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Abstract— Visual servoing schemes generally employ various
image features (points, lines, moments etc.) in their control
formulation. This paper presents a novel method for using
boundary information in visual servoing. Object boundaries are
modeled by algebraic equations and decomposed as a unique
sum of product of lines. We propose that these lines can be used
to extract useful features for visual servoing purposes. In this
paper, intersection of these lines are used as point features in
visual servoing. Simulations are performed with a 6 DOF Puma
560 robot using Matlab Robotics Toolbox for the alignment of
a free-form object. Also, experiments are realized with a 2 DOF
SCARA direct drive robot. Both simulation and experimental
results are quite promising and show potential of our new
method.

I. INTRODUCTION

Vision based control of robotic systems has been a steadily
improving research area recently. Commercially available
cameras provide a cheap and powerful tool for many complex
robotic tasks in dynamic environments. One particular prob-
lem in this domain is object alignment. In visual servoing
applications, most of the current alignment systems are based
on objects with known 3D models such as industrial parts
or objects which have good features due to their geometry
or texture. Mostly, features which are feasible to extract
and track in real time are used in these approaches [1],
[2]. Many works are reported in the literature on alignment
using points, lines, ellipses, image moments, etc. [1]-[4]. On
the contrary, visually guided alignment of smooth free-form
planar objects presents a challenge since these objects may
not provide necessary amount of such features. One method
to tackle this difficulty is to use polar descriptions of object
contours [5]. Also, correlation between reference and current
object images can be calculated and used for visual servoing
purposes [6]. Alternatively, curves can be fitted to these
free-form objects [7]. However obtaining features from these
curves for visual servoing algorithms is not a trivial task.

In this paper we propose to use implicit polynomial
representation in aligning planar closed curves by employing
calibrated image based visual servoing [1]. With the pro-
posed method, an implicit polynomial representation of target
object boundary is obtained by a curve fitting algorithm.
Acquired polynomial is then decomposed as a unique sum of
product of line factors [8]. The intersection points of these
lines are then used as point features in visual servoing.
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The remainder of this paper is organized as follows:
Section 2 presents implicit polynomial representation of
curves and how to decompose them into sum of product of
line factors. Section 3 reviews image based visual servoing
for a calibrated camera. Simulation results are presented in
Section 4. Section 5 is on experimental results for curve
alignment and discussions. finally, Section 6 concludes the
paper with some remarks.

II. IMPLICIT POLYNOMIAL REPRESENTATION OF

PLANAR CURVES

Algebraic curves and surfaces have been used in various
branches of engineering for a long time, but in the past
two decades they have proven very useful in many model-
based applications. Various algebraic and geometric invari-
ants obtained from implicit models of curves and surfaces
have been studied rather extensively in computer vision,
especially for single computation pose estimation, shape
tracking, 3D surface estimation from multiple images and
efficient geometric indexing of large pictorial databases [8]-
[13]. Algebraic curves are defined by implicit equations of
the form f(x, y) = 0, where f(x, y) is a polynomial with real
coefficients in the variables x and y. In general an algebraic
curve of degree n can be defined by the implicit polynomial
equation as [13], [14]:

fn(x, y) = a00︸︷︷︸
h0

+ a10x + a01y︸ ︷︷ ︸
h1(x, y)

+ . . .

+ an0x
n + an−1,1x

n−1y + . . . + a0nyn︸ ︷︷ ︸
hn(x, y)

=
n∑

r=0

hr(x, y) = 0, (1)

where each hr(x, y) is a homogeneous polynomial of degree
r in the variables x and y and hn(x, y) is called the leading
form. Since this equation can always be multiplied by a non-
zero constant without changing its zero set, it can always
be made monic (an0 = 1) and we will consider the monic
curves in this study.

Among the implicit polynomials, odd degree (n = 2k+1)
curves have at least one real asymptote and therefore they
are inherently open. On the other hand, even degree (n =
2k) curves can be either closed or open, depending on the
existence of complex or real asymptotes which is determined
by the leading form. Consequently, closed bounded object
contours can only be represented by even degree implicit
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Fig. 1. Some sample objects and their outline curves obtained by
regularized 3L fitting algorithm.

polynomials. An even degree polynomial can be obtained
through fitting algorithms. Some results obtained by using
regularized 3L algorithm [7] are shown in Figure 1.

Once the implicit polynomial coefficients are obtained,
this polynomial is decomposed as sum of product of line
factors [8] to obtain the features we use in visual servoing.

Theorem 1: Any non-degenerate monic polinomial
fn(x, y) can be uniquely decomposed into sum of product
of complex or real line factors in the following way [8],
[13]:

fn(x, y) = Πn(x, y)+γn−2[Πn−2(x, y)+γn−4[Πn−4(x, y)+ ...]]

(2)

In this equation, γj denotes constants of the decomposition
and Πj(x, y) is the product of j line factors in the following
way:

Πj(x, y) =
j∏

i=1

[x + lj,iy + kj,i] (3)

For example, by using the proposed decomposition
quadratic, cubic and quartic curves can be represented as
follows

f2(x, y) = L1(x, y)L2(x, y) + γ0 = 0

f3(x, y) = L1(x, y)L2(x, y)L3(x, y) + γ1L4(x, y) = 0

f4(x, y) =L1(x, y)L2(x, y)L3(x, y)L4(x, y)+
γ2L5(x, y)L6(x, y) + γ2γ0 = 0 (4)

This decomposition is unique for a non-degenerate implicit
polynomial in variables x and y. For example, f4(x, y) is
completely described by the six line factors L i(x, y), i =
1, 2, ..., 6 and two scalar parameters γ2 and γ0. Therefore,
this decomposition can be used to extract certain robust
features that represent the curve and we propose that such
features can be used for visual servoing purposes. As the

Fig. 2. Three pairs of complex-conjugate lines obtained from the decom-
position of a boundary curve.

coefficients of the first n lines are complex conjugate pairs
for this unique decomposition of a closed curve, these lines
give rise to n/2 real intersection points on the image plane.
Hence, one possible application of this method to visual
servoing can be using these pairwise intersection points as
image features. An example is shown in Figure 2 where an
implicit polynomial of degree four is fitted on the target
boundary. Pairwise intersection points of six complex lines
are also shown in this figure. In this paper we focus on
these point features and point out some alternatives in future
works.

In 6 DOF motion, reference and current boundary data are
related by a perspective transformation. As we treat the ex-
tracted points as point features, they should correspond to the
same points with respect to the curve under perspective trans-
formations. Such a correspondence depends on the invariance
of curve fitting. Algebraic curve fitting method used in this
work is Euclidean invariant and we achieve affine invariance
through the whitening normalization [15] of boundary data.
If two boundary curves are affine equivalent, their whitening
normalization provides rotationally equivalent curves [12].
Consequently with our method correspondence of extracted
features under affine transformations is achieved. As long as
the average depth of the object from the camera is large,
or rotations about the X and Y axis of the camera are
small object boundary in two different images will be related
by an affine transformation and our method would work
properly. However, even in the deviations from affine relation
the closed loop control helps in handling this problem.
As the closed loop control forces the end effector to the
reference pose it also forces the relation between the current
and reference boundary data to be affine. In the 6 DOF
simulations our results support this claim, however in very
large deviations from the affine model this method may not
be applicable.

III. IMAGE BASED VISUAL SERVOING

Let s ∈ �k and r ∈ �6, denote the vectors of image
features obtained from visual system and the pose of the end
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effector of the robot, respectively. The vector s is a function
of r, and their time derivatives are related with the image
Jacobian JI(r) = ∂s/∂r ∈ �kx6 as,

ṡ = JI(r)ṙ (5)

For eye-in-hand configuration the image Jacobian corre-
sponding to a single point feature vector s = [x, y]T is given
by:[

ẋ
ẏ

]
=

[ −1/Z 0 x/Z xy −(1 + x2) y
0 −1/Z y/Z 1 + y2 −xy −x

]
︸ ︷︷ ︸

Jxy

Vc

(6)
where

x =
xp − xc

fx
, y =

yp − yc

fy
(7)

and (xp, yp) are pixel coordinates of the image point, (xc, yc)
are the coordinates of the principle point, and (fx, fy) are
effective focal lengths of the camera. By rearranging and
differentiating (7), and writing in matrix form, the following
expression can be obtained.

[
ẋc

ẏc

]
=

[
fx 0
0 fy

] [
ẋ
ẏ

]
=

[
fx 0
0 fy

]
Jxy︸ ︷︷ ︸

JI

Vc (8)

where JI is the pixel-image Jacobian.
In (5), ṙ = Vc is also called the end effector velocity screw

in eye to hand configuration. This velocity screw is defined
in the camera frame, and should be mapped onto the robot
control frame. Denoting VR the end effector velocity skew
in robot base frame the mapping can be written as,

Vc = TVR (9)

The robot-to-camera velocity transformation matrix T ∈
�6x6 is defined as below

T =
[

R [t]xR
03 R

]
(10)

where [R, t] are being rotational matrix and the translation
vector that map camera frame onto robot control frame and
[t]x is the skew symmetric matrix associated with vector t.

In light of equation (10), (5) can be rewritten as,

ṡ = JIT︸︷︷︸
�J̄I

VR = J̄IVR (11)

The new image Jacobian matrix J̄I defines the relation
between the changes of image features and end effector ve-
locity in robot base frame. Considering p point features e.g.
s = [x1, y1, ..., xp, yp]T , the Jacobian matrices corresponding
to each point should be stacked as

J̄I =

⎡
⎢⎢⎢⎢⎣

J̄1
I

.

.

.
J̄p

I

⎤
⎥⎥⎥⎥⎦ (12)

Let s∗ be the constant reference feature vector and e = s−
s∗ define the error. The visual servoing problem is designing
an end-effector velocity screw VR in such a way that the error
decays to zero, i.e. e → 0.

By imposing ė = −Λe, where Λ is a positive definite
gain matrix, an exponential decrease of the error function is
realized. Consequently, the velocity screw is derived as:

VR = −J̄I
†Λ(s − s∗) (13)

where J̄I
†

is the pseudo-inverse of the image Jacobian and
VR = [Vx, Vy, Vz , ωx, ωy, ωz]T .

IV. SIMUATION RESULTS

The proposed method is simulated on a 6 DOF Puma 560
robot in eye-in-hand configuration as shown in Figure 4. In
simulations, Matlab Robotics Toolbox [16] is used. A planar
object is initialized in the field of view of the camera. To
evaluate the performance of the method in applications that
require 6 DOF motion, a combination of translations and
rotations in x, y and z directions are introduced between
reference and initial positions. Reference and initial position
of the object boundary in image and the trajectories of the
points which are extracted from the decomposition are given
in Figure 3. Control signals and feature errors are presented
in Figures 5 and 6 respectively. As it can be seen from these
results, the performance of the method is quite promising in
this alignment task.

V. EXPERIMENTAL RESULTS

Some experimental results are presented in this section.
Experiments are conducted with a 2 DOF direct drive
SCARA robot and a fire-i400 digital camera in an eye-to-
hand configuration. A planar free-form object is placed on
the tool tip of the robot and camera is fixed above the robot
as it can be seen in Figure 7. The robot is controlled with

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

x [pixel]

y 
[p

ix
el

]

Fig. 3. Trajectory of the target object in image space
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Fig. 4. 6 DOF Puma 560 robot in Matlab Robotics Toolbox
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Fig. 5. Control efforts

a dSPACE 1102 controller card. The programming language
of the card is Visual C.

In the experiments, object boundary is extracted by using
Canny edge detection algorithm [17]. From these edges,
we obtain a fourth degree implicit polynomial by using
the regularized 3L fitting algorithm [7]. The implicit curve
is then decomposed as explained in Section II. Two point
features are obtained from the intersection of the first 4
complex-conjugate lines. These points are then used as point
features in visual servoing.

The control loop is made up of one inner and one outer
loops. The outer loop is run via vision system. It uses the
point features to generate velocity references to the inner
loop by using pixel errors of these points. These references
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Fig. 6. Pixel errors

Fig. 7. Experimental Setup

are used by the inner loop to position the robot. Sampling
time of the inner control loop is 1 ms. The frame rate of the
camera is 30 fps.

A diagonal gain matrix of

Λ =
[

0.5 0
0 0.5

]
(14)

is used in computing the velocity screw of the end effector.
According to calibration results, effective focal lengths of the
camera in x and y directions are measured as fx = fy = 970,
and image center coordinates (xc, yc) = (160, 120).

Two experiments are presented in this section. In the first
experiment object plane is parallel to the image plane and
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Fig. 8. Reference and initial poses

Fig. 9. Trajectory of point features

motion of the end effector induces rigid body motion for
the object boundary. Significant rotation and translation exist
between the reference and initial poses. The reference and
initial positions are as in Figure 8. Trajectories of the point
features can be seen in Figure 9.

The error plots are given in Figures 10 and 11. Control
signals are presented in Figure 12. Less than 2 pixel errors
is observed in steady state.

In the second experiment, the case where the image plane
is not parallel to the object plane is examined. In this case
motion of the end effector induces affine motion on the
object boundary data. Significant translation and rotation are
introduced between reference and initial pose. Reference and
initial poses can be seen in Figures 13 and 14 respectively.
Pixel errors in x direction, pixel errors in y direction and
control efforts are depicted in Figures 15, 16 and 17.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, a novel method for using implicit curves as
image features for vision based robot control is presented.
Implicit polynomials of degree n, where n is an even
number are fitted to the object boundary and decomposed
into line factors. Intersection of the complex conjugate lines
are real points and they are used as image features in visual
servoing. Results of simulations with a 6 DOF Puma 560
and experiments conducted on a 2 DOF SCARA robot are
quite promising.

B. Future Works

The method presented in this paper is one of the many
possible choices for using implicit form of closed curves in
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Fig. 10. Pixel errors in x direction of the image plane
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Fig. 11. Pixel errors in y direction of the image plane
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Fig. 12. Control efforts

visual servoing. Instead of using the intersection of complex
conjugate line factors, one could use the parameters of those
lines as features. This can be achieved by deriving the
analytical image Jacobian corresponding to the parameters
of the extracted line factors. In our future research we are
planing to extend our work along these lines.
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Fig. 13. Reference and initial poses

Fig. 14. Trajectories of point features
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Fig. 15. Pixel errors in x direction of the image plane
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Fig. 16. Pixel errors in y direction of the image plane
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Fig. 17. Control efforts
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