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Summary. In this paper, we address the Vehicle Routing Problem with
Time Windows, both time-independent and -dependent cases. In the time-
independent case, our objective is to minimize the total distance. To solve
this problem, we propose an Ant Colony Optimization algorithm. Then we
implement the algorithm to solve the time-dependent case where the objective
is to minimize the total tour time. The time dependency is embedded in this
model by using a deterministic travel speed function which is a step function
of the time of the day. An experimental evaluation of the proposed approach
is performed on the well-known benchmark problems.

1 Introduction

Optimizing a distribution network has been and remains an important
challenge both in the literature and in real-life applications and the
routing of a fleet of vehicles is the most widely addressed problem in a
distribution network. The Vehicle Routing Problem (VRP) determines
a set of vehicle routes originating and terminating at a single depot
such that all customers are visited exactly once and the total demand
of the customers assigned to each route does not violate the capacity of
the vehicle. The objective is to minimize the total distance traveled. An
implicit primary objective is to use the least number of vehicles. The
Vehicle Routing Problem with Time Windows (VRPTW) is a variant of
VRP in which lower and upper limits are imposed to the delivery time of
each customer. The arrival at a customer outside the specified delivery
time is either penalized (soft time windows) or strictly forbidden (hard
time windows). The interested reader is referred to [1] for more details
on VRPTW.

In the Stochastic Vehicle Routing Problem, the customer demands
and/or the travel times between the customers may vary. Although



stochastic travel times and demand distributions have been frequently
used in the literature, time-varying travel speeds and time-dependent
VRPTW (TDVRPTW) have seldom been addressed. In the literature,
time dependency is taken into consideration in two ways: stochastic
travel times and deterministic travel times. First introduced by [2],
stochastic travel times are mainly examined by [4] and [3]. [5] proposed
a deterministic travel time based model in which the important non-
passing property is introduced. [6] and [7] also use deterministic travel
times in a setting where the day is divided into time intervals.

Many exact and heuristic solution approaches were presented for solv-
ing VRP and its extensions. One recent approach, Ant Colony Opti-
mization (ACO) is a population-based metaheuristic that can be used
to find approximate solutions to difficult optimization problems. A de-
tailed study of ACO and its variants can be found in [8].

In this study, an ACO approach is developed to efficiently solve
VRPTW and TDVRPTW with hard time windows. In the next section,
we provide a description of the two problems. In Section 3, the proposed
algorithm is presented. Section 4 is devoted to the computational study
and concluding remarks are given in Section 5.

2 Problem Description

In VRPTW, N geographically dispersed customers are serviced by a
homogenous fleet of K vehicles with capacity . All vehicle routes
start and end at a central depot visiting each customer i, i=1,...,N,
exactly once. Each customer has a demand ¢;, service time s; and time
window [e;,[;]. The service time is the loading or unloading service
times at the customer ¢ where the terms e; and [; denote the earliest
and latest available service start time for customer 7. The time window
may prohibit the visit of certain customer pairs one after the other.
VRPTW is in fact a special case of TDVRPTW. In TDVRPTW the
travel time between any source and destination pair on the road net-
work is not a function of the distance alone and is subject to variations
due to accidents, weather conditions or other random events. Speed
limitations imposed by the road type and the traffic density distribu-
tion of the road which is also affected by the time of the day are two
main components that cause fluctuations in travel speeds. That is, the
travel time between two customers is not constant during the entire
scheduling horizon and changes with the changing sub-divisions of the
horizon, called time-intervals.



In TDVRPTW, the feasible and infeasible customer pairs are not nec-
essarily same as in the time-independent case. A dynamic travel time
calculation is required to check the feasibility in the route construction
phase. The arrival time to the next customer may be realized earlier or
later compared to the time-independent case.

3 The Proposed Ant Colony Optimization Approach

3.1 ACO for VRPTW

Our ACO approach is inspired from the rank-based Ant System! in-
troduced by [10] and is outlined as follows.

Route Construction - Initially, N ants are placed at the N nearest
customers to the depot. After a vehicle has returned to the depot, it
starts from the customer with the largest attractiveness value. To put
a limit on the exploration and to speed up the algorithm, we use a
candidate list which consists of the nearest CL (candidate list size)
neighbors of the customer. The customers are added to the list by
taking their feasibility and distance into account. The next customer
is selected from the candidate list using the probabilistic action choice
rule as described in [10].

Local Search - In this study, two types of local search procedures,
namely Swap and Move, are utilized to improve the solution qual-
ity. These procedures are applied at the end of each iteration and
pheromone trails are updated afterwards. The simple idea behind the
Swap procedure is to exchange two customers in a single route (intra-
route) or between routes (inter-route) until no further improvements
are available. The Move procedure attempts to improve the solution
by removing a customer and inserting it between two other customers,
intra-route or inter-route.

Pheromone Update - The pheromone levels are initialized as N/ Ly,
where Lg is total distance obtained using the nearest neighbor heuris-
tic. After all ants have constructed their tours, first the pheromone
trails are evaporated at the rate p then k elitist ants are allowed to re-
inforce the trails. In our pheromone reinforcement strategy, we utilize
k-1 best-ranked ants for the first P iterations (referred to as prelimi-
nary iterations) and in the remainder of iterations we allow best-so-far
ant along with the k-1 best-ranked ants to deposit pheromone. Our
aim in adopting this strategy is to avoid a quick stagnation.

! (Asrank)



3.2 Extensions to TDVRPTW

In TDVRPTW, the objective function and travel speeds are adapted
accordingly. In addition, the local search and pheromone update proce-
dures are modified in line with the new objective function of minimiz-
ing the total travel time. Since the scheduling horizon is divided into
multiple time-intervals, the pheromone network also comprises multi-
ple dimensions. An ant in time-interval ¢ deposits pheromone on the
corresponding dimension in the network.

4 Computational Study

The performance of the algorithm is tested on the time-independent
benchmark problems of [9] using real numbers (float precision). The
time-dependent versions are obtained by dividing the scheduling hori-
zon into three time intervals and utilizing different road types which
are randomly assigned to each arc. Time-dependent travel speeds are
embedded in the algorithm by utilizing a travel time matrix similar to
the approach of [6]. In the preliminary runs, we observed that heuristic
information such as ”1/distance” or ”savings” does not improve the so-
lution quality much due to the high performance of local search. Thus,
no visibility function is implemented. For each problem, 10 runs are
performed with the following parameter setting: o = 1, 6 = 0, p =
0.15, number of iterations = 100, P = 25, number of ants = N, k =
6, CL = 50. Both one dimensional and three dimensional pheromone
networks are tested in the time-independent case. The algorithm is
shown to be efficient and then applied to the time-dependent case. The
primary objective of the time-independent models is to minimize the
total distance (TD) whereas total tour time (TT) is minimized in the
time-dependent case. The algorithm is coded in C# and executed on a
Pentium 2.40 GHz processor.

Table 1 gives the average distance of each problem type for 10 runs as
well as the average number of vehicles (VN). In the class column, C
and R refer to problem types where the customers are clustered and
uniformly randomly distributed, respectively. RC refers to the prob-
lem type which includes a combination of clustered and randomly dis-
tributed customers. Since a three-dimensional network is needed for
time-dependent case we also experimented the effect of such network
structure on the time-independent problem. For C problem sets, both
one- and three-dimensional pheromone networks exhibit the same per-
formance as a result of the clustered network structure which nar-
rows the feasible region. One-dimensional network outperforms the



Table 1. Average Results

Time-independent Time-dependent
ACO-Average ACO-Best  Best-Known
class TD NV TD NV TD NV  TD NV TT

Cl  828.380 10.00 828.380 10.00 828.380 10.00 1093.140 10.47 9945.998
C2  590.259 3.00 589.859 3.00 589.859 3.00 941.016 4.16 9854.871
R1 1191.432 13.73 1187.282 13.58 1181.453 13.08 1499.805 12.72 2298.308
R2  913.806 5.78 901.507 5.55 898.067 5.55 1627.551 3.69 2352.808
RC1 1368.344 13.54 1357.403 13.25 1339.235 12.75 1645.410 12.64 2405.311
RC2 1044.907 6.55 1027.401 6.50 1015.738 6.38 1988.114 4.25 2672.617

three-dimensional network in type 1 problems where time windows
are narrower and the vehicle capacities are smaller whereas a three-
dimensional network is more suitable for type 2 problems. Overall,
we observed that a three-dimensional network slightly outperforms the
one-dimensional network on the overall average solution quality. There-
fore, we report the average and best results belonging to the three-
dimensional network setting. For comparison, we also provide best-
known solutions as reported in [11]. As seen in Table 1, our distances
are comparable to the best-known distances and the average gap is only
0.66 %. Furthermore, we note that we have been able to improve the
best-known distance of six instances.

For the time-dependent problems, we report the average tour times
as well as the corresponding average distances. The distances are 48.1
% longer on the average compared to the time-independent case. This
is an expected result since the two problems have different objective
functions. On the other hand, the average number of vehicles is 8.89 %
less in time-dependent case. We also observe that type 2 problems are
more sensitive to the time-dependent travel times. The distances for
type 2 problems increase dramatically due to the existence of tighter
constraints.

5 Conclusion

In this paper, we propose an ACO algorithm for solving the VRPTW
and TDVRPTW. Our preliminary experimental results show that the
proposed algorithm provides good quality results; however, the com-
putation times are rather long. We have observed that the local search
procedure enhances the solution quality of ACO significantly. On the
other hand, a large portion of the computational time is consumed by



the local search procedure. Further research may focus on a selective
local search policy to reduce the computational effort. To improve the
performance of the algorithm, a visibility function using the time win-
dow information can be implemented and a more detailed analysis on
the trade-off between the solution quality and computational effort may
be conducted.
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