point.

4.4.3 Multivariate Data Generation Method and Random Walk

The states which are de�ned by above analyses can be used for forecasting.

Our idea says that correlation networks can rewire at any moment, but we

have only historical states. Another important point is that we want �gure

out the piecewise stationary and construct a historical simulation monte carlo

model by using predictability of stationary. Our model is a risk management

measure it is not a forecasting model yet. However we try to improve we can

not develop an algorithm to predict the future state. We only say that these
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states have realized in historical data. If these states expand to the future,

the scenarios which are generated will be implemented.

To generate scenarios we will use this pricing model.

P(t)=P(t-1) + P(t-1) * R(t) ) and

R(t) = σij × E(t) E(µ, 1)

To get this form we will use Cholesky Decomposition method.

Data generation steps can be numbered such as below;

1. Decompose Covariance Matrix by Cholesky Factorization for each

state.

σij = L× LT (bycholesky)

σ̃ij = Covariance(RateReturnT imeSeries) = Cov(R)

σ̃ij = Cov(GeneratedRateReturns) = Cov(L× E) E(µ, 1)

σ̃ij = Cov(L× E) = L× Cov(E)× LT

σ̃ij = Cov(L× E) = L× I × LT = L× LT

σ̃ij = σij

then, the future rate of returns can be generated by L× E

2. Generate random rate of returns for each states which covariance

matrix behaves as original rate of returns.

3. Pricing according to generated rate of returns

P(t)=P(t-1) + P(t-1) * R(t) )

and repeat this algorithm in 500 runs. We will have 500 di�erent forecasts

by each state. We apply to our model two di�erent sample data set.
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4.5 Rewired Model Applications

4.5.1 Assets from Di�erent Sub Financial Market

The �rst data has 4 assets from di�erent sub �nancial markets:.

Data set;

� Prices of assets from January 2000 to may 2008

� Gold, Euro, Oil, NYSE (S&P 500)

� Total 100 months

� First 80 months have been used to predict the months of 81-90

Initialization

1. Obtain the monthly rate of returns.

2. Construct Correlation Network

3. Analyze the rewiring

When we divide the data into 4 equal intervals and construct the cor-

relation network, we gained di�erent correlation values between the assets

in Figure 14. In the �gure the blue lines represents the strong correlation,

black lines represents the weak correlation and red lines represents the nega-

tive correlation between the assets. In the second network we see that there

is a strong correlation between gold and oil but in the third network this

relation between those assets disappears. After we observed such rewiring on

the correlations of assets, we continued with the application of our model.

Our aim is to predict the correlation coe�cients of the time interval which

includes the months between 80th month and 90th month with 4 histori-

cal states. The below �gure shows the monthly forecast distribution of the

future oil price time series generated by state 4. These distributions are ob-
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tained by repeating the forecasting algorithm for 500 times. We claim that

the pick values of those distributions can be regarded as the future prices

of oil. The red line shows the exact prices of oil which eventuated in 80-90

month-intervals. As we see from the �gure, our model gives close forecasted

values to the realized prices.

Figure 20: Monthly predictions of Oil by State 4. The blue lines show the
vertical probability distributions obtained by 500 runs for each month.

In Figure 20 the red line shows the exact time series which have even-

tuated in 80-100 month-interval. In Figure 21 the probability distribution

function of runs is illustrated.
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Figure 21: Probability distribution function of the predictions of OIL by 500
runs of state 4

In addition to the above analysis, we also compared the probability dis-

tributions functions of the forecasted values and real prices. The red line in

the middle of boxes shows the median of the probability distribution function

for the value which forms in horizontal axis, and the boxes cover the 25%

of the data which correspond to value in horizontal axis. The black dash

boundaries have the 75 % data. The black bold points correspond to the

outliers.

4.5.2 Assets from the Same Cluster of the ISE

The second data set is selected by using the minimum spanning tree of corre-

lation network, developed in section three. Our assets are from same cluster

in the second dataset. We use the assets from the �nance cluster and they

are also national banks.

Data set;
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Figure 22: Monthly predictions of GARAN by State 3 and future state which
is state 5. The blue lines show the vertical probability distributions obtained
by 500 runs for each month.

� Prices of assets from January 2000 to may 2008

� AKBNK, FINBN, GARAN, YKBNK

� Total 100 months

� First 80 months have been used to predict the months of 81-100

The Figure 22 shows the results of the analysis that we made for GARAN

by state 3 and state 5. We see that our model give good near future predic-

tions when we conduct it with state 3 which is a historical state. However the

results become insu�cient as time passes. On the other hand, our predictions

behave similar to the real prices when we use state 5 which is a future state.

In contrast to state 3, the predictions of state 5 get better as time passes. It

is a result of stationary behavior of the correlation time series.
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5 SUMMARY AND FUTURE WORK

This study aims to understand the hierarchical structure of the �nancial

markets and develop a model that would be used for forecasting of future re-

lations of assets. During our analysis, we attempted to integrate the spectral

and statistical analyses, which were shown to be complementary tools. In

addition we use the minimum spanning tree as a conjugate of these analyses.

We have shown that a hierarchical structure exists in the �nancial mar-

ket, by using both the analysis tools and visualization on an MST. Our �rst

important result is represented in �gure 10. There are two kinds of patterns

between weighted average nearest neighbors' degree and strength of nodes.

We name the �rst as the dominant reverse pattern, which implies that as the

a�nity of clustering increases the strength of nodes decreases. It shows that

there is a blocking structure in the network and supports our claim that the

networks involve clustering. The second pattern shows that the weighted av-

erage nearest neighbors' degree and strength shifts are directly proportional.

Although the latter is a general property of all networks, the former is a spe-

cial property that causes the di�erentiation between the correlation matrix

and a random matrix.

Another important �nding of the current study is about the e�ects of fre-

quency of data used in the analysis on the structure of the market. Statistical

properties and the behavior of MST change when we use di�erent frequen-

cies. As we increase the length of the interval, the e�ect of the pattern that

we observe in the statistical properties decrease, since the correlation coe�-

cients of all assets increase signi�cantly. In MST, we observe decentralization

as a result of long intervals.
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In the light of the foregoing, we have next made an attempt to investigate

the dynamics of the network by searching for the underlying reasons of the

changes in the statistical properties. Hence we reconstructed the correlation

network by using the particular components of their eigenvalues distributions.

We �nd that there is a single motion in the market that dominates all the

other motions within that market. This information about the structure is

carried in the largest eigenvalue. This analysis can be used to determine the

e�ciency of the market by comparing with the structures of the reconstructed

matrices. Furthermore, when the correlation matrix is reconstructed with the

largest eigenvalue to obtain the probability distribution of strengths, the same

results are attained in all reconstructions, independent of the time interval.

The upper and lower bounds as well as peak values of the distributions do

not change. Thus, the reconstruction inhibits the information loss due to

changes in sampling intervals of returns.

Another contribution of this thesis is the development of a rewiring prin-

ciple for the study of the correlations between assets. In addition to providing

an insight into the structure of the systems, this information is further used

to generate forecasts. We bene�ted from the rewiring principle concept for

scenario generation in a historical Monte Carlo model. We applied our sce-

nario generation model with two di�erent portfolios and obtained di�erent

results. While the �rst portfolio includes di�erent types of assets whose cor-

relations rewire many times, the second portfolio involves assets from the

same cluster. We �nd our model to be more e�ective for the latter type

of portfolio selection. A factor that increases the e�ciency of our model is

de�ning the state length with piecewise stationarity, because it is easier to
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predict the future of a stationary time series.

In this thesis we have observed the structure of the �nancial markets and

developed a scenario generation model. In the future, all the calculations car-

ried out for ISE will be applied to other stock exchange markets, both from

developed and emerging markets. The aim is to evaluate the applicability

of the current approaches by selecting the parameters that best di�erentiate

the characteristics of these markets. Another extension of the current study

will be based on the rewired pricing model. We have identi�ed certain mo-

tifs dominating the cross-correlations. However, this development lacks an

understanding of the order and the combinations of the motifs that emerge.

Based on these, our ultimate aim is to develop a model that best describes

the possible correlational patterns of the future.
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6 APPENDIX

Figure 23: Eigenvalue distribution of New York Stock Exchange Market and
�tting by Random Matrix Theory. [3] Inset: Including the highest eigenvalue
corresponding to the market

Density of the eigenvalues of C, where the correlation matrix C is extracted
from N 406 assets of the S&P 500 during the years 1991�1996. In the �gure
a better �t can be seen in the interval of (0,1.74] (solid line) This result
increases the importance of the discrete eigenvalues.
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Figure 24: Weighted Average Nearest Neighbors Degree versus Strength and
Weighted Clustering Coe�cient versus Strength for reconstruction correla-
tion network by only second largest eigenvalue.

The �gures were obtained by reconstruction network which constructed by
only the second largest eigenvalue by the important result of Figure 23.
knn&Si and Ci&Si plots have same patterns. We see that it has a pattern as
largest eigenvalue and for negative strengths it has a symmetric pattern to
the largest eigenvalue. Discrete eigenvalues are also mentioned as the future
research topics identi�ed by this study.
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Figure 25: Sector Classi�cation

Sector classi�cation used in the study is based on the 20 ISE sector-speci�c
indexes. However these indexes are clustered into 13 groups due to the
structure of the data used in the analysis.
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Figure 26: Autocorrelations of moving correlation time series for assets from
same cluster

The �gure illustrates the autocorrelations of moving correlation time series
for the 5, 10, 20, 30 and 40 day window-length for the assets from the same
cluster. The analysis shows that the 20-window-length has the best memory
is better than other window- lengths for this cluster as well as the analysis
made for Gold, Euro, Oil, and S&P.
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Figure 27: Boxplot of predicted prices by state 4

The bounds of the prices as illustrated in the graphs show that the predicted
prices are su�cient.
The red line in the middle of boxes shows the median of the probability
distribution function for the value which forms in horizontal axis, and the
boxes cover the 25% of the data which correspond to value in horizontal
axis. The black dash boundaries have the 75 % data. The black bold points
correspond to the outliers.
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