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ABSTRACT 

In this paper, we present a high performance and low cost 
hardware architecture for real-time implementation of an 
SAD reuse based hierarchical motion estimation algorithm 
for H.264 / MPEG4 Part 10 video coding. This hardware is 
designed to be used as part of a complete H.264 video 
coding system for portable applications. The proposed 
architecture is implemented in Verilog HDL.  The Verilog 
RTL code is verified to work at 68 MHz in a Xilinx Virtex 
II FPGA. The FPGA implementation can process 27 VGA 
frames (640x480) or 82 CIF frames (352x288) per second.  

1. INTRODUCTION 

Video compression systems are used in many commercial 
products, from consumer electronic devices such as digital 
camcorders, cellular phones to video teleconferencing 
systems. These applications make the video compression 
hardware devices an inevitable part of many commercial 
products. To improve the performance of the existing 
applications and to enable the applicability of video 
compression to new real-time applications, recently, a new 
international standard for video compression is developed. 
This new standard, offering significantly better video 
compression efficiency than previous video compression 
standards, is developed with the collobaration of ITU and 
ISO standardization organizations. Hence it is called with 
two different names, H.264 and MPEG4 Part 10.   
 The video compression efficiency achieved in H.264 
standard is not a result of any single feature but rather a 
combination of a number of encoding tools. As it is shown 
in the top-level block diagram of an H.264 Encoder in 
Figure 1, one of these tools is the variable block size motion 
estimation used in the baseline profile of H.264 standard [1, 
2, 3]. Motion estimation is the most computationally 
demanding part of the encoders implementing the previous 
video compression standards. Variable block size motion 
estimation achieves better coding results than the fixed 
block size motion estimation used in the previous video 
compression standards. However, the amount of 
computation required by variable block size motion 
estimation is even more than the amount required by fixed  

 

 
Fig. 1. H.264 Encoder Block Diagram 

block size motion estimation. Therefore, this coding gain 
comes with an increase in encoding complexity which 
makes it an exciting challenge to have a real-time 
implementation of motion estimation for H.264 video 
coding. 
 In this paper, we present a high performance and low 
cost hardware architecture for real-time implementation of 
an SAD reuse based hierarchical motion estimation 
algorithm for H.264 / MPEG4 Part 10 video coding. This 
hardware is designed to be used as part of a complete H.264 
video coding system for portable applications. The 
proposed architecture is implemented in Verilog HDL.  The 
Verilog RTL code is verified to work at 68 MHz in a Xilinx 
Virtex II FPGA. The FPGA implementation can process 27 
VGA frames (640x480) or 82 CIF frames (352x288) per 
second.  
 A hardware architecture for real-time implementation of 
a variable block size motion estimation algorithm for H.264 
video coding is presented in [4]. This hardware achieves 
higher performance than our hardware design at the 
expense of a much higher hardware cost. Our hardware 
design is a more cost-effective solution for portable 
applications. They use 256 processing elements in their 
datapath as opposed to 36 processing elements in our 
datapath.  
 The rest of the paper is organized as follows. Section II 
explains the hierarchical motion estimation algorithm. 
Section III describes the proposed architecture in detail. 
The implementation results are given in Section IV. Finally, 
Section V presents the conclusions. 



2. SAD REUSE BASED HIERARCHICAL MOTION 
ESTIMATION ALGORITHM 

The amount of computation required by full-search method 
(FSM) is not practical for real-time implementation even 
for fixed block size motion estimation (ME). Variable block 
size ME allows dividing a 16x16 Macroblock (MB) into 
different size partitions and using a different motion vector 
(MV) for each partition. A 16x16 MB can be divided into 
two 8x16 or two 16x8 or four 8x8 partitions. Each 8x8 
partition can further be partitioned into two 4x8, two 8x4 or 
four 4x4 partitions. A variable block size ME algorithm, 
therefore, has to find the best MVs for all partitions of the 
MB; ([1 MV for 16x16 MB] + [2 MVs for 16x8 partitions] 
+ [2 MVs for 8x16 partitions] + [4 MVs for 8x8 partitions] 
+ [8 MVs for 8x4 partitions] + [8 MVs for 4x8 partitions] + 
[16 MVs for 4x4 partitions] = 41 MVs). The best partition 
for the MB is determined by the Mode Decision algorithm 
based on these 41 MVs. Therefore, efficient algorithms are 
needed to reduce the computational cost for variable block 
size ME [5, 6].  
 In this paper, we propose to use an SAD reuse based 
hierarchical ME algorithm similar to the algorithm 
presented in [6]. The simulation results show that even 
though this algorithm has a much lower computational cost 
than FSM, it provides almost as good coding efficiency as 
FSM.  

 
Fig. 2. Hierarchical Motion Estimation Algorithm 

 The algorithm is illustrated in Figure 2. It consists of the 
following four steps: 
 

1 A 3-level pyramid is constructed using averages of 
the MB pixels. A 4x4 block at level l2 corresponds to 
the 16x16 MB in level l0.  

2 A MV, , is predicted for the 16x16MB in level l0 
by performing full search for the 4x4 block in level l2 
within a search range of [-R/4, R/4] ([-R, R] is the 
search range of the FSM).  
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3 The MV prediction is refined by performing full 
search for the 8x8 block at the location pointed by the 

motion vector in level l1 within a search range of 

[-R/4, R/4]. The refined MV prediction is .  
2
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4 The MVs for the 16x16 MB and for all of its 

partitions are determined by performing full search 
based on minimizing the Lagrangian cost ( ) for 
all the partitions at both the location pointed by the 
motion vector and location (0,0) in level l0 
within a limited search range of ([-R/4, R/4]). The 
Lagrangian cost is computed using the following 
equations: 

)(dJ

1
2 lp

 

   )()(SAD)(
mxnB medM R pddd −+= λJ  

   ∑
==

++−=
nm

yx
yx dydxryxc

,

1,1
B |),(),(|)(SAD

mxn
d

where is a partition of size mxn, (m,n) ∈ 
{(4,4), (4,8), (8,4), (8,8), (16,8), (8,16), (16,16)}, 

 is the MV, c and r are current and 

reference frames respectively, λM is the Lagrange 
multiplier for ME,  is the MV prediction used 
by H.264 video coding standard during the coding 
process, and
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for coding MV difference information. 

 

 The refined MV prediction in level l1 constitutes a good 
initial prediction for the 16x16 MB and for all of its 
partitions in level l0 when scaled by 2. Therefore, 
hierarchical motion vector prediction, is used as a MV 
prediction for the 16x16 MB and for all of its partitions. 
However, in some cases, is inaccurate for small 
partitions such as 4x4, using (0,0) vector as an additional 
MV prediction helps to alleviate this problem. 
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 The full search for a 16x16 MB and for all of its 
partitions performed in level l0 require computing the Sum 
of Absolute Differences (SADs) for all MVs within the 
search range for all partitions. However, since the full 
search for a 16x16 MB and for all of its partitions are 
performed starting at the same location in level l0 (location 
pointed by the motion vector or location (0,0)) within 
the same size search range ([-R/4, R/4]), SADs computed 
for 4x4 partitions can be reused to compute the SADs for 
larger partitions, e.g. 8x8, 16x16. In other words, for a 
given MV , SAD of  can be decomposed 
into the SADs of its 4x4 partitions:  

1
2 lp

),( yx dd=d mxnB

 

∑∑
−=
−=

=
=

++−=
lk

ly
kx

yx

nm

l
k

dydxryxc
4,4

34
,34

4/,4/

1
,1

B |),(),(|)(SAD
mxn

d

 



 Since all summations on the right are evaluated at the 
same MV , computing  requires 

computing the SADs of all its 4x4 partitions for MV d  and 
adding them up. This SAD reuse technique decreases the 
total number of computations significantly. 
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 The SAD reuse based hierarchical ME algorithm is 
integrated into the Joint Model (JM) Reference Software 
Version 7.4 [7]. The updated software is then used to 
simulate the hierarchical ME algorithm for R=16 using 
video sequences carphone (QCIF), foreman (CIF), mobile 
(SIF) and flowergarden (SIF) at 30fps. All frames except 
the first one are coded as P-frames. One reference frame is 
allowed. The CAVLC entropy coder is used, with 
quantization parameter values QP = 24, 28, 32, 36. For 
comparison to FSM, average PSNR loss in dB and 
percentage change in bitrate are reported in Table 1. In 
addition, at equal bitrates, PSNR loss is observed to be less 
than 0.2 dB for all the tested sequences. These results 
confirm that even though our algorithm has a much lower 
computational cost than FSM, it provides almost as good 
coding efficiency as FSM.  

Table 1. Performance Comparison with FSM 

 δPSNR (dB) δbitrate (%) 
carphone (QCIF) -0.04 +0.76 

foreman (CIF) -0.04 +3.11 
mobile (SIF) -0.02 +0.39 

flowergarden(SIF) -0.02 +0.73 

3. PROPOSED HARDWARE ARCHITECTURE 

In this section, we will explain the proposed hardware 
architecture for real-time implementation of the SAD reuse 
based hierarchical motion estimation algorithm described in 
section 2. The proposed hardware implements the algorithm 
for the case where R=16 and therefore the search ranges 
used in all 3 levels l0, l1 and l2 are [-4, 4]. The search 
window for a [-4, 4] search range contains 9x9 = 81 search 
locations; 2*4+1 = 9 rows and 2*4+1 = 9 search locations 
in each row. 
 The current MB (16x16 pixels) and search window 
(64x64 pixels) are stored in block RAMs in the FPGA. The 
proposed hardware first constructs a 3-level pyramid by 
using the averaging datapath shown in Figure 3. The 
datapath is used to generate the current block and search 
window values in levels l1 and l2 by calculating the average 
of the corresponding pixels in the current MB and search 
range in level l0. Each averaging unit calculates the average 
of 4 pixels in level l0. The resulting values are stored in 
registers and they are used to perform full search for the 
8x8 block in level l1 within a search range of [-4, 4]. The 
averaging unit A5 calculates the average of the results 
produced by A1-A4 which corresponds to the average of 16 

 
Fig. 3. Averaging Datapath 

pixels in level l0. The resulting values are stored in registers 
and they are used to perform full search for the 4x4 block in 
level l2 within a search range of [-4, 4]. The averaging 
process takes 640 clock cycles. 
 The proposed hardware then performs both the 
hierarchical MV prediction in levels l2 and l1, and motion 
estimation with SAD reuse in level l0 using the datapath 
shown in Figure 4. The datapath uses 36 PEs divided into 
four separate groups. Each group has an array of 9 PEs.  
The architecture of a PE and the organization of PEs in a 
group are shown in Figure 5. As we will explain in this 
section, the reason for using 36 PEs divided into four 
separate groups is to have an efficient real-time 
implementation of the motion estimation with SAD reuse in 
level l0. The hierarchical MV prediction in levels l2 and l1 
are implemented by utilizing the hardware resources used 
for the motion estimation with SAD reuse in level l0. 
 The datapath is first used for the hierarchical MV 
prediction in level l2 by performing full search for the 4x4 
block in level l2 within a search range of [-4, 4]. All 36 PEs 
in the datapath are used to perform the full search as 
follows. Each PE is used to calculate the SAD value for one 
search location in the search window. Since there are 9 
search locations in one row of the search window, a PE 
group is used to calculate the SAD values for the search 
locations in one row of the search window. After each PE 
group finishes calculating the SAD values for the search 
locations in one row of the search window, it starts 
calculating the SAD values in another row of the search 
window. Therefore, each PE group together with a 
multiplexer and comparator is used to find the minimum 
SAD in two rows of the search window. All 4 PE groups 
are, therefore, utilized to find the motion vector with 
the minimum SAD in the search window. This process 
takes 42 clock cycles.  
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 The datapath is then used for the hierarchical MV 
refinement in level l1 by performing full search for the 8x8 
block at the location pointed by the motion vector in  
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Fig. 4. Hierarchical Motion Estimation Datapath 

 
Fig. 5. Processing Element Group 

level l1 within a search range of [-4, 4]. Since there are four 
4x4 partitions (a, b, c, and d) of the 8x8 block and there are 
9 search locations in one row of the search window, each 
PE group is used to calculate the SAD values for a 4x4 
partition for the search locations in one row of the search 
window. Each PE in a group calculates the SAD value for 
its 4x4 partition for one search location in one row of the 
search window. PE groups 0, 1, 2, and 3 are used for 
partitions a, b, c, and d respectively. After each PE group 
finishes calculating the SAD values for its 4x4 partition for 
the search locations in the current row of the search 
window, it starts calculating the SAD values for its 4x4 
partition in the next row of the search window. After the 
corresponding processing elements in each PE group, e.g. 
processing element 0 in each PE group, calculate the SAD 
value for a search location for its 4x4 partition, the 4x8SAD 
and 8x8SAD adders in the datapath are used to calculate the 
SAD value for that search location for the 8x8 partition. 
The multiplexer and comparator at the outputs of the 
8x8SAD adders are used to find the minimum SAD for the 
8x8 partition and the corresponding motion vector in 
the search window. This process takes 156 clock cycles. 

1lp

 The datapath is finally used for the motion estimation 
with SAD reuse in level l0. It is used to perform full search 
based on minimizing the Lagrangian cost for the 16x16 
current MB and for all of its partitions at both the location 
pointed by the motion vector and location (0,0) within 
a search range of [-4, 4] to determine the 41 best motion 
vectors for all partitions of the MB. The datapath is 
designed to use the SAD reuse technique for performing 
full search for a 16x16 MB and for all of its partitions 
within a search range of [-4, 4]. Each PE group in the 
datapath together with a multiplexer and comparator is used 
to perform full search for a 4x4 partition of the 16x16 MB 
within a search range of [-4, 4]. Since there are 9 search 
locations in one row of the search window, 9 PEs are 
grouped together to calculate the SAD values for a 4x4 
partition for the search locations in one row of the search 
window. Each processing element in a group calculates the 
SAD value for a 4x4 partition for one search location in one 
row of the search window. 

1
2 lp

 
   



 
Fig. 6. Data Flow for Processing Elements PE0-PE17 

 
Fig. 7. Search Window Overlap of Two Neighboring 4x4 

Partitions 

 As it is shown in Figure 6, in order to reduce the 
number of current block and search window register ports 
and number of accesses to these registers, each PE in a 
group starts calculating its SAD value one cycle later than 
the previous PE in that group so that PEs can reuse the 
current block value accessed by the first PE in the group 
and several PEs can use the same search window value in 
the same cycle. Since PE0 starts working in cycle 0, it 
finishes calculating its first SAD in cycle 15. The last PE in 
that group, PE8, finishes calculating its SAD in cycle 8 + 
15 = 23. After each PE finishes calculating an SAD value 
for a 4x4 partition in the current row of the search window, 
it starts calculating an SAD value for the same 4x4 partition 
in the next row of the search window. Since there are 9 
rows in the search window, the minimum SAD for a 4x4 
partition and the corresponding motion vector is found in 8 
+ 9x16 = 152 cycles. 
 Since the full search for a 16x16 MB and for all of its 
partitions are performed starting at the same location in 
level l0 (location pointed by the motion vector or 
location (0,0)) within the same size search range ([-4, 4]), 

the search windows of two neighboring 4x4 partitions (a, b) 
of the MB overlap as shown in Figure 7. The search 
window regions s1, s2 and s3 are used for partition a, and 
the search window regions s2, s3 and s4 are used for 
partition b. Therefore, the search window regions s2 and s3 
are shared by both a and b partitions. In order to exploit this 
to reduce the number of search window register ports (from 
3+3=6 to 4) and the number of accesses to search window 
registers, the full search for partitions a and b are performed 
simultaneously by using PE group 0 for partition a and PE 
group 1 for partition b. As it is shown in Figure 6, the 
processing elements in PE group 1 starts calculating their 
SADs 4 cycles later than the corresponding processing 
elements in PE group 0 so that several PEs in group 0 and 
group 1 can use the same search window value (in regions 
s2 or s3) in the same cycle. Therefore, the minimum SAD 
for partition b and the corresponding motion vector is found 
in 4+152=156 cycles. 
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 As the PE groups 0 and 1 perform the full search for 
partitions a and b, PE groups 2 and 3 perform the full 
search for partitions c and d simultaneously based on the 
same data flow shown in Figure 6. Therefore, the minimum 
SADs for 4x4 partitions a, b, c and d and the corresponding 
motion vectors are found in 156 cycles. 
 After the corresponding processing elements in each PE 
group, e.g. processing element 0 in each PE group, 
calculate the SAD value for a search location for its 4x4 
partition, the 4x8SAD, 8x4SAD and 8x8SAD adders in the 
datapath are used to calculate the SAD values for that 
search location for the 4x8 (a+b and c+d), 8x4 (a+c and 
b+d), and 8x8 (a+b+c+d) partitions by reusing the SAD 
values of the 4x4 partitions. In other words, as the full 



search for 4x4 partitions a, b, c, and d are performed, the 
full search for two 4x8 (a+b and c+d), two 8x4 (a+c and 
b+d), and one 8x8 (a+b+c+d) partition are also performed 
in parallel by using the 4x8SAD, 8x4SAD and 8x8SAD 
adders and the multiplexers and comparators at their 
outputs in the datapath. Therefore, by using the SAD reuse 
technique, the minimum SADs for two 4x8, two 8x4 and 
one 8x8 partition and the corresponding motion vectors are 
found as well in the same 156 cycles. 
 After the full search for the first four 4x4 partitions are 
performed, the four PE groups are used to perform the full 
search for the next four 4x4 partitions of the MB. Again, by 
using the SAD reuse technique, the full search for the 
corresponding two 4x8, two 8x4, and one 8x8 partition are 
performed in parallel.  Since there are four 8x8 partitions in 
a MB, this process is repeated 4 times. Therefore, full 
search for all 4x4, 4x8, 8x4 and 8x8 partitions are 
performed in 4*156 = 624 clock cycles. 
 As the full search for 8x8 partitions are performed, the 
full search for 8x16, 16x8 and 16x16 partitions are also 
performed in parallel by using the 8x16SAD, 16x8SAD and 
16x16SAD registers, adders, multiplexers and comparators 
in the datapath. Therefore, by using the SAD reuse 
technique, the minimum SADs for 8x16, 16x8 and 16x16 
partitions and the corresponding motion vectors are found 
as well in the same 624 clock cycles. 
 After the full search for the 16x16 current MB and for 
all of its partitions at the location pointed by the motion 
vector within a search range of [-4, 4] are performed, 
the full search for the same MB and for all of its partitions 
are performed at location (0, 0) within a search range of [-
4, 4] by using the same datapath with the same data flow. 
This process takes 624 clock cycles as well. Therefore, the 
41 best motion vectors for all partitions of a MB are 
determined in 640 (averaging) + 42 (level l2) + 156 (level 
l1) + 2*624 (level l0) = 2086 clock cycles.   
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4. IMPLEMENTATION RESULTS 

The proposed architecture is implemented in Verilog HDL. 
The implementation is verified with RTL simulations 
using Mentor Graphics ModelSim SE. The Verilog RTL is 
then synthesized to a 2V8000ff1152 Xilinx Virtex II 
FPGA with speed grade 5 using Mentor Graphics 
Leonardo Spectrum. The resulting netlist is placed and 
routed to the same FPGA using Xilinx ISE Series 5.2i.  
 The FPGA implementation is verified to work at 68 
MHz under worst-case PVT conditions with post place and 
route simulations. The FPGA implementation can process 
a VGA frame in 36.8 msec. (1200 MB * 2086 clock cycles 
per MB * 14.7 ns clock cycle = 36.8 msec) Therefore, it 
can process 1000/36.8 = 27 VGA frames (640x480) per 
second. The FPGA implementation can process a CIF 

frame in 12.2 msec. (396 MB * 2086 clock cycles per MB 
* 14.7 ns clock cycle = 12.2 msec) Therefore, it can 
process 1000/12.2 = 82 CIF frames (352x288) per second.  
 The FPGA implementation including input, output and 
internal RAMs and register files uses the following FPGA 
resources; 14505 Function Generators, 7253 CLB Slices, 
5227 Dffs/Latches, 13 Block RAMs, and 7 Block 
Multipliers (used for calculating λM * R), i.e. %15.5 of 
Function Generators, %15.5 of CLB Slices, %5.4 of 
Dffs/Latches, %7.7 of Block RAMs, and %4.1 of Block 
Multipliers. 

5. CONCLUSION  

In this paper, we presented a high performance and low cost 
hardware architecture for real-time implementation of an 
SAD reuse based hierarchical motion estimation algorithm 
for H.264 / MPEG4 Part 10 video coding. This hardware is 
designed to be used as part of a complete H.264 video 
coding system for portable applications. The proposed 
architecture is implemented in Verilog HDL.  The Verilog 
RTL code is verified to work at 68 MHz in a Xilinx Virtex 
II FPGA. The FPGA implementation can process 27 VGA 
frames (640x480) or 82 CIF frames (352x288) per second.  
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