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BARI–MARKUS PROPERTY FOR RIESZ PROJECTIONS

OF 1D PERIODIC DIRAC OPERATORS

PLAMEN DJAKOV AND BORIS MITYAGIN

Abstract. The Dirac operators

Ly = i

„

1 0
0 −1

«

dy

dx
+ v(x)y, y =

„

y1

y2

«

, x ∈ [0, π],

with L2-potentials

v(x) =

„

0 P (x)
Q(x) 0

«

, P, Q ∈ L
2([0, π]),

considered on [0, π] with periodic, antiperiodic or Dirichlet boundary
conditions (bc), have discrete spectra, and the Riesz projections

SN =
1

2πi

Z

|z|=N− 1

2

(z − Lbc)
−1

dz, Pn =
1

2πi

Z

|z−n|= 1

4

(z − Lbc)
−1

dz

are well–defined for |n| ≥ N if N is sufficiently large. It is proved that
X

|n|>N

‖Pn − P
0
n‖

2
< ∞,

where P 0
n , n ∈ Z, are the Riesz projections of the free operator.

Then, by the Bari–Markus criterion, the spectral Riesz decomposi-
tions

f = SNf +
X

|n|>N

Pnf, ∀f ∈ L
2;

converge unconditionally in L2.

1. Introduction

The question for unconditional convergence of the spectral decompositions
is one of the central problems in Spectral Theory of Differential Operators
[2, 3, 18, 24, 25, 21].

In the case of ordinary differential operators on a finite interval, say I =
[0, π],

(1.1) ℓ(y) =
dmy

dxm
+

m−2
∑

k=0

qk(x)
dky

dxk
, qk ∈ Hk(I),

with strongly regular boundary conditions (bc) the eigenfunction decompo-
sition

(1.2) f(x) =
∑

k

ck(f)uk(x), ℓ(uk) = λkuk, uk ∈ (bc),
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converge unconditionally for every f ∈ L2(I) (see [20, 15, 3]).
If (bc) are regular but not strictly regular the system of root functions

(eigenfunctions and associated functions) in general is not a basis in L2. But
if the root functions are combined properly in disjoint groups Bn, ∪Bn = N,
then the series

(1.3) f(x) =
∑

n

Pnf, Pnf =
∑

k∈Bn

ck(f)uk(x),

converges unconditionally in L2 (see [27, 28]).
Let us be more specific in the case of operators of second order

(1.4) ℓ(y) = y′′ + q(x)y, 0 ≤ x ≤ π.

Then, Dirichlet bc = Dir : y(0) = y(π) = 0 is strictly regular; however,
Periodic bc = Per+ : y(0) = y(π), y′(0) = y′(π) and Antiperiodic bc =
Per− : y(0) = −y(π), y′(0) = −y′(π) are regular, but not strictly regular.

Analysis – even if it becomes more difficult and technical – could be
extended to singular potentials q ∈ H−1. A. Savchuk and A. Shkalikov
showed ([26], Theorems 2.7 and 2.8) that for both Dirichlet bc or (properly
understood) Periodic or Antiperiodic bc, the spectral decomposition (1.3)
converges unconditionally. An alternative proof of this result is given in
[10].

For Dirac operators (2.1) the results on unconditional convergence are
sparse and not complete so far [28, 16, 17, 29, 30, 12].

The case of separate boundary conditions, at least for smooth poten-
tial v, has been studied in detail in [16]. For periodic (or antiperiodic)
bc B.Mityagin proved unconditional convergence of the series (1.3) with
dimPn = 2, |n| ≥ N(v), for potentials v ∈ Hb, b > 1/2 – see Theorem 8.8
[23] for a precise statement.

Our techniques from [10] to analyze the resolvents (λ−Lbc)
−1 of Hill oper-

ators with the weakest (in Sobolev scale) assumption v ∈ H−1 on ”smooth-
ness” of the potential are adjusted and extended in the present paper to
Dirac operators with potentials in L2. We prove (see Theorem 3 for a pre-
cise statement) that if v ∈ L2 and bc = Per±,Dir the sequence of deviations
‖Pn−P 0

n‖ is in ℓ2. Then, the Bari–Markus criterion (see [1, 19] or [11], Ch.6,
Sect.5.3, Theorem 5.2)) shows that the spectral decomposition

(1.5) f = SNf +
∑

|n|>N

Pnf, ∀f ∈ L2,

where, for |n| ≥ N(v),

(1.6) dim Pn =

{

2 bc = Per±

1 bc = Dir
,

converge unconditionally. This is Theorem 9, the main result of the present
paper.
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Further analysis requires thorough discussion of the algebraic structure
of regular and strictly regular bc for Dirac operators. Then we can claim a
general statement which is an analogue of (1.5)–(1.6), or Theorem 9, with
bc = Dir in case of strictly regular boundary conditions, and bc = Per± in
case of regular but not strictly regular boundary conditions. We will give
all the details in another paper.

2. Preliminary results

Consider the Dirac operator on I = [0, π]

(2.1) Ly = i

(

1 0
0 −1

)

dy

dx
+ v(x)y,

where

(2.2) v(x) =

(

0 P (x)
Q(x) 0

)

, y =

(

y1

y2

)

,

and v is an L2–potential, i.e., P,Q ∈ L2(I).

We equip the space H0 of L2(I)–vector functions F =

(

f1

f2

)

with the

scalar product

〈F,G〉 =
1

π

∫ π

0

(

f1(x)g1(x) + f2(x)g2(x)
)

dx.

Consider the following boundary conditions (bc) :
(a) periodic Per+ : y(0) = y(π), i.e., y1(0) = y1(π) and y2(0) = y2(π);
(b) anti-periodic Per− : y(0) = −y(π), i.e., y1(0) = −y1(π) and y2(0) =

−y2(π);
(c) Dirichlet Dir : y1(0) = y2(0), y1(π) = y2(π).
The corresponding closed operator with a domain

(2.3) ∆bc =

{

f ∈ (W 2
1 (I))2 : f =

(

f1

f2

)

∈ (bc)

}

will be denoted by Lbc, or respectively, by LPer± and Ldir. If v = 0, i.e.,
P ≡ 0, Q ≡ 0, we write L0

bc (or simply L0), or L0
Per±, L0

Dir respectively. Of

course, it is easy to describe the spectra and eigenfunctions for L0
bc.

(a) Sp(L0
Per+) = {n even} = 2Z; each number n ∈ 2Z is a double eigen-

value, and the corresponding eigenspace is

(2.4) E0
n = Span{e1

n, e2
n}, n ∈ 2Z,

where

(2.5) e1
n(x) =

(

e−inx

0

)

, e2
n(x) =

(

0
einx

)

;

(b) Sp(L0
Per−) = {n odd} = 2Z+1; the corresponding eigenspaces E0

n are
given by (2.4) and (2.5) but with n ∈ 2Z + 1;
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(c) Sp(L0
Dir) = {n ∈ Z}; each eigenvalue n is simple. The corresponding

normalized eigenfunction is

(2.6) gn(x) =
1√
2

(

e1
n + e2

n

)

, n ∈ Z,

so the corresponding (one-dimensional) eigenspace is

(2.7) G0
n = Span{gn}.

We study the spectral properties of the operators LPer± and LDir by
using their Fourier representations with respect to the eigenvectors of the
corresponding free operators given above in (2.4)–(2.7).

Let

(2.8) P (x) =
∑

m∈2Z

p(m)eimx, Q(x) =
∑

m∈2Z

q(m)eimx,

and

(2.9) P (x) =
∑

m∈1+2Z

p1(m)eimx, Q(x) =
∑

m∈1+2Z

q1(m)eimx,

be, respectively, the Fourier expansions of the functions P and Q about the
systems {eimx, m ∈ 2Z} and {eimx, m ∈ 1 + 2Z}.

Then

(2.10) ‖v‖2 =
∑

m∈2Z

(

|p(m)|2 + |q(m)|2
)

=
∑

m∈1+2Z

(

|p1(m)|2 + |q1(m)|2
)

.

In its Fourier representation, the operator L0 is diagonal, and V is defined
by its action on vectors e1

n and e2
n, with n ∈ 2Z for bc = Per+ and n ∈ 1+2Z

for bc = Per−. In view of (2.2) and (2.8), we have

(2.11) V e1
n =

∑

k∈n+2Z

q(k + n)e2
k, V e2

n =
∑

k∈n+2Z

p(−k − n)e1
k,

so, the matrix representation of V is

(2.12) V ∼
(

0 V 12

V 21 0

)

, (V 12)kn = p(−k − n), (V 21)kn = q(k + n).

In the case of Dirichlet boundary conditions the operator L0 is diagonal
as well. The matrix representation of V given by the following lemma.

Lemma 1. Let (gn)n∈Z be the orthogonal normalized basis of eigenfunctions
of L0 in the case of Dirichlet boundary conditions. Then

(2.13) Vkn := 〈V gn, gk〉 = W (k + n), k, n ∈ Z,

with

(2.14) W (m) =

{

(p(−m) + q(m))/2 m even

(p1(−m) + q1(m))/2 m odd
.
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The proof follows from a direct computation of 〈V gn, gk〉. Let us mention,
that the sequences p1(m) and q1(m) in (2.14) are Hilbert transforms of p(n)
and q(n) (see [6], Lemma 2 in Section 1.3) but we do not need this fact. In
the following only the relation (2.10) is essential.

In view of (2.4)–(2.7) the operator R0
λ = (λ − L0)−1 is well defined, re-

spectively, for λ 6∈ 2Z if bc = Per+, λ 6∈ 1 + 2Z if bc = Per−, and λ 6∈ Z if
bc = Dir. The operator R0

λ is diagonal, and we have

(2.15) R0
λe1

n =
1

λ − n
e1
n, R0

λe2
n =

1

λ − n
e2
n for bc = Per±,

and

(2.16) R0
λgn =

1

λ − n
gn for bc = Dir.

The standard perturbation type formulae for the resolvent Rλ = (λ −
L0 − V )−1 are

(2.17) Rλ = (1 − R0
λV )−1R0

λ =

∞
∑

k=0

(R0
λV )kR0

λ,

and

(2.18) Rλ = R0
λ(1 − V R0

λ)−1 =

∞
∑

k=0

R0
λ(V R0

λ)k.

The simplest conditions that guarantee convergence of the series (2.17)
or (2.18) in ℓ2 are

‖R0
λV ‖ < 1, respectively, ‖V R0

λ‖ < 1.

In the case of Dirac operators there are no such good estimates but there
are good estimates for the norms of (R0

λV )2 and (V R0
λ)2 (see [5] and [6],

Section 1.2, for more comments).
But now we are going to suggest another approach that is borrowed from

the study of Hill operators with periodic singular potentials (see [8, 9, 10]).
Notice, that one can write (2.17) or (2.18) as

(2.19) Rλ = R0
λ + R0

λV R0
λ + · · · = K2

λ +
∞
∑

m=1

Kλ(KλV Kλ)mKλ,

provided

(2.20) (Kλ)2 = R0
λ.

In view of (2.15) and (2.16), we define an operator K = Kλ with the
property (2.20) by

(2.21) Kλe1
n =

1√
λ − n

e1
n, Kλe2

n =
1√

λ − n
e2
n for bc = Per±,

and

(2.22) Kλgn =
1√

λ − n
gn for bc = Dir,
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where √
z =

√
reiϕ/2 if z = reiϕ, −π ≤ ϕ < π.

Then Rλ is well–defined if

(2.23) ‖KλV Kλ‖ℓ2→ℓ2 < 1.

In view of (2.11) and (2.21), for periodic or anti–periodic boundary con-
ditions bc = Per±, we have
(2.24)

(KλV Kλ)e1
n =

∑

k

q(k + n)

(λ − k)1/2(λ − n)1/2
e2
k, (KλV Kλ)e2

n =
∑

k

p(−k − n)

(λ − k)1/2(λ − n)1/2
e1
k,

so, the Hilbert–Schmidt norm of the operator KλV Kλ is given by

(2.25) ‖KλV Kλ‖2
HS =

∑

k,m

|q(k + m)|2
|λ − k||λ − m| +

∑

k,m

|p(−k − m)|2
|λ − k||λ − m| ,

where k,m ∈ 2Z for bc = Per+ and k,m ∈ 1 + 2Z for bc = Per−.
In an analogous way (2.13), (2.14) and (2.22) imply, for Dirichlet bound-

ary conditions bc = Dir,

(2.26) (KλV Kλ)gn =
∑

k

W (k + n)

(λ − k)1/2(λ − n)1/2
gk, k, n ∈ Z,

and therefore, we have

(2.27) ‖KλV Kλ‖2
HS =

∑

k,m

|W (k + m)|2
|λ − k||λ − m| , k,m ∈ Z.

For convenience, we set

(2.28) r(m) = max(|p(m)|, |p(−m)|) + max(|q(m)|, |q(−m)|), m ∈ 2Z,

if bc = Per±, and

(2.29) r(m) = |W (m)| m ∈ Z,

if bc = Dir. Now we define operators V̄ and K̄λ which dominate, respectively,
V and Kλ, as follows:
(2.30)

V̄ e1
n =

∑

k∈n+2Z

r(k + n)e2
k, V̄ e2

n =
∑

k∈n+2Z

r(k + n)e1
k for bc = Per±,

(2.31) V̄ gn =
∑

k∈Z

r(k + n)gk for bc = Dir,

and

(2.32) K̄λe1
n =

1
√

|λ − n|
e1
n, K̄λe2

n =
1

√

|λ − n|
e2
n for bc = Per±,

(2.33) K̄λgn =
1

√

|λ − n|
gn for bc = Dir.
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Since the matrix elements of the operator KλV Kλ do not exceed, by
absolute value, the matrix elements of K̄λV̄ K̄λ, we estimate from above the
Hilbert–Schmidt norm of the operator KλV Kλ by one and the same formula:

(2.34) ‖KλV Kλ‖2
HS ≤ ‖K̄λV̄ K̄λ‖HS =

∑

i,k

|r(i + k)|2
|λ − i||λ − k| ,

where i, k ∈ 2Z if bc = Per+ and i, k ∈ 1 + 2Z if bc = Per−, or i, k ∈ Z

if bc = Dir. Next we estimate the Hilbert–Schmidt norm of the operator
K̄λV̄ K̄λ for λ ∈ Cn = {λ : |λ − n| = 1/2}.

For each ℓ2–sequence x = (x(j))j∈Z and m ∈ N we set

(2.35) Em(x) =





∑

|j|≥m

|x(j)|2




1/2

.

Lemma 2. In the above notations, if n 6= 0, then
(2.36)

‖K̄λV̄ K̄λ‖2
HS =

∑

i,k

|r(i + k)|2
|λ − i||λ − k| ≤ C

(

‖r‖2

√

|n|
+ (E|n|(r))2

)

, λ ∈ Cn,

where C is an absolute constant.

Remark: For convenience, here and thereafter we denote by C any abso-
lute constant.

Proof. Since

(2.37) 2|λ − i| ≥ |n − i| if i 6= n, λ ∈ Cn = {λ : |λ − n| = 1/2},
the sum in (2.36) does not exceed

4|r(2n)|2 + 4
∑

k 6=n

|r(n + k)|2
|n − k| + 4

∑

i6=n

|r(n + i)|2
|n − i| + 4

∑

i,k 6=n

|r(i + k)|2
|n − i||n − k| .

In view of (4.3) and (4.4) in Lemma 7, each of the above sums does not
exceed the right-hand side of (2.36), which completes the proof. �

Corollary: There is N ∈ N such that

(2.38) ‖KλV Kλ‖ ≤ 1/2 for λ ∈ Cn, |n| > N.

3. Core results

By our Theorem 18 in [6] (about spectra localization), for sufficiently
large |n|, say |n| > N, the operator LPer± has exactly two (counted with
their algebraic multiplicity) periodic (for even n) or antiperiodic (for odd n)
eigenvalues inside the disc with a center n of radius 1/2. The operator LDir

has, for all sufficiently large |n|, one eigenvalue in every such disc.
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Let Pn and P 0
n be the Riesz projections corresponding to L and L0, i.e.,

Pn =
1

2πi

∫

Cn

(λ − L)−1dλ, P 0
n =

1

2πi

∫

Cn

(λ − L)−1dλ,

where Cn = {λ : |λ − n| = 1/2}.
Theorem 3. Suppose L and L0 are, respectively, the Dirac operator (2.1)
with an L2 potential v and the free Dirac operator, subject to periodic, an-
tiperiodic or Dirichlet boundary conditions bc = Per± or Dir. Then, there is
N ∈ N such that for |n| > N the Riesz projections Pn and P 0

n corresponding
to L and L0 are well defined and we have

(3.1)
∑

|n|>N

‖Pn − P 0
n‖2 < ∞.

Proof. Now we present the proof of the theorem up to a few technical in-
equalities. They will be proved later in Section 4, Lemmas 7 and 8.

1. Let us notice that the operator–valued function Kλ is analytic in
C \ R+. But (2.19), (3.2) below and all formulas of this section – which
are essentially variations of (2.19) – always have even powers of Kλ, and
K2

λ = R0
λ is analytic on C\Sp(L0). Certainly, this justifies the use of Cauchy

formula or Cauchy theorem when warranted.
In view of (2.38), the corollary after the proof of Lemma 2, if |n| is suffi-

ciently large then the series in (2.19) converges. Therefore,

(3.2) Pn − P 0
n =

1

2πi

∫

Cn

∞
∑

s=0

Kλ(KλV Kλ)s+1Kλdλ.

Remark. We are going to prove (3.1) by estimating the Hilbert–Schmidt
norms ‖Pn −P 0

n‖HS which dominate ‖Pn −P 0
n‖. Of course, these norms are

equivalent as long as the dimensions dim (Pn − P 0
n) are uniformly bounded

because for any finite dimensional operator T we have

‖T‖ ≤ ‖T‖HS ≤ (dim T )1/2‖T‖
but in the context of this paper for all projections dim Pn, dim P 0

n ≤ 2.

2. If bc = Dir, then, by (2.6),

‖Pn − P 0
n‖2

HS =
∑

m,k∈Z

|〈(Pn − P 0
n)gm, gk〉|2.

By (3.2), we get

〈(Pn − P 0
n)gm, gk〉 =

∞
∑

s=0

In(s, k,m),

where

In(s, k,m) =
1

2πi

∫

Cn

〈Kλ(KλV Kλ)s+1Kλgm, gk〉dλ.
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Therefore,

∑

|n|>N

‖Pn − P 0
n‖2

HS ≤
∞
∑

s,t=0

∑

|n|>N

∑

m,k∈Z

|In(s, k,m)| · |In(t, k,m)|.

Now, the Cauchy inequality implies

(3.3)
∑

|n|>N

‖Pn − P 0
n‖2

HS ≤
∞
∑

s,t=0

(A(s))1/2(A(t))1/2,

where

(3.4) A(s) =
∑

|n|>N

∑

m,k∈Z

|In(s, k,m)|2.

Notice that A(s) depends on N but this dependence is suppressed in the
notation.

From the matrix representation of the operators Kλ and V we get
(3.5)

〈Kλ(KλV Kλ)s+1Kλem, ek〉 =
∑

j1,...,js

W (k + j1)W (j1 + j2) · · ·W (js + m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)
,

and therefore,

(3.6) In(s, k,m) =
1

2πi

∫

Cn

∑

j1,...js

W (k + j1)W (j1 + j2) · · ·W (js + m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)
dλ.

In view of (2.29), we have

(3.7)

∣

∣

∣

∣

W (k + j1)W (j1 + j2) · · ·W (js + m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)

∣

∣

∣

∣

≤ B(λ, k, j1, . . . , js,m),

where
(3.8)

B(λ, k, j1, . . . , js,m) =
r(k + j1)r(j1 + j2) · · · r(js−1 + js)r(js + m)

|λ − k||λ − j1| · · · |λ − js||λ − m| , s > 0,

and

(3.9) B(λ, k,m) =
r(m + k)

|λ − k||λ − m|
in the case when s = 0 and there are no j-indices. Moreover, by (2.29),(2.31)
and (2.33), we have

(3.10)
∑

j1,...,js

B(λ, k, j1, . . . , js,m) = 〈K̄λ(K̄λV̄ K̄λ)s+1K̄zem, ek〉.

Lemma 4. In the above notations, we have

(3.11) A(s) ≤ B1(s) + B2(s) + B3(s) + B4(s),



10 PLAMEN DJAKOV AND BORIS MITYAGIN

where

(3.12) B1(s) =
∑

|n|>N

sup
λ∈Cn





∑

j1,...,js

B(λ, n, j1, . . . , js, n)





2

;

(3.13) B2(s) =
∑

|n|>N

∑

k 6=n

sup
λ∈Cn





∑

j1,...,js

B(λ, k, j1, . . . , js, n)





2

;

(3.14) B3(s) =
∑

|n|>N

∑

m6=n

sup
λ∈Cn





∑

j1,...,js

B(λ, n, j1, . . . , js,m)





2

;

(3.15) B4(s) =
∑

|n|>N

∑

m,k 6=n

sup
λ∈Cn





∗
∑

j1,...,js

B(λ, k, j1, . . . , js,m)





2

, s ≥ 1,

where the symbol ∗ over the sum in the parentheses means that at least one
of the indices j1, . . . , js is equal to n.

Proof. Indeed, in view of (3.4), we have

A(s) ≤ A1(s) + A2(s) + A3(s) + A4(s),

where

A1(s) =
∑

|n|>N

|In(s, n, n)|2, A2(s) =
∑

|n|>N

∑

k 6=n

|In(s, k, n)|2

A3(s) =
∑

|n|>N

∑

m6=n

|In(s, n,m)|2, A4(s) =
∑

|n|>N

∑

m,k 6=n

|In(s, k,m)|2.

By (3.6)–(3.9) we get immediately that

Aν(s) ≤ Bν(s), ν = 1, 2, 3.

On the other hand, by the Cauchy formula,
∫

Cn

W (k + j1)W (j1 + j2) · · ·W (js + m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)
dλ = 0 if k, j1, . . . , js,m 6= n.

Therefore, removing from the sum in (3.6) the terms with zero integrals,
and estimating from above the remaining sum, we get

|In(s, k,m)| ≤ sup
λ∈Cn





∗
∑

j1,...,js

B(λ, k, j1, . . . , js,m)



 , m, k 6= n.

From here it follows that A4(s) ≤ B4(s), which completes the proof. �
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3. In view of (3.3) and (3.11), Theorem 3 will be proved if we get ”good
estimates” of the sums Bν(s), ν = 1, . . . , 4, that are defined by (3.12)–(3.15).

If bc = Per±, then using the orthonormal system of eigenvectors of the
free operator L0 given by (2.5), we get

(3.16) ‖Pn − P 0
n‖2

HS =
2
∑

α,β=1

∑

m,k

|〈(Pn − P 0
n)eα

m, eβ
k 〉|2,

where m,k ∈ 2Z if n is even or m,k ∈ 1 + 2Z if n is odd. By (3.2), we have

(3.17) 〈(Pn − P 0
n)eα

m, eβ
k 〉 =

∞
∑

s=0

Iαβ(n, s, k,m),

where

(3.18) Iαβ(n, s, k,m) =
1

2πi

∫

Cn

〈Kλ(KλV Kλ)s+1Kλeα
m, eβ

k〉dλ.

Therefore,

∑

|n|>N

‖Pn − P 0
n‖2

HS ≤
2
∑

α,β=1

∞
∑

t,s=0

∑

|n|>N

∑

m,k

|Iαβ(n, s, k,m)| · |Iαβ(n, t, k,m)|.

Now, the Cauchy inequality implies

(3.19)
∑

|n|>N

‖Pn − P 0
n‖2

HS ≤
2
∑

α,β=1

∞
∑

t,s=0

(Aαβ(s))1/2(Aαβ(t))1/2,

where

(3.20) Aαβ(s) =
∑

|n|>N

∑

m,k

|Iαβ(n, s, k,m)|2.

Lemma 5. In the above notations, with r given by (2.28), B(λ, k, j1, . . . , js,m)
defined in (3.8),(3.9), and Bj(s), j = 1, . . . , 4, defined by (3.12)–(3.15), we
have

(3.21) Aαβ(s) ≤ B1(s) + B2(s) + B3(s) + B4(s), α, β = 1, 2.

Proof. The matrix representations of the operators V and Kλ given in (2.12)
and (2.21) imply that if s is even, then 〈〈Kλ(KλV Kλ)s+1Kλeα

m, eα
k 〉 = 0 for

α = 1, 2, and if s is odd then
(3.22)

〈Kλ(KλV Kλ)s+1Kλe1
m, e1

k〉 =
∑

j1,...,js

p(−k − j1)q(j1 + j2) · · · p(−js−1 − js)q(js + m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)
,

(3.23)

〈Kλ(KλV Kλ)s+1Kλe2
m, e2

k〉 =
∑

j1,...,js

q(k + j1)p(−j1 − j2) · · · q(js−1 + js)p(−js − m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)
.
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In analogous way it follows that if s is odd then 〈〈Kλ(KλV Kλ)s+1Kλe1
m, e2

k〉 =
0 and 〈〈Kλ(KλV Kλ)s+1Kλe2

m, e1
k〉 = 0, and if s is even then

(3.24)

〈Kλ(KλV Kλ)s+1Kλe1
m, e2

k〉 =
∑

j1,...,js

q(k + j1)p(−j1 − j2) · · · p(−js−1 − js)q(js + m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)
,

(3.25)

〈Kλ(KλV Kλ)s+1Kλe2
m, e1

k〉 =
∑

j1,...,js

p(−k − j1)q(j1 + j2) · · · q(js−1 + js)p(−js − m)

(λ − k)(λ − j1) · · · (λ − js)(λ − m)
.

From (2.28), (3.12)-(3.15) and the above formulas it follows that

|〈Kλ(KλV Kλ)s+1Kλeα
m, eβ

k 〉| ≤
∑

j1,...,js

B(λ, k, j1, . . . , js,m),

which implies immediately

(3.26) |Iαβ
n (s, k,m)| ≤ sup

λ∈Cn





∑

j1,...,js

B(λ, k, j1, . . . , js,m)



 .

By (3.20),

Aαβ(s) ≤ Aαβ
1 (s) + Aαβ

2 (s) + Aαβ
3 (s) + Aαβ

4 (s),

where

Aαβ
1 (s) =

∑

|n|>N

|Iαβ
n (s, n, n)|2, Aαβ

2 (s) =
∑

|n|>N

∑

k 6=n

|Iαβ
n (s, k, n)|2

Aαβ
3 (s) =

∑

|n|>N

∑

m6=n

|Iαβ
n (s, n,m)|2, Aαβ

4 (s) =
∑

|n|>N

∑

m,k 6=n

|Iαβ
n (s, k,m)|2.

Therefore, in view of (3.26) and (3.12)–(3.14), we get

Aαβ
ν (s) ≤ Bν(s), ν = 1, 2, 3.

Finally, as in the proof of Lemma 4, we take into account that in the sums
(3.22)–(3.25) the terms with indices j1, . . . , js,m, k 6= n have zero integrals
over the contour Cn. Therefore,

|Iαβ
n (s, k,m)| ≤ sup

λ∈Cn





∗
∑

j1,...,js

B(λ, k, j1, . . . , js,m)



 , m, k 6= n.

In view of (3.15), this yields Aαβ
4 (s) ≤ B4(s), which completes the proof. �

Such estimates are given in the next proposition. For convenience, we set
for any ℓ2–sequence r = (r(j))

(3.27) ρN =

(‖r‖2

√
N

+ (EN (r))2
)1/2

.
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Proposition 6. In the above notations,

(3.28) Bν(s) ≤ C‖r‖2ρ2s
N , ν = 1, 2, 3, B4(s) ≤ Cs‖r‖4ρ

2(s−1)
N , s ≥ 1,

where C is an absolute constant.

Proof. Estimates for B1(s). By (3.9) and (3.12), we have

B1(0) =
∑

|n|>N

sup
λ∈Cn

|r(2n)|2
|λ − n|2 = 4(EN (r))2 ≤ 4‖r‖2,

so (3.28) holds for B1(s) if s = 0.
If s = 1, then by (3.8), the sum B1(1) from (3.12) has the form

B1(1) =
∑

|n|>N

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j

r(n + j)r(j + n)

|λ − n||λ − j||λ − n|

∣

∣

∣

∣

∣

∣

2

.

By (2.37), and since |λ − n| = 1/2 for λ ∈ Cn, we get

B1(1) ≤
∑

|n|>N



8
∑

j 6=n

|r(j + n)|2
|j − n| + 8|r(2n)|2





2

≤ 128
∑

|n|>N





∑

j 6=n

|r(j + n)|2
|j − n|





2

+ 128
∑

|n|>N

|r(2n)|4.

By the Cauchy inequality and (4.6) in Lemma 8, we have

∑

|n|>N





∑

j 6=n

|r(j + n)|2
|j − n|





2

≤
∑

|n|>N

∑

j 6=n

|r(j + n)|2
|j − n|2 ‖r‖2 ≤ C‖r‖2ρ2

N .

On the other hand,
∑

|n|>N |r(2n)|4 ≤ ‖r‖2(EN (r))2 ≤ ‖r‖2ρ2
N , so (3.28)

holds for B1(s) if s = 1.
Next, we consider the case s > 1. In view of (3.8), since |λ− n| = 1/2 for

λ ∈ Cn, the sum B1(s) from (3.12) can be written as

B1(s) =
∑

|n|>N

4 sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j1,...,js

r(n + j1)r(j1 + j2) · · · r(js + n)

|λ − j1||λ − j2| · · · |λ − js|

∣

∣

∣

∣

∣

∣

2

.

Therefore, we have (with j = j1, k = js)

B1(s) = 4
∑

|n|>N

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j,k

r(n + j)

|λ − j|1/2
· Hjk(λ) · r(k + n)

|λ − k|1/2

∣

∣

∣

∣

∣

∣

2

,
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where (Hjk(λ)) is the matrix representation of the operator H(λ) = (K̄λV̄ K̄λ)s−1.
By (2.36) in Lemma 2,

‖H(λ)‖HS =





∑

j,k

|Hjk(λ)|2




1/2

≤ ‖K̄λV̄ K̄λ‖s−1
HS ≤ ρs−1

N for λ ∈ Cn, |n| > N.

Therefore, the Cauchy inequality implies

B1(s) ≤ 4‖H(λ)‖2
HS · σ ≤ 4ρ

2(s−1)
N · σ,

where

σ =
∑

|n|>N

sup
λ∈Cn

∑

j,k

|r(n + j)|2
|λ − j| · |r(k + n)|2

|λ − k| .

By (2.37) and since |λ − n| = 1/2 for λ ∈ Cn, we have

σ ≤ 4
∑

|n|>N

∑

j,k 6=n

|r(n + j)|2|r(n + k)|2
|n − j||n − k| + 4

∑

|n|>N

|r(2n)|2
∑

k 6=n

|r(n + k)|2
|n − k|

+4
∑

|n|>N

|r(2n)|2
∑

j 6=n

|r(n + j)|2
|n − j| + 4

∑

|n|>N

|r(2n)|4.

In view of (4.7) in Lemma 8, the triple sum does not exceed C‖r‖2ρ2
N . By

(4.3) in Lemma 7, each of the double sums can be estimated from above by

C
∑

|n|>N

|r(2n)|2ρ2
N ≤ C‖r‖2ρ2

N ,

and the same estimate holds for the single sum. Therefore,

B1(s) ≤ Cρ
2(s−1)
N · ‖r‖2ρ2

N ,

which completes the proof of (3.28) for B1(s).

Estimates for B2(s). By (3.9) and (3.12), we have

B2(0) =
∑

|n|>N

∑

k 6=n

sup
λ∈Cn

|r(k + n)|2
|λ − k|2|λ − n|2 .

Taking into account that |λ− n| = 1/2 for λ ∈ Cn, we get, in view of (2.37)
and (4.6) in Lemma 8,

B2(0) ≤ 4
∑

|n|>N

∑

k 6=n

|r(k + n)|2
|n − k|2 ≤ C‖r‖2.

So, (3.28) holds for B2(s) if s = 0.
If s = 1, then, by (3.8), the sum B2(s) in (3.28) has the form

B2(1) =
∑

|n|>N

∑

k 6=n

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j

r(k + j)r(j + n)

|λ − k||λ − j||λ − n|

∣

∣

∣

∣

∣

∣

2

.



BARI–MARKUS PROPERTY 15

Since |λ − n| = 1/2 for λ ∈ Cn, we get, in view of (2.37),

B2(1) ≤
∑

|n|>N

∑

k 6=n

∣

∣

∣

∣

∣

∣

∑

j 6=n

8
r(k + j)r(j + n)

|n − k||n − j| + 8r(2n)
r(k + n)

|n − k|

∣

∣

∣

∣

∣

∣

2

.

Therefore,

B2(1) ≤ 128σ1 + 128σ2,

where (by the Cauchy inequality and (4.6) in Lemma 8)

σ1 =
∑

|n|>N,k 6=n





∑

j 6=n

r(k + j)r(j + n)

|n − k||n − j|





2

≤
∑

|n|>N,k 6=n

1

|n − k|2





∑

j 6=n

|r(n + j)|2
|n − j|2



·‖r‖2

=
∑

|n|>N,j 6=n

|r(n + j)|2
|n − j|2

∑

k 6=n

‖r‖2

|n − k|2 ≤ Cρ2
N‖r‖2,

and

σ2 =
∑

|n|>N,k 6=n

|r(2n)|2 |r(n + k)|2
|n − k|2 ≤ Cρ2

N‖r‖2.

Thus, (3.28) holds for B2(s) if s = 1.
If s > 1, then by (3.8) and |λ − n| = 1/2 for λ ∈ Cn, we have

B2(s) =
∑

|n|>N,k 6=n

2 sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j1,...,js

r(k + j1)r(j1 + j2) · · · r(js + n)

|λ − k||λ − j1||λ − j2| · · · |λ − js|

∣

∣

∣

∣

∣

∣

2

.

In view of (2.31) and (2.32), we get (with j = j1, i = js)

B2(s) = 2
∑

|n|>N,k 6=n

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j,i

r(k + j)

|λ − k||λ − j|1/2
· Hji(λ) · r(i + n)

|λ − i|1/2

∣

∣

∣

∣

∣

∣

2

,

where Hji(λ) is the matrix representation of the operator H(λ) = (K̄λV̄ K̄λ)s−1.
Therefore, by the Cauchy inequality and (2.36) in Lemma 2,

(3.29) B2(s) ≤ 2 sup
λ∈Cn

‖H(λ)‖2
HS · σ̃ ≤ 2ρ

2(s−1)
N · σ̃,

where

σ̃ =
∑

|n|>N,k 6=n

sup
λ∈Cn

∑

i,j

|r(k + j)|2|r(i + n)|2
|λ − k|2|λ − j||λ − i| .

From |λ − n| = 1/2 for λ ∈ Cn and (2.37) it follows that

σ̃ ≤ 8(σ̃1 + σ̃2 + σ̃3 + σ̃4),

with

σ̃1 =
∑

|n|>N

∑

k 6=n

∑

j,i6=n

|r(k + j)|2|r(i + n)|2
|n − k|2|n − j||n − i| ≤ C‖r‖2(E2N (r))2 ≤ C‖r‖2ρ2

N
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(by (4.9) in Lemma 8);

σ̃2 =
∑

|n|>N

∑

k 6=n

∑

j 6=n

|r(k + j)|2|r(2n)|2
|n − k|2|n − j|

≤
∑

|n|>N

|r(2n)|2
∑

k 6=n

1

|n − k|2
∑

j

|r(k + j)|2 ≤ C‖r‖2(E2N (r))2 ≤ C‖r‖2ρ2
N ;

σ̃3 =
∑

|n|>N

∑

k 6=n

∑

i6=n

|r(k + n)|2|r(n + i)|2
|n − k|2|n − i|

≤
∑

|n|>N

∑

k 6=n

|r(k + n)|2
|n − k|2 ·

∑

i

|r(n + i)|2 ≤ C‖r‖2ρ2
N

(by (4.6) in Lemma 8);

σ̃4 =
∑

|n|>N,k 6=n

|r(k + n)|2|r(2n)|2
|n − k|2 ≤ ‖r‖2

∑

|n|>N,k 6=n

|r(k + n)|2
|n − k|2 ≤ C‖r‖2ρ2

N

(by (4.6) in Lemma 8). These estimates imply the inequality σ̃ ≤ C‖r‖2ρ2
N ,

which completes the proof of (3.28) for ν = 2, s > 1.

Estimates for B3(s). The sums B3(s) can be estimated in a similar way
because the indices k and m play symmetric roles. More precisely, since

B(λ, k, i1, . . . , is, n) = B(λ, n, j1, . . . , jτ−1, k)

if j1 = is−1, . . . , js−1 = i1, we have B3(s) = B2(s). Thus, (3.28) holds for
ν = 3.

Estimates for B4(s). Here s ≥ 1 by the definition of B4(s).
Fix s ≥ 1 and consider the sum in (3.15) that defines B4(s); then at least

one of the indices j1, . . . , js is equal to n. Let τ ≤ t be the least integer such
that jτ = n. Then, by (3.8) or (3.9), and since |λ − n| = 1/2 for λ ∈ Cn, we
have

B(λ, k, j1, . . . , jτ−1, n, jτ+1, . . . , js,m) =

1

2
B(λ, k, j1, . . . , jτ−1, n) · B(λ, n, jτ+1, . . . , js,m).

Therefore,

B4(s) ≤
s
∑

τ=1

∑

|n|>N

∑

k 6=n

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j1,...,jτ−1

B(λ, k, j1, . . . , jτ−1, n)

∣

∣

∣

∣

∣

∣

2

×
∑

m6=n

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

jτ+1,...,js

B(λ, n, jτ+1, . . . , js,m)

∣

∣

∣

∣

∣

∣

2
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On the other hand, by the estimate of B3(s) given by (3.28),

∑

m6=n

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

jτ+1,...,js

B(λ, n, jτ+1, . . . , js,m)

∣

∣

∣

∣

∣

∣

2

≤ C‖r‖2ρ
2(s−τ)
N , |n| > N.

Thus, we have

B4(s) ≤ C‖r‖2
s
∑

τ=1

ρ
2(s−τ)
N

∑

|n|>N

∑

k 6=n

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j1,...,jτ−1

B(λ, k, j1, . . . , jτ−1, n)

∣

∣

∣

∣

∣

∣

2

Now, by (3.28) for ν = 2,

∑

|n|>N

∑

k 6=n

sup
λ∈Cn

∣

∣

∣

∣

∣

∣

∑

j1,...,jτ−1

B(λ, k, j1, . . . , jτ−1, n)

∣

∣

∣

∣

∣

∣

2

≤ C‖r‖2ρ
2(τ−1)
N .

Hence,

B4(s) ≤ C‖r‖4
s
∑

τ=1

ρ
2(s−1)
N = Cs‖r‖4ρ

2(s−1)
N ,

which completes the proof of (3.28). �

Now, we can complete the proof of Theorem 3. Lemma 5, (3.21) together
with the inequalities (3.28) and (3.27) in Proposition 6 imply that

(3.30) Aαβ(s) ≤ 4C‖r‖2(1 + ‖r‖2/ρ2
N )(1 + s)ρ2s

N

(3.31)
(

Aαβ(s)Aαβ(t)
)1/2

≤ 4C‖r‖2(1 + ‖r‖2/ρ2
N )(1 + s)(1 + t)ρs+t

N .

With ρ ≤ 1/2 by (3.27) the inequality (3.31) guarantees that the series on
the right side of (3.19) converges and

∑

n>N

‖Pn − P 0
n‖2 ≤

∑

n>N

‖Pn − P 0
n‖2

HS ≤ C1‖r‖2(1 + ‖r‖2/ρ2
N ) < ∞.

So, Theorem 3 is proven subject to Lemmas 7 and 8 in the next section. �

4. Technical Lemmas

In this section we use that

(4.1)
∑

n>N

1

n2
<
∑

n>N

(

1

n − 1
− 1

n

)

=
1

N
, N ≥ 1.

and

(4.2)
∑

p 6=±n

1

(n2 − p2)2
<

4

n2
, n ≥ 1.

Indeed,

1

(n2 − p2)2
=

1

4n2

(

1

n − p
+

1

n + p

)2

≤ 1

2n2

(

1

(n − p)2
+

1

(n + p)2

)

.
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Therefore, the sum in (4.2) does not exceed

1

2n2





∑

p 6=±n

1

(n − p)2
+
∑

p 6=±n

1

(n + p)2



 ≤ 1

2n2
· 2π2

3
<

4

n2
.

Lemma 7. If r = (r(k)) ∈ ℓ2(2Z) (or r = (r(k)) ∈ ℓ2(Z)), then

(4.3)
∑

k 6=n

|r(n + k)|2
|n − k| ≤ ‖r‖2

|n| + (E|n|(r))2, |n| ≥ 1;

(4.4)
∑

i,k 6=n

|r(i + k)|2
|n − i||n − k| ≤ C

(‖r‖2

√
n

+ (E|n|(r))2
)

, |n| ≥ 1,

where n ∈ Z, i, k ∈ n + 2Z (or, respectively, i, k ∈ Z) and C is an absolute
constant.

Proof. If |n−k| ≤ |n|, then we have |n+k| ≥ 2|n|− |n−k| ≥ |n|. Therefore,

∑

k 6=n

|r(n + k)|2
|n − k| ≤

∑

0<|n−k|≤|n|

|r(n+k)|2+
∑

|n−k|>|n|

|r(n + k)|2
|n| ≤ (E|n|(r))2+

‖r‖2

|n| ,

which proves (4.3).
Next we prove (4.4). We have

(4.5)
∑

i,k 6=n

|r(i + k)|2
|n − i||n − k| ≤

∑

(i,k)∈J1

+
∑

(i,k)∈J2

+
∑

(i,k)∈J3

,

where J1 = {(i, k) : 0 < |n − i| < |n|/2, |n − k| < |n|/2},

J2 =

{

(i, k) : i 6= n, |n − k| ≥ |n|
2

}

, J3 =

{

(i, k) : |n − i| ≥ |n|
2

, k 6= n

}

.

For (i, k) ∈ J1 we have |i + k| = |2n− (n− i)− (n− k)| ≥ 2|n| − |n− i| −
|n − k| ≥ |n|. Therefore, by the Cauchy inequality,

∑

(i,k)∈J1

≤





∑

(i,k)∈J1

|r(i + k)|2
|n − i|2





1/2



∑

(i,k)∈J1

|r(i + k)|2
|n − k|2





1/2

≤ C(E|n|(r))2.

On the other hand, again by the Cauchy inequality,

∑

(i,k)∈J2

=
∑

(i,k)∈J3

≤





∑

(i,k)∈J3

|r(i + k)|2
|n − i|2





1/2



∑

(i,k)∈J3

|r(i + k)|2
|n − k|2





1/2

≤







∑

|n−i|≥
|n|
2

1

|n − i|2
∑

k

|r(i + k)|2







1/2




∑

k 6=n

1

|n − k|2
∑

i

|r(i + k)|2




1/2

≤ C
‖r‖2

√
n

,

which completes the proof. �
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Lemma 8. If r = (r(k)) ∈ ℓ2(2Z) (or r = (r(k)) ∈ ℓ2(Z)), then

(4.6)
∑

|n|>N,k 6=n

|r(n + k)|2
|n − k|2 ≤ C

(‖r‖2

N
+ (EN (r))2

)

;

(4.7)
∑

|n|>N

∑

i,p 6=n

|r(n + i)|2|r(n + p)|2
|n − i||n − p| ≤ C

(‖r‖2

N
+ (EN (r))2

)

‖r‖2;

(4.8)
∑

|n|>N,j,p 6=n

|r(j + p)|2
|n − j|2|n − p|2 ≤ C

(‖r‖2

N
+ (EN (r))2

)

;

(4.9)
∑

|n|>N

∑

i,j,p 6=n

|r(n + i)|2|r(j + p)|2
|n − i||n − j||n − p|2 ≤ C

(‖r‖2

N
+ (EN (r))2

)

‖r‖2,

where C is an absolute constant.

Proof. With k̃ = n − k and ñ = n + k it follows that whenever |k̃| ≤ |n| we

have |ñ| = |2n − k̃| ≥ 2|n| − |k̃| ≥ |n|. Therefore,

∑

|n|>N

∑

k 6=n

|r(n + k)|2
|n − k|2 =

∑

|n|>N

∑

0<|n−k|≤|n|

+
∑

|n|>N

∑

|n−k|>|n|

≤
∑

|k̃|>0

1

|k̃|2
∑

|ñ|>N

|r(ñ)|2 +
∑

|n|>N

1

n2

∑

k

|r(n + k)|2 ≤ C

(

(EN (r))2 +
‖r‖2

N

)

,

which proves (4.6).

Since 1
|n−i||n−p| ≤ 1

2

(

1
|n−i|2

+ 1
|n−p|2

)

, the sum in (4.7) does not exceed

1

2

∑

|n|>N,i 6=n

|r(n + i)|2
|n − i|2

∑

p

|r(n + p)|2 +
1

2

∑

|n|>N,p 6=n

|r(n + p)|2
|n − p|2

∑

i

|r(n + i)|2.

In view of (4.6), the latter is less than C
(

‖r‖2

N + (EN (r))2
)

‖r‖2, which

proves (4.7).
In order to prove (4.8), we set j̃ = n − j and p̃ = n − p. Then

∑

|n|>N ;j,p 6=n

|r(j + p)|2
|n − j|2|n − p|2 =

∑

j̃,p̃6=0

1

j̃2

1

p̃2

∑

|n|>N

|r(2n − j̃ − p̃|2

≤
∑

0<|j̃|,|p̃|≤N/2

1

j̃2

1

p̃2

∑

n>N

|r(2n − j̃ − p̃|2 +
∑

|j̃|>N/2

∑

|p̃|6=0

· · · +
∑

|j̃|6=0

∑

|p̃|>N/2

· · ·

≤ C(EN (r))2 +
C

N
‖r‖2 +

C

N
‖r‖2,

which completes the proof of (4.8).
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Let σ denote the sum in (4.9). The inequality ab ≤ (a2+b2)/2, considered
with a = 1/|n − i| and b = 1/|n − j|, implies that σ ≤ (σ1 + σ2)/2, where

σ1 =
∑

|n|>N,i 6=n

|r(n + i)|2
|n − i|2

∑

p 6=n

1

|n − p|2
∑

j

|r(j+p)|2 ≤ C

(

(EN (r))2 +
‖r‖2

N

)

‖r‖2

(by (4.6)), and

σ2 =
∑

|n|>N

∑

j,p 6=n

|r(j + p)|2
|n − j|2|n − p|2

∑

i

|r(n + i)|2 ≤ C

(

(EN (r))2 +
‖r‖2

N

)

‖r‖2

(by (4.8)). Thus (4.9) holds.
�

5. Conclusions

1. The convergence of the series (3.1) is the analytic core of Bari–Markus
Theorem (see [11], Ch.6, Sect.5.3, Theorem 5.2) which guarantees that the
series

∑

|n|>N Pnf converges unconditionally in L2 for every f ∈ L2. But in

order to have the identity

f = SNf +
∑

|n|>N

Pnf,

we need to check the ”algebraic” hypotheses in Bari–Markus Theorem:
(a) The system of projections

{SN ; Pn, |n| > N}(5.1)

is complete, i.e., the linear span of the system of subspaces

{E∗; En, |n| > N}, E∗ = Ran SN , En = Ran Pn,(5.2)

is dense in L2(I).
(b) The system of subspaces (5.2) is minimal, i.e., there is no vector in

one of these subspaces that belongs to the closed linear span of all other sub-
spaces. Condition (b) holds because the projections in (5.1) are continuous,
commute and

PnSN = 0, PnPm = 0 for m 6= n, |m|, |n| > N.

The system (5.1) is complete; this fact is well known since the early 1950’s
(see details in [13, 14, 11]). More general statements are proven in [17] and
[23], Theorems 6.1 and 6.4 or Proposition 7.1.

Therefore, all hypotheses of Bari–Markus Theorem hold, and we have the
following theorem.

Theorem 9. Let L be the Dirac operator (2.1) with an L2-potential v, sub-
ject to the boundary conditions bc = Per± or Dir. Then there is N ∈ N

such that the Riesz projections

SN =
1

2πi

∫

|z|=N−1/2
(z − Lbc)

−1dz, Pn =
1

2πi

∫

|z−n|=1/4
(z − Lbc)

−1dz
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are well–defined, and

f = SNf +
∑

|n|>N

Pnf, ∀f ∈ L2;

moreover, this series converges unconditionally in L2.

2. General regular boundary conditions for the operator L0 (or L) (2.1)–
(2.2) are given by a system of two linear equations

y1(0) + by1(π) + ay2(0) = 0(5.3)

dy1(π) + cy2(0) + y2(π) = 0

with the restriction

(5.4) bc − ad 6= 0.

A regular boundary condition is strictly regular, if additionally

(5.5) (b − c)2 + 4ad 6= 0,

i.e., the characteristic equation

(5.6) z2 + (b + c)z + (bc − ad) = 0

has two distinct roots.
As we noticed in Introduction our main results (Theorem 9) can be ex-

tended to the cases of both strictly regular (SR) and regular but not strictly
regular (R \ SR) bc. More precisely, the following statements hold.

(SR) case. Let Lbc be an operator (2.1)–(2.2) with (bc) ∈ (5.3) − (5.4).
Then its spectrum SP (Lbc) = {λk, k ∈ Z} is discrete, sup |Im λk| < ∞,
|λk| → ∞ as k → ±∞, and all but finitely many eigenvalues λk are simple,
Lbcuk = λkuk, |k| > N = N(v). Put

SN =
1

2πi

∫

C
(z − Lbc)

−1dz,

where the contour C is chosen so that all λk, |k| ≤ N, lie inside of C, and
λk, |k| > N, lie outside of C. Then the spectral decomposition

f = SNf +
∑

|k|>N

ck(f)uk, ∀f ∈ L2

is well–defined and converges unconditionally in L2.

(R \ SR) case. Let bc be regular, i.e., (5.3)-(5.4) hold, but not strictly
regular, i.e.,

(5.7) (b − c)2 + 4ad = 0,

and z∗ = exp(iπτ) be a double root of (5.6).
Then its spectrum SP (Lbc) = {λk, k ∈ Z} is discrete; it lies in ΠN ∪

⋃

m>N Dm, N = N(v), where

ΠN = {z ∈ C : |Im (z − τ)|, |Re (z − τ)| < N − 1/2}
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and Dm = {z ∈ C : |(z − m − τ)| < 1/4}. The spectral decomposition

f = SNf +
∑

|m|>N

Pmf, ∀f ∈ L2

is well–defined if we set

SN =
1

2πi

∫

∂ΠN

(z − Lbc)
−1dz, Pm =

1

2πi

∫

∂Dm

(z − Lbc)
−1dz, |m| > N,

and it converges unconditionally in L2.
Complete presentation and proofs of these general results will be given

elsewhere.
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