
A HIGH PERFORMANCE AND LOW COST HARDWARE ARCHITECTURE FOR
H.264 TRANSFORM AND QUANTIZATION ALGORITHMS

Ozgur Tasdizen and Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences, Sabanci University
34956, Orhanli, Tuzla, Istanbul, TURKEY

phone: + (90) 216 483-9577, fax: + (90) 216 483-9550, email: hamzaoglu@sabanciuniv.edu
web: www.sabanciuniv.edu/~hamzaoglu

ABSTRACT
In this paper, we present a high performance and low cost hardware
architecture for real-time implementation of forward transform and
quantization and inverse transform and quantization algorithms
used in H.264 / MPEG4 Part 10 video coding standard. The hard-
ware architecture is based on a reconfigurable datapath with only
one multiplier. This hardware is designed to be used as part of a
complete low power H.264 video coding system for portable appli-
cations. The proposed architecture is implemented in Verilog HDL.
The Verilog RTL code is verified to work at 81 MHz in a Xilinx
Virtex II FPGA and it is verified to work at 210 MHz in a 0.18µ
ASIC implementation. The FPGA and ASIC implementations can
code 27 and 70 VGA frames (640x480) per second respectively.

1. INTRODUCTION
Video compression systems are used in many commercial
products, from consumer electronic devices such as digital
camcorders, cellular phones to video teleconferencing systems.
These applications make the video compression hardware devices
an inevitable part of many commercial products. To improve the
performance of the existing applications and to enable the
applicability of video compression to new real-time applications,
recently, a new international standard for video compression is
developed. This new standard, offering significantly better video
compression efficiency than previous International standards, is
developed with the collobaration of ITU and ISO standardization
organizations. Hence it is called with two different names, H.264
and MPEG4 Part 10.
The video compression efficiency achieved in H.264 standard is
not a result of any single feature but rather a combination of a
number of encoding tools. As it is shown in the top-level block
diagram of an H.264 Encoder in Figure 1, two of these tools are the
transform and quantization algorithms [1, 2, 3].
Even though most of the previous video coding standards, e.g.
MPEG-1, H.261, MPEG-2, H.263 and MPEG-4, use the 8x8
Discrete Cosine Transform (DCT) to transform the residual data,
H.264 uses a 4x4 integer transform for transforming residual data.
The integer transform achieves very similar results to 8x8 DCT
without any floating point operations. In addition, all the
multiplication operations in the forward and inverse transform
algorithms can be implemented in hardware with low cost binary
shifters. Since the inverse transform in H.264 is defined by exact
integer operations, inverse transform mismatches are avoided.
Since a scaling factor is used in the quantization algorithm, a
multiplier is needed for its implementation [3, 4, 5].

Figure 1 H.264 Encoder Block Diagram

In this paper, we present a high performance and low cost hardware
architecture for real-time implementation of H.264 forward
transform and quantization and inverse transform and quantization
algorithms. The hardware architecture is based on a reconfigurable
datapath with only one multiplier. This hardware is designed to be
used as part of a complete low power H.264 video coding system
for portable applications. The proposed architecture is implemented
in Verilog HDL. The Verilog RTL code is verified to work at 81
MHz in a Xilinx Virtex II FPGA and it is verified to work at 210
MHz in a 0.18µ ASIC implementation. The FPGA and ASIC
implementations can code 27 and 70 VGA frames (640x480) per
second respectively.
A hardware architecture only for real-time implementation of H.264
forward and inverse transform algorithms is presented in [6]. This
hardware achieves higher performance than our hardware design at
the expense of a much higher hardware cost. Our hardware design is
a more cost-effective solution for portable applications. They use 16
adders and 16 internal register files in their datapath as opposed to 3
adders and 6 internal register files in the transform part of our
datapath. Their datapath has an area of 6538 gates in TSMC 0.35µ
technology. Our datapath, on the other hand, has an area of 2904
gates in AMS 0.35µ technology.
The rest of the paper is organized as follows. Section II presents a
brief overview of transform and quantization algorithms used in
H.264. Section III describes the proposed hardware architecture in
detail. The implementation results are given in Section IV. Finally,
Section V presents the conclusions.

2. OVERVIEW OF H.264 TRANSFORM AND
QUANTIZATION ALGORITHMS

The basic transform coding process in H.264, shown in Figure 1, is
similar to that of previous standards. The process includes a for-
ward transform and quantization followed by zig-zag ordering and

Figure 2 Block Diagram of Transform and Quant Algorithms

Figure 3 Processing Order of Blocks in a Macroblock

entropy coding. The transform coded residual data is also
reconstructed. The reconstruction process includes an inverse
quantization and inverse transform followed by motion
compensation. The reconstructed data before deblocking filter is
used for intra prediction in current frame, and the reconstructed
data after deblocking filter is used for motion estimation in future

tropy coding and reconstruction process in the order shown in

2

cients of 4x4 chrominance blocks for

erse hadamard transform is applied
to blocks 16 and 17. After the inverse hadamard transforms, 4x4
inverse integer transform is applied to all the blocks independent of
their prediction type and mode.

−−
−−

−−

2/1111
112/11
112/11
2/1111

r second at 90 MHz.

frames.
A more detailed flow of the transform and quantization algorithms
is presented in Figure 2. The input to the forward transform
algorithm is a 4x4 block of residual data obtained by subtracting
the prediction from the original image data. The transform and
quantization algorithms process the blocks in a macroblock as
explained in the following sections, and send the resulting data to
en
Figure 3.

2.1 Transform Algorithm Overview

H.264 transform algorithm uses four different transform matrices
shown in Figure 4; 4x4 forward integer, 4x4 hadamard, 2x2
hadamard, and 4x4 inverse integer [3, 4, 5]. Since 4x4 and 2x
hadamard transform matrices are symmetric, inverse hadamard
transform matrices are same as forward hadamard transform
matrices.
In the transform coding process, 4x4 integer transform is applied to
all the blocks independent of their prediction type and mode. As
shown in Figure 3, 4x4 block -1 is formed by the transformed DC
coefficients of 4x4 luminance blocks for the macroblocks that are
coded in 16x16 Intra mode, and 2x2 blocks 16 and 17 are formed
by the transformed DC coeffi
all the macroblocks. After the 4x4 integer transform, 4x4 hadamard
transform is applied to block -1 and 2x2 hadamard transform is
applied to blocks 16 and 17.
In the reconstruction process, 4x4 inverse hadamard transform is
applied to block -1, and 2x2 inv

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1221
1111
2112

1111

 ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

15141312
111098
7654
3210

xxxx
xxx
xxxx
xxxx

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1121
2111
2111

1121

(a)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1111
1111
1111

1111

 ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

15141312
111098
7654
3210

zzzz
zzzz
zzzz
zzzz

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1111
1111
1111

1111

(b)

⎥
⎦

⎤
⎢
⎣

⎡
−11
11

⎥
⎦

⎤
⎢
⎣

⎡
32
10

zz
zz

⎥
⎦

⎤
⎢
⎣

⎡
−11
11

(c)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

15141312
111098
7654
3210

yyyy
yyyy
yyyy
yyyy

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

2/1112/1
1111
12/12/11

1111

(d)

Figure 4 Matrices used in H.264 Transform Algorithm
a) 4x4 Forward Integer Transform, b) 4x4 Hadamard Transform,
c) 2x2 Hadamard Transform, d) 4x4 Inverse Integer Transform

2.2 Quantization Algorithm Overview

A quantization parameter (QP), calculated by the rate control
algorithm, is used for determining the quantization step size of
transform coefficients in H.264 [3, 4, 5]. There are 52 quantization
parameter values. These values are arranged so that an increase of
1 in quantization parameter means an increase of quantization step
size by approximately 12%. An increase of quantization step size
by approximately 12% means roughly a reduction of bit rate by
approximately 12%.
Quantization of AC coefficients is done by using the following
equation: |Zij| = (|Wij|.MF + f) >> qbits, sign(Zij) = sign(Wij)
Wij is the result of forward transformation. MF is a scaling factor. f
is a parameter used to avoid rounding errors and it depends on
prediction type of the block and QP. qbits is a variable depending
on QP.
Inverse quantization of AC coefficients is done by using the
following equation: W’ij = Zij.Vij.2floor(QP/6)

Zij is the result of forward quantization. Vij are rescaling factors.
Quantization of DC coefficients is done similarly.

3. PROPOSED HARDWARE ARCHITECTURE
The proposed hardware architecture includes an input register file,
a reconfigurable datapath and its control unit, internal register files
and an output register file. The reconfigurable datapath and the
register files are shown in Figure 5. The reconfigurable datapath is
designed for implementing both forward and inverse transform and
quant algorithms. Even though only one multiplier is used in the
reconfigurable datapath, the proposed hardware performs forward
transform, hadamard transform, quant, inverse hadamard
transform, inverse quant and inverse transform operations for a
macroblock, in the worst case, in 2500 clock cycles. The worst-
case occurs for the macroblocks that are coded in 16x16 Intra
mode. Therefore, the proposed high performance and low cost
hardware can process 30 VGA frames pe

Figure 5 Proposed Reconfigurable Datapath

384x9 bit input register file stores residual data for a macroblock
that will be transform coded including both luminance and
chrominance blocks.

m operations.

erations.

hown in

e calculated using
e following four equations in the given order:

[

clock cycles, their outputs stay the same as well. This avoids un-

The part of the datapath above the dashed line performs transform
and inverse transform operations. The registers, adders and shifters
in this part of the datapath are shared by forward and inverse
transform operations. When the hardware is used to perform
forward transform, the control unit configures the datapath to
perform the forward transform operations. When it is used to
perform inverse transform, the control unit configures the datapath
to perform the inverse transfor
The first row of multiplexers is used for selecting the proper inputs
for transform operations. They select the data from input register
file for forward transform operations and the data from IQIT
register file for inverse transform operations. The second row of
multiplexers is used for selecting the proper input data for the first
and the second matrix multiplications. They select the data from
the first row of multiplexers for the first matrix multiplication
operations and the data from register 0, register 1, register 2,
register 3 for the second matrix multiplication op
Shifters are one bit shifters used for shifting left (multiply by 2) for
forward transform operations and for shifting right (divide by 2) for
inverse transform operations.
Three adder/subtractors are used in the datapath to achieve high
performance with low hardware cost. The first column of the result
matrix for the matrix multiplication operations shown in Figure 4
(a) can be calculated using the following four equations:

 [(x0+x4+x8+x12) + (x1+x5+x9+x13) + (x2+x6+x10+x14) + (x3+x7+x11+x15)]
 [2*(x0+x4+x8+x12) + (x1+x5+x9+x13) - (x2+x6+x10+x14) - 2*(x3+x7+x11+x15)]
 [(x0+x4+x8+x12) - (x1+x5+x9+x13) - (x2+x6+x10+x14) + (x3+x7+x11+x15)]
 [(x0+x4+x8+x12) - 2*(x1+x5+x9+x13) + 2*(x2+x6+x10+x14) - (x3+x7+x11+x15)]

The four values (x0+x4+x8+x12), (x1+x5+x9+x13),
(x2+x6+x10+x14) and (x3+x7+x11+x15) are the results of first
matrix multiplication and they are used for calculating the first
column of the result matrix containing the transform coefficients.
Similarly, the equations for calculating the transform coefficients in
each remaining column of the result matrix have four common
values that are used to calculate the corresponding transform
coefficient. Therefore, 16-bit registers register 0, register 1, register
2, and register 3 are used to store these four common values, i.e.
the results of first matrix multiplications. This reduces both the
number of cycles and the power consumption of both forward and
inverse transform operations. The same method is used to
implement the other matrix multiplication operations s
Figure 4.
Since the order of some of the equations used to perform the matrix
multiplications for 4x4 and 2x2 hadamard transforms are not
important for functional correctness, we have used the order that
gives the lowest power consumption. For example, the first column
of the result matrix for the matrix multiplication operations for 4x4
hadamard transform shown in Figure 4 (b) can b
th

[(z0+z4+z8+z12) + (z1+z5+z9+z13) + (z2+z6+z10+z14) + (z3+z7+z11+z15)]
[(z0+z4+z8+z12) + (z1+z5+z9+z13) – ((z2+z6+z10+z14) + (z3+z7+z11+z15))]

(z0+z4+z8+z12) - (z1+z5+z9+z13) – ((z2+z6+z10+z14) - (z3+z7+z11+z15))]
[(z0+z4+z8+z12) - (z1+z5+z9+z13) + (z2+z6+z10+z14) - (z3+z7+z11+z15)]

When the equations are calculated in the given order, both the op-
erations (addition or subtraction) performed by adder/subtractor 0
and adder/subtractor 1 and their inputs stay the same in first and
second cycles and in third and fourth cycles. Since their inputs and
the operations they perform stay the same for two consecutive

necessary switching activity resulting in lower power consumption
for both forward and inverse hadamard transforms.
P. Registers are pipelining registers used to achieve 81 MHz clock
frequency in a 2V8000ff1157 Xilinx Virtex II FPGA with speed
grade 5. Register 4 stores the results of forward or inverse transform
operations.

The part of the datapath below the dashed line performs forward and
inverse quantization operations. The registers, adders, shifters and
the multiplier in this part of the datapath are shared by forward and
inverse quant operations. When the hardware is used to perform
forward quantization, the control unit configures the datapath to
perform the forward quant operations. When it is used to perform
inverse quantization, the control unit configures the datapath to
perform the inverse quant operations.
Register 4 contains the input data for the quantization and inverse
quantization operations. P. Registers are pipelining registers used
to achieve 81 MHz clock frequency in a 2V8000ff1157 Xilinx
Virtex II FPGA with speed grade 5.
The multiplier used in the datapath is a 15x14 unsigned multiplier.
Two multiplexers are used for selecting the proper inputs for the
multiplier. One of the multiplexers is used to select either a
transformed or inverse transformed value coming from register 4 or
a quantized value coming from the output register file TQ. The
other multiplexer is used to select either a value from quant lookup
table or a value from inverse quant lookup table.

 second.

The adder at the output of the multiplier and the shifter at one of
the inputs of the adder are used to avoid rounding errors that can
happen during scaling and rescaling operations.
The 3-bit shifter at the output of the multiplier is used to perform
scaling and rescaling operations depending on the value of qbits
parameter. The result of the shift operation is converted into two’s
complement form and stored in the output register file TQ.

The transform and quant operations are executed in a pipelined
manner. After a transform coefficient is computed, in the next cycle,
this coefficient is quantized in the quant part of the datapath and a
new transform coefficient is computed in the transform part of the
datapath. Since only one multiplier is used in the datapath, quant
and inverse quant operations cannot be pipelined. After all the
transform coefficients in a block are quantized, inverse quantization
starts followed by inverse transform.

4. IMPLEMENTATION RESULTS
The proposed architecture is implemented in Verilog HDL. The
implementation is verified with RTL simulations using Mentor
Graphics ModelSim SE. The Verilog RTL is then synthesized to a
2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using
Mentor Graphics Leonardo Spectrum [7]. The resulting netlist is
placed and routed to the same FPGA using Xilinx ISE Series 5.2i.
The FPGA implementation including input and output register files
as well is placed and routed at 81 MHz under worst-case PVT
conditions. Since, in the worst-case, it takes 2500 clock cycles to
process a MB, the FPGA implementation can code 27 VGA frames
(640x480) per second. The FPGA implementation is verified to
work in a Xilinx Virtex II FPGA on an Arm Versatile Platform
development board.
The FPGA implementation including input and output register files
as well used the following FPGA resources; 4054 Function Gen-
erators, 2027 CLB Slices, 1 Block Multiplier, and 583 Dffs
/Latches, i.e. 4.35% of Function Generators, 4.35% of CLB Slices,
0.60% of Block Multipliers, and 0.61% of Dffs /Latches. The
FPGA implementation excluding input and output register files
used the following FPGA resources; 2497 Function Generators,

1249 CLB Slices, 1 Block Multiplier, and 581 Dffs /Latches, i.e.
2.68% of Function Generators, 2.68% of CLB Slices, 0.60% of
Block Multipliers, and 0.61% of Dffs /Latches.
The Verilog RTL is also synthesized to Virtual Silicon UMC 0.18µ
standard-cell library using Synopsys Design Compiler. The
synthesis results are presented in Table 1. The netlist excluding
input and output register files has an area of 23K gates. The netlist
is verified to work at 210 MHz under worst-case PVT conditions
with post synthesis simulations. This 0.18µ ASIC implementation
can code 70 VGA frames (640x480) per

Table 1

 Critical Path
Delay [ns]

Area
[Gate Count]

Transform part of the Datapath 2.77 1978
Datapath 4.78 12773

Datapath + Control Unit 4.8 23162
Datapath + Control Unit +

Input Register File +
Output Register File TQ

4.8 130505

5. CONCLUSIONS
In this paper, we presented a high performance and low cost
hardware architecture for real-time implementation of H.264
forward transform and quantization and inverse transform and
quantization algorithms. The hardware architecture is based on a
reconfigurable datapath with only one multiplier. This hardware is
designed to be used as part of a complete low power H.264 video
coding system for portable applications. The proposed architecture
is implemented in Verilog HDL. The Verilog RTL code is verified
to work at 81 MHz in a Xilinx Virtex II FPGA and it is verified to
work at 210 MHz in a 0.18µ ASIC implementation. The FPGA and
ASIC implementations can code 27 and 70 VGA frames (640x480)
per second respectively.

ay 2003

03

REFERENCES
[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra
“Overview of the H.264/AVC Video Coding Standard”, IEEE Trans.
on Circuits and Systems for Video Technology vol. 13, no. 7, pp.
560–576, July 2003
[2] I. Richardson, H.264 and MPEG-4 Video Compression, Wiley,
2003
[3] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG,
Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification, ITU-T Rec. H.264 and
ISO/IEC 14496-10 AVC, M
[4] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG,
Joint Model (JM) Reference Software Version 9.2,
http://bs.hhi.de/suehring/
[5] H. Malvar, A. Hallapuro, M. Karczewicz. and L. Kerofsky,
"Low-Complexity Transform and Quantization in H.264 / AVC",
IEEE Trans. on Circuits and Systems for Video Technology, vol.
13, no. 7, pp. 598–603, July 2003.
[6] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen,
“Parallel 4x4 2D Transform and Inverse Transform Architecture
for MPEG-4 AVC / H.264”, Proc. of IEEE ISCAS, 20
[7] Xilinx Inc., Virtex-II™ Platform FPGAs: Complete Data Sheet
DS031, http://www.xilinx.com, March 2004

http://www.xilinx.com/

	A HIGH PERFORMANCE AND LOW COST HARDWARE ARCHITECTURE FOR H.
	ABSTRACT
	INTRODUCTION
	OVERVIEW OF H.264 TRANSFORM AND QUANTIZATION ALGORITHMS
	PROPOSED HARDWARE ARCHITECTURE
	IMPLEMENTATION RESULTS
	CONCLUSIONS
	REFERENCES

