
A Reconfigurable Frame Interpolation Hardware Architecture
 for High Definition Video

Ozgur Tasdizen and Ilker Hamzaoglu
Faculty of Engineering and Natural Sciences, Sabanci University

34956, Tuzla, Istanbul, Turkey
tasdizen@su.sabanciuniv.edu, hamzaoglu@sabanciuniv.edu

Abstract — Since Frame Rate Up-Conversion (FRC) is started
to be used in recent consumer electronics products like High
Definition TV, real-time and low cost implementation of FRC
algorithms has become very important. Therefore, in this
paper, we propose a low cost hardware architecture for real-
time implementation of frame interpolation algorithms. The
proposed hardware architecture is reconfigurable and it
allows adaptive selection of frame interpolation algorithms for
each Macroblock. The proposed hardware architecture is
implemented in VHDL and mapped to a low cost Xilinx
XC3SD1800A-4 FPGA device. The implementation results
show that the proposed hardware can run at 101 MHz on this
FPGA and consumes 32 BRAMs and 15384 slices.

Keywords: Frame Rate Up-Conversion, Frame Interpolation,
Hardware Implementation, FPGA.

I. INTRODUCTION
Frame Rate Up-Conversion (FRC) is the conversion of

a lower frame rate video signal to a higher frame rate video
signal. LCD panels used for High Definition TV (HDTV)
have a frame rate up to 240 Hz, whereas video signals are
usually recorded at 24 Hz, 25 Hz, or 30 Hz. Therefore,
FRC is required in order to display the HDTV video
signals in the LCD panels. FRC can be done by
interpolating a new frame between every two consecutive
original frames like in 25 Hz to 50 Hz conversion, and it
can be done by interpolating three new frames between
every two consecutive original frames like in 25 Hz to 100
Hz conversion. In the case of 24 Hz to 60 Hz conversion
3:2 pull-down technique is used [1]. FRC for 1:4
conversion ratio is illustrated in Fig. 1. The dashed frames
in this figure are the interpolated frames.

Simple FRC techniques like frame repetition and Linear
Interpolation (LI) are used in some consumer electronics
products. But, these techniques often produce artifacts to
which human eye is very sensitive. Frame repetition results
in motion jerkiness and LI causes blurring at object
boundaries [2,3]. To overcome these problems, FRC
algorithms using motion information between consecutive
frames are developed [2,3]. For example, Motion
Compensated Averaging (MCA) technique performs frame
interpolation by using the Motion Vectors (MVs) found by
the Motion Estimation (ME) process.

Figure 1. Frame Rate Up-Conversion

The LI and MCA techniques perform frame

interpolation as shown in Eq. (1) and Eq. (2) respectively.
In these equations, “t” is the time instance the frame “F”
belongs to, “ xr ” is the spatial location of the current pixel
in the frame and “τ” is the time slot the interpolated frame
belongs to. For the conversion ratio 1:2, τ will be 0.5 for
both interpolated frames, and for the conversion ratio 1:4, τ
will be 0.25, 0.5, and 0.75 for the three interpolated frames.

() () () ()txFtxFtxFLI ,1,1, rrr τττ +−−=− (1)

() () ()()[]tvxFtvxFtxFMCA ,11,
2
1, rrrrr τττ −−+−+=− (2)

ME is not only used for FRC. It is also used in video
compression standards such as MPEG4 and H.264, and in
video enhancement applications such as de-interlacing and
de-noising. However, the motion information required for
FRC is not the same as the one required for video coding.
While ME for video coding finds the MVs providing the
smallest prediction error, ME for FRC requires finding the
MVs reflecting the true motion among consecutive frames.

Among the ME techniques, block matching is the most
preferred method due to its simplicity. Block matching
partitions the current frame into non-overlapping
rectangular blocks and tries to find a block from a
reference frame in a given search range that best matches
the current block. Block matching algorithms cause
blocking artifacts. Several FRC algorithms are proposed to
reduce these blocking artifacts [3].

Figure 2. An Example FRC System

In this paper, we assume that the true MVs required by

the proposed FRC hardware will be obtained by another
hardware, which includes a block matching ME hardware
like the one we proposed in [4], and provided to the
proposed FRC hardware.

An example FRC system is shown in Fig. 2. Analyzing
the off-chip memory bandwidth requirement of this FRC
system clearly shows that FRC systems require significant
data transfer from the off-chip frame memory. Since this
FRC system implements a 1:2 conversion ratio, it will
interpolate new frames by using one MV per Macroblock
(MB) and accessing one MB from the current frame and
one MB from the reference frame. Since each color channel
is 10 bits, the RGB values of a pixel take 30 bits which can
be stored in a 32 bit word in memory. A Full HD frame has
1920x1080 (1.98M) pixels which take 7.92MB. Therefore,
2x7.92MB = 15.84MB have to be accessed from the off-
chip frame memory in order to interpolate one frame. The
received input frame and the interpolated frame will be
stored in the frame memory and they will be sent to the
LCD display from the frame memory. Therefore, 47.52MB
per frame will be accessed from the off-chip frame
memory. As it can be seen from this example, FRC systems
require significant off-chip memory bandwidth.

FRC algorithms such as Adaptive Motion-Compensated
Interpolation and Overlapped Block Motion Compensation
proposed in [5-10] produce good quality results. However,
for interpolating a MB, these algorithms do not only access
the MBs in the current and previous frames pointed by the
MV for the current MB, they also access the MBs pointed
by the MVs of the eight spatially neighboring MBs of the
current MB. The MVs required for interpolating MB(i,j) is
shown in Fig. 3. In the figure, “i” and “j” denote the x and
y coordinates of a MB, respectively. The dark shaded MB
is the current MB(i,j) and dashed MBs are its non-causal
neighboring MBs. Therefore, these FRC algorithms access
9 MBs from current frame and 9 MBs from reference frame
for interpolating a MB. This significantly increases the off-
chip memory bandwith requirement of an FRC system.

Figure 3. MVs Required to Interpolate Current MB(i,j)

Even though the off-chip memory bandwidth required

by these FRC algorithms can be reduced by using a large
on-chip memory as proposed in [11], real-time
implementation of these FRC algorithms for HDTV is very
difficult and they require a significant area for the on-chip
memory.

Therefore, in this paper, we propose a low cost
hardware architecture for real-time implementation of
frame interpolation algorithms requiring much lower off-
chip memory bandwidth; LI, MCA, Static Median Filtering
(SMF), Dynamic Median Filtering (DMF), Soft Switching
(SS) and Cascaded Median Filtering (CMF) [3]. The
proposed hardware architecture is reconfigurable and it
allows adaptive selection of these frame interpolation
algorithms for each 16x16 MB.

The proposed hardware architecture is implemented in
VHDL and mapped to a low cost Xilinx Spartan
XC3SD1800A-4 FPGA using Xilinx ISE 9.2.04. It is
verified with RTL simulations using Mentor Graphics
Modelsim. The implementation results show that the
proposed hardware can work at 101 MHz and it consumes
15384 slices and 32 Block RAMs (BRAMs).

Several complete FRC hardware implementations
including these frame interpolation algorithms are proposed
in [12-15]. However, they do not specify the details of the
frame interpolation part of their hardware, and they do not
propose a reconfigurable hardware architecture for
implementing these frame interpolation algorithms.

The rest of the paper is organized as follows. Section II
explains the frame interpolation algorithms implemented
by the proposed FRC hardware. Section III describes the
proposed reconfigurable FRC hardware architecture.
Section IV concludes the paper.

II. FRAME INTERPOLATION ALGORITHMS
FRC by repetition of the original frames results in

motion jerkiness and LI causes blurring at object
boundaries. MCA is used to overcome these artifacts.
However, it introduces blocking artifacts. Blocking
artifacts occur at object boundaries when a block contains
multiple objects with different motions. An appropriate
solution to these local problems is graceful degradation [3].

Graceful degradation methods are SMF, DMF, SS, and
CMF. Their equations are shown in (3), (4), (5), and (6)
respectively. Their advantages and drawbacks are
discussed in detail in [3]. In general, SMF produces good
results for stationary scenes; however it fails for detailed
parts of the video. DMF performs better for these parts of
video. The drawback of DMF is its tendency to cause
serration of edges in highly detailed areas. The block
diagrams of SMF and DMF are shown in Fig. 4 and Fig. 5,
respectively.

SS is an alternative to the rapid switching of DMF
between LI and motion compensated pixels. SS takes the
weighted average of motion compensated and non-motion
compensated pixels. As a result, switching between LI and
MCA becomes softer. As shown in Eq. (5), the weighting
mechanism is controlled by a factor “k” which shows the
reliability of the MVs. For reliable MVs, MCA will be
preferred and for unreliable MVs, LI will be preferred.

SS may result in local motion jerkiness or local blur.
CMF combines the strengths of SMF, DMF, and SS by
taking the median of these methods. CMF can overcome
the problems of these individual methods if controlled
carefully.

Figure 4. SMF

 Figure 5. DMF

() () () ()()ττ −−=− txFtxFtxFmediantxF MCASMF ,,,,1,, rrrr (3)

() () ()(,,)1(,1,, tvxFtvxFmediantxFDMF
rrrrr τττ −−−+=−

 ())τ−txFLI ,r (4)

() () () ()τττ −−+−=− txFktxkFtxF MCALISS ,1,, rrr
 (5)

() () ()(,,,,, τττ −−=− txFtxFmediantxF DMFSMFCMF
rrr

 ())τ−txFSS ,r (6)

Figure 6. Top-Level Hardware Architecture

Figure 7. On-Chip Memory and Datapath

III. PROPOSED HARDWARE ARCHITECTURE
The top-level block diagram of the proposed frame

interpolation hardware architecture is shown in Fig. 6. The
proposed hardware architecture implements LI, MCA,
SMF, DMF, SS and CMF frame interpolation algorithms
and it allows adaptive selection of these algorithms for
each MB. The proposed hardware interpolates frames MB
by MB. It takes the selected interpolation algorithm and the
MV for each 16x16 MB as inputs and performs the frame
interpolation. In this paper, we implemented the on-chip
memory and the datapath part of this hardware shown in
Fig. 7.

The input MV to the frame interpolation hardware
points to a MB in the current frame and a MB in the
reference frame in a range of (±48, ±24) pixels. MVs used
in the interpolation process correspond to a larger search
range in the ME process. For example, for the conversion
ratio 1:2, the MVs with a range of (±48, ±24) pixels used in
the interpolation process correspond to a search range of
(±96, ±48) pixels in the ME process.

Figure 8. Data Stored in the On-Chip Memory

Figure 9. MB Schedule

As shown in Fig. 7 and Fig. 8, the on-chip memory

consists of 32 BRAMs, and it is used to store 112x64
pixels from the current frame and 112x64 pixels from the
reference frame. BRAM 0 to BRAM 15 are used to store
the proper area from the current frame and BRAM 16 to
BRAM 31 are used to store the proper area from the
reference frame. Since each color channel (R, G, B) is 10
bit wide, BRAMs are configured as 448x32-bit, and each
BRAM is used to store 4 lines of the required area from the
corresponding frame.

As shown in Fig. 8, most of the data that should be
stored in the on-chip memory for two consecutive MBs are
the same. Therefore, for the next MB only the 64x16 pixels
non-overlapping area, shown with the dashed lines in Fig.
8, can be accessed from the frame memory by using data
re-use methodology. In addition, since the BRAMs in the
FPGAs have dual ports, the interpolation of a MB can be
overlapped with accessing the non-overlapping area
required by the next MB from the frame memory as shown
in Fig. 9. However, this requires storing additional 16
pixels per line in each BRAM and it increases the
complexity of the address generation module.

The proposed datapath includes 48 Processing Ele-
ments (PEs). The boxes named as “R”, “G”, and “B” in
Fig. 7 represent the PEs. Each PE performs the interpola-
tion of a color channel. Therefore, the datapath interpolates
R, G, B channels of a pixel in parallel and it interpolates 16
pixels in each clock cycle. The Rotator consists of 30
identical rotators each 16 bits long. They are used to align

the interpolated pixels to match with their original positions
where they must be in the current MB. The Output Register
File has 256 registers each 30 bits long. The interpolated
MB will be stored in this register file, and it will be sent to
the frame memory by the memory controller.

The block diagram of a PE is shown in Fig. 10. In the
first clock cycle of the interpolation process, the previous
pixel ()1, −txF r and the current pixel ()txF ,r will be
stored in 10 bit registers “Reg. P.” and “Reg. C.”. In the
second clock cycle, motion compensated values of previous
pixel ()1, −+ tvxF rr τ and current pixel ()tvxF ,)1(rr τ−−
will be stored in the 10 bit registers “Reg. P. MC” and
“Reg. C. MC”. “Reg. SMF”, “Reg. DMF” and “Reg. CMF”
include three 10 bit registers. In the second cycle, outputs
of “Reg. P.” and “Reg. C.” will be added and the least
significant bit will be discarded so that their average will be
calculated and stored in the register “Reg. DMF”.
Similarly, in the third cycle MCA value will be calculated
and stored in the register “Reg. SMF”. “Reg. CMF” stores
the outputs of SMF, DMF and SS.

SS value is calculated by the Soft Switching module.
The block diagram of the Soft Switching module is shown
in Fig. 11. This module takes LI and MCA, and multiplies
them with “k” and “(1-k)”. In order to save area, no
multiplier or divider is used in this module. By only using
one adder/subtractor and one multiplexer, multiplying with
the “k” and “(1-k)” values 24/32:8/32, 20/32:12/32,
18/32:14/32, 16/32:16/32 can be realized. For example,
multiplying with the “k” value 20/32 can be realized by
adding the result of “<<2” (x4) operation to the result of
“<<4” (x16) operation and multiplying with the “(1-k)”
value 12/32 can be realized by subtracting the result of
“<<2” operation from the result of “<<4” operation. The
least significant 5 bits of the adder-subtractor result is
discarded to divide it by 32.

The Median module is shown in Fig. 12. It takes three
10 bit inputs “A”, “B”, and “C”, and finds the median of
these inputs. The Median module has three comparators
and four 2-to-1 multiplexers. In order to increase its clock
frequency, pipelining registers are used at its input and
output. First, the median value for SMF is calculated. Then,
the median value for DMF is calculated in the next clock
cycle. Finally, the median value for CMF is calculated. In
order to calculate CMF, the result of the Median module
for SMF and DMF are stored in “Reg. CMF” together with
the result of Soft Switching module.

The “Output Mux” is used to select the result of the
interpolation algorithm specified by the Interpolation
Algorithm input. This multiplexer selects either results of
LI, MCA, SS or the result of Median module. The results
of LI, MCA and SS will be ready in the second, third, and
fourth clock cycles, respectively. SMF, DMF, and CMF
results will be ready in the 5th, 6th, and 8th clock cycles,
respectively. When operated in LI, MCA, SMF, DMF, or
SS modes, there is no need to stall the pipeline, but CMF

mode requires stalling the pipeline for two clock cycles.
The proposed hardware architecture is implemented in

VHDL and mapped to a low cost Xilinx Spartan
XC3SD1800A-4 FPGA using Xilinx ISE 9.2.04. It is
verified with RTL simulations using Mentor Graphics
Modelsim. The implementation results show that the
proposed hardware can work at 101 MHz and it consumes
15384 slices and 32 BRAMs. A PE consumes 222 slices.
Soft Switching and Median modules consume 27 and 35
slices, respectively. When operated in any mode except
CMF, the proposed hardware interpolates a 16x16 MB in
16 clock cycles after the first result is ready. When
operated in CMF mode, it interpolates a 16x16 MB in 48
clock cycles after the first result is ready.

IV. CONCLUSIONS
In this paper, a low cost reconfigurable hardware

architecture for frame interpolation of HD frames is
presented. The proposed hardware architecture implements
the LI, MCA, SMF, DMF, SS, and CMF frame
interpolation algorithms and it allows adaptive selection of
these algorithms for each MB. The proposed hardware
architecture is implemented in VHDL and mapped to a low
cost Xilinx XC3SD1800A-4 FPGA. The implementation
results show that the proposed hardware can run at 101
MHz on this FPGA and it consumes 32 BRAMs and 15384
slices.

Figure 11. Soft Switching Module

Figure 10. Processing Element

Figure 10. Median Module

ACKNOWLEDGEMENTS
This work is supported in part by TUBITAK (The

Scientific and Technological Research Council of Turkey).

REFERENCES
[1] Bugwadia, K. A., Petajan, E. D., Puri, N. N.,

“Progressive-Scan Rate Up-Conversion of 24/30 Hz
Source Materials for HDTV”, IEEE Trans. on
Consumer Electronics, vol. 42, no. 3, pp. 312-321,
Aug. 1996.

[2] Castagno, R., Haavisto, P., Ramponi, G., “A Method
for Motion Adaptive Frame Rate Up-Conversion”,
IEEE Trans. Circuits Syst. Video Technol., vol. 6,
no.5, pp. 436–442, Oct. 1996.

[3] Ojo, O. A., De Haan, G., “Robust Motion-
Compensated Video Upconversion”, IEEE Trans. on
Consumer Electronics, vol. 43, no. 4, pp. 1045-1056,
Nov. 1997.

[4] Tasdizen, O., Kukner, H., Akin, A., Hamzaoglu, I.,
“High Performance Reconfigurable Motion Estimation
Hardware Architecture”, DATE Conference, Nice,
France, Apr. 2009.

[5] Ha, T., Lee, S., Kim, J., “Motion Compensated Frame
Interpolation by new Block-based Motion Estimation
Algorithm”, IEEE Trans. on Consumer Electronics,
vol. 50, no. 2, pp. 752-759, May 2004.

[6] Zhai, J., Yu, K., Li, S., “A Low Complexity Motion
Compensated Frame Interpolation Method”, IEEE
ISCAS, pp. 4927-4930, Kobe, Japan, May 2005.

[7] Choi, B. D., Han, J. W., Kim, C. S., Ko, S. J.,
“Motion-Compensated Frame Interpolation Using
Bilateral Motion Estimation and Adaptive Overlapped
Block Motion Compensation”, IEEE Trans. Circuits
Syst. Video Technol., vol. 17, no. 4, pp. 407–416, Apr.
2007.

[8] Yang, Y. T., Tung, Y. S., Wu, J. L., “Quality
Enhancement of Frame Rate Up-Converted Video by
Adaptive Frame Skip and Reliable Motion Extraction”,
IEEE Trans. Circuits Syst. Video Technol., vol. 17,
no.12, pp. 1700–1713, Dec. 2007.

[9] Lee, S. H., Shin, Y. C., Yang, S., Moon, H. H., Park,
R. H., “Adaptive Motion-Compensated Interpolation
for Frame Rate Up-Conversion”, IEEE Trans. on
Consumer Electronics, vol. 48, no. 3, pp. 444-450,
Aug. 2002.

[10] Lee S. H., Kwon, O., Park, R. H., “Weighted-Adaptive
Motion-Compensated Frame Rate Up-Conversion”,
Trans. on Consumer Electronics, vol. 49, no. 3, pp.
485-492, Aug. 2003.

[11] Beric, A., Van Meerbergen, J., De Haan, G.,
Sethuraman, R., “Memory-Centric Video Processing”,
IEEE Trans. Circuits Syst. Video Technol., vol. 18,
no.4, pp. 439–452, Apr. 2008.

[12] De Haan, G., Biezen, P. W. A. C., Ojo, O. A., “An
Evolutionary Architecture for Motion-Compensated
100 Hz Television”, IEEE Trans. Circuits Syst. Video
Technol., vol. 5, no.3, pp. 207–217, Jun. 1995.

[13] De Haan, G., Kettenis, J., Löning, A., De Loore, B.,
“IC for Motion-Compensated 100 Hz TV with
Natural-Motion Movie-Mode”, IEEE Trans. on
Consumer Electronics, vol. 42, no. 2, pp. 165-174,
May 1996.

[14] De Haan, G., “IC for Motion-Compensated De-
Interlacing, Noise Reduction, and Picture-Rate
Conversion”, IEEE Trans. on Consumer Electronics,
vol. 45, no. 3, pp. 617-624, Aug. 1999.

[15] Beric, A., De Haan, G., Sethuraman, R., Van
Meerbergen, J., “An Efficient Picture-Rate Up-
Converter”, Journal of VLSI Signal Processing, vol.
41, no. 1, pp. 49-63, Aug. 2005.

