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ABSTRACT 
In this paper, we present a high performance and low cost hardware 
architecture for real-time implementation of forward transform and 
quantization and inverse transform and quantization algorithms 
used in H.264 / MPEG4 Part 10 video coding standard. The hard-
ware architecture is based on a reconfigurable datapath with only 
one multiplier. This hardware is designed to be used as part of a 
complete low power H.264 video coding system for portable appli-
cations. The proposed architecture is implemented in Verilog HDL. 
The Verilog RTL code is verified to work at 81 MHz in a Xilinx 
Virtex II FPGA and it is verified to work at 210 MHz in a 0.18µ 
ASIC implementation. The FPGA and ASIC implementations can 
code 27 and 70 VGA frames (640x480) per second respectively.  

1. INTRODUCTION 
Video compression systems are used in many commercial 
products, from consumer electronic devices such as digital 
camcorders, cellular phones to video teleconferencing systems. 
These applications make the video compression hardware devices 
an inevitable part of many commercial products. To improve the 
performance of the existing applications and to enable the 
applicability of video compression to new real-time applications, 
recently, a new international standard for video compression is 
developed. This new standard, offering significantly better video 
compression efficiency than previous International standards, is 
developed with the collobaration of ITU and ISO standardization 
organizations. Hence it is called with two different names, H.264 
and MPEG4 Part 10.   
The video compression efficiency achieved in H.264 standard is 
not a result of any single feature but rather a combination of a 
number of encoding tools. As it is shown in the top-level block 
diagram of an H.264 Encoder in Figure 1, two of these tools are the 
transform and quantization algorithms [1, 2, 3]. 
Even though most of the previous video coding standards, e.g. 
MPEG-1, H.261, MPEG-2, H.263 and MPEG-4, use the 8x8 
Discrete Cosine Transform (DCT) to transform the residual data, 
H.264 uses a 4x4 integer transform for transforming residual data. 
The integer transform achieves very similar results to 8x8 DCT 
without any floating point operations. In addition, all the 
multiplication operations in the forward and inverse transform 
algorithms can be implemented in hardware with low cost binary 
shifters. Since the inverse transform in H.264 is defined by exact 
integer operations, inverse transform mismatches are avoided. 
Since a scaling factor is used in the quantization algorithm, a 
multiplier is needed for its implementation [3, 4, 5]. 

 

 
 

Figure 1 H.264 Encoder Block Diagram 

In this paper, we present a high performance and low cost hardware 
architecture for real-time implementation of H.264 forward 
transform and quantization and inverse transform and quantization 
algorithms. The hardware architecture is based on a reconfigurable 
datapath with only one multiplier. This hardware is designed to be 
used as part of a complete low power H.264 video coding system 
for portable applications. The proposed architecture is implemented 
in Verilog HDL. The Verilog RTL code is verified to work at 81 
MHz in a Xilinx Virtex II FPGA and it is verified to work at 210 
MHz in a 0.18µ ASIC implementation. The FPGA and ASIC 
implementations can code 27 and 70 VGA frames (640x480) per 
second respectively. 
A hardware architecture only for real-time implementation of H.264 
forward and inverse transform algorithms is presented in [6]. This 
hardware achieves higher performance than our hardware design at 
the expense of a much higher hardware cost. Our hardware design is 
a more cost-effective solution for portable applications. They use 16 
adders and 16 internal register files in their datapath as opposed to 3 
adders and 6 internal register files in the transform part of our 
datapath. Their datapath has an area of 6538 gates in TSMC 0.35µ 
technology. Our datapath, on the other hand, has an area of 2904 
gates in AMS 0.35µ technology. 
The rest of the paper is organized as follows. Section II presents a 
brief overview of transform and quantization algorithms used in 
H.264. Section III describes the proposed hardware architecture in 
detail. The implementation results are given in Section IV. Finally, 
Section V presents the conclusions. 

2. OVERVIEW OF H.264 TRANSFORM AND 
QUANTIZATION ALGORITHMS 

The basic transform coding process in H.264, shown in Figure 1, is 
similar to that of previous standards. The process includes a for-
ward transform and quantization followed by zig-zag ordering and 



 
 

Figure 2 Block Diagram of Transform and Quant Algorithms 

  
 

Figure 3 Processing Order of Blocks in a Macroblock 

entropy coding. The transform coded residual data is also 
reconstructed. The reconstruction process includes an inverse 
quantization and inverse transform followed by motion 
compensation. The reconstructed data before deblocking filter is 
used for intra prediction in current frame, and the reconstructed 
data after deblocking filter is used for motion estimation in future 

 
tropy coding and reconstruction process in the order shown in 
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frames.    
A more detailed flow of the transform and quantization algorithms 
is presented in Figure 2. The input to the forward transform 
algorithm is a 4x4 block of residual data obtained by subtracting 
the prediction from the original image data. The transform and 
quantization algorithms process the blocks in a macroblock as 
explained in the following sections, and send the resulting data to
en
Figure 3. 
  
2.1 Transform Algorithm Overview  
 
H.264 transform algorithm uses four different transform matrices 
shown in Figure 4; 4x4 forward integer, 4x4 hadamard, 2x2 
hadamard, and 4x4 inverse integer [3, 4, 5]. Since 4x4 and 2x
hadamard transform matrices are symmetric, inverse hadamard 
transform matrices are same as forward hadamard transform 
matrices.  
In the transform coding process, 4x4 integer transform is applied to 
all the blocks independent of their prediction type and mode. As 
shown in Figure 3, 4x4 block -1 is formed by the transformed DC 
coefficients of 4x4 luminance blocks for the macroblocks that are 
coded in 16x16 Intra mode, and 2x2 blocks 16 and 17 are formed 
by the transformed DC coeffi
all the macroblocks. After the 4x4 integer transform, 4x4 hadamard 
transform is applied to block -1 and 2x2 hadamard transform is 
applied to blocks 16 and 17.  
In the reconstruction process, 4x4 inverse hadamard transform is 
applied to block -1, and 2x2 inv

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1221
1111
2112

1111

  ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

15141312
111098
7654
3210

xxxx
xxx
xxxx
xxxx

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1121
2111
2111

1121

(a) 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1111
1111
1111

1111

  ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

15141312
111098
7654
3210

zzzz
zzzz
zzzz
zzzz

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

1111
1111
1111

1111

(b) 
 

⎥
⎦

⎤
⎢
⎣

⎡
−11
11

⎥
⎦

⎤
⎢
⎣

⎡
32
10

zz
zz

⎥
⎦

⎤
⎢
⎣

⎡
−11
11

 
(c) 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

  ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

15141312
111098
7654
3210

yyyy
yyyy
yyyy
yyyy

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

2/1112/1
1111
12/12/11

1111

(d) 
 

Figure 4 Matrices used in H.264 Transform Algorithm                   
a) 4x4 Forward Integer Transform, b) 4x4 Hadamard Transform,  
c) 2x2 Hadamard Transform, d) 4x4 Inverse Integer Transform 

2.2 Quantization Algorithm Overview  
 
A quantization parameter (QP), calculated by the rate control 
algorithm, is used for determining the quantization step size of 
transform coefficients in H.264 [3, 4, 5]. There are 52 quantization 
parameter values. These values are arranged so that an increase of 
1 in quantization parameter means an increase of quantization step 
size by approximately 12%. An increase of quantization step size 
by approximately 12% means roughly a reduction of bit rate by 
approximately 12%. 
Quantization of AC coefficients is done by using the following 
equation: |Zij| = (|Wij|.MF + f) >> qbits, sign(Zij) = sign(Wij) 
Wij is the result of forward transformation. MF is a scaling factor. f 
is a parameter used to avoid rounding errors and it depends on 
prediction type of the block and QP. qbits is a variable depending 
on QP. 
Inverse quantization of AC coefficients is done by using the 
following equation: W’ij = Zij.Vij.2floor(QP/6)

Zij is the result of forward quantization. Vij are rescaling factors. 
Quantization of DC coefficients is done similarly. 

3. PROPOSED HARDWARE ARCHITECTURE 
The proposed hardware architecture includes an input register file, 
a reconfigurable datapath and its control unit, internal register files 
and an output register file. The reconfigurable datapath and the 
register files are shown in Figure 5. The reconfigurable datapath is 
designed for implementing both forward and inverse transform and 
quant algorithms. Even though only one multiplier is used in the 
reconfigurable datapath, the proposed hardware performs forward 
transform, hadamard transform, quant, inverse hadamard 
transform, inverse quant and inverse transform operations for a 
macroblock, in the worst case, in 2500 clock cycles. The worst-
case occurs for the macroblocks that are coded in 16x16 Intra 
mode. Therefore, the proposed high performance and low cost 
hardware can process 30 VGA frames pe



 

 
 

Figure 5 Proposed Reconfigurable Datapath 
 
 

 
384x9 bit input register file stores residual data for a macroblock 
that will be transform coded including both luminance and 
chrominance blocks. 

m operations. 
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[

clock cycles, their outputs stay the same as well. This avoids un-

The part of the datapath above the dashed line performs transform 
and inverse transform operations. The registers, adders and shifters 
in this part of the datapath are shared by forward and inverse 
transform operations. When the hardware is used to perform 
forward transform, the control unit configures the datapath to 
perform the forward transform operations. When it is used to 
perform inverse transform, the control unit configures the datapath 
to perform the inverse transfor
The first row of multiplexers is used for selecting the proper inputs 
for transform operations. They select the data from input register 
file for forward transform operations and the data from IQIT 
register file for inverse transform operations. The second row of 
multiplexers is used for selecting the proper input data for the first 
and the second matrix multiplications. They select the data from 
the first row of multiplexers for the first matrix multiplication 
operations and the data from register 0, register 1, register 2, 
register 3 for the second matrix multiplication op
Shifters are one bit shifters used for shifting left (multiply by 2) for 
forward transform operations and for shifting right (divide by 2) for 
inverse transform operations. 
Three adder/subtractors are used in the datapath to achieve high 
performance with low hardware cost. The first column of the result 
matrix for the matrix multiplication operations shown in Figure 4 
(a) can be calculated using the following four equations: 
 
     [(x0+x4+x8+x12) + (x1+x5+x9+x13) + (x2+x6+x10+x14) + (x3+x7+x11+x15)]   
     [2*(x0+x4+x8+x12) + (x1+x5+x9+x13) - (x2+x6+x10+x14) - 2*(x3+x7+x11+x15)]     
     [(x0+x4+x8+x12) - (x1+x5+x9+x13) - (x2+x6+x10+x14) + (x3+x7+x11+x15)]   
     [(x0+x4+x8+x12) - 2*(x1+x5+x9+x13) + 2*(x2+x6+x10+x14) - (x3+x7+x11+x15)] 

    
The four values (x0+x4+x8+x12), (x1+x5+x9+x13), 
(x2+x6+x10+x14) and (x3+x7+x11+x15) are the results of first 
matrix multiplication and they are used for calculating the first 
column of the result matrix containing the transform coefficients. 
Similarly, the equations for calculating the transform coefficients in 
each remaining column of the result matrix have four common 
values that are used to calculate the corresponding transform 
coefficient. Therefore, 16-bit registers register 0, register 1, register 
2, and register 3 are used to store these four common values, i.e. 
the results of first matrix multiplications. This reduces both the 
number of cycles and the power consumption of both forward and 
inverse transform operations. The same method is used to 
implement the other matrix multiplication operations s
Figure 4. 
Since the order of some of the equations used to perform the matrix 
multiplications for 4x4 and 2x2 hadamard transforms are not 
important for functional correctness, we have used the order that 
gives the lowest power consumption. For example, the first column 
of the result matrix for the matrix multiplication operations for 4x4 
hadamard transform shown in Figure 4 (b) can b
th

[(z0+z4+z8+z12) + (z1+z5+z9+z13) + (z2+z6+z10+z14) + (z3+z7+z11+z15)] 
[(z0+z4+z8+z12) + (z1+z5+z9+z13) – ( (z2+z6+z10+z14) + (z3+z7+z11+z15) )] 

(z0+z4+z8+z12) - (z1+z5+z9+z13) – ( (z2+z6+z10+z14) - (z3+z7+z11+z15) )] 
[(z0+z4+z8+z12) - (z1+z5+z9+z13) + (z2+z6+z10+z14) - (z3+z7+z11+z15)] 

 
When the equations are calculated in the given order, both the op-
erations (addition or subtraction) performed by adder/subtractor 0 
and adder/subtractor 1 and their inputs stay the same in first and 
second cycles and in third and fourth cycles. Since their inputs and 
the operations they perform stay the same for two consecutive 



necessary switching activity resulting in lower power consumption 
for both forward and inverse hadamard transforms. 
P. Registers are pipelining registers used to achieve 81 MHz clock 
frequency in a 2V8000ff1157 Xilinx Virtex II FPGA with speed 
grade 5. Register 4 stores the results of forward or inverse transform 
operations. 

 
The part of the datapath below the dashed line performs forward and 
inverse quantization operations. The registers, adders, shifters and 
the multiplier in this part of the datapath are shared by forward and 
inverse quant operations. When the hardware is used to perform 
forward quantization, the control unit configures the datapath to 
perform the forward quant operations. When it is used to perform 
inverse quantization, the control unit configures the datapath to 
perform the inverse quant operations. 
Register 4 contains the input data for the quantization and inverse 
quantization operations. P. Registers are pipelining registers used 
to achieve 81 MHz clock frequency in a 2V8000ff1157 Xilinx 
Virtex II FPGA with speed grade 5. 
The multiplier used in the datapath is a 15x14 unsigned multiplier. 
Two multiplexers are used for selecting the proper inputs for the 
multiplier. One of the multiplexers is used to select either a 
transformed or inverse transformed value coming from register 4 or 
a quantized value coming from the output register file TQ. The 
other multiplexer is used to select either a value from quant lookup 
table or a value from inverse quant lookup table. 

 second. 

The adder at the output of the multiplier and the shifter at one of 
the inputs of the adder are used to avoid rounding errors that can 
happen during scaling and rescaling operations. 
The 3-bit shifter at the output of the multiplier is used to perform 
scaling and rescaling operations depending on the value of qbits 
parameter. The result of the shift operation is converted into two’s 
complement form and stored in the output register file TQ. 
 
The transform and quant operations are executed in a pipelined 
manner. After a transform coefficient is computed, in the next cycle, 
this coefficient is quantized in the quant part of the datapath and a 
new transform coefficient is computed in the transform part of the 
datapath. Since only one multiplier is used in the datapath, quant 
and inverse quant operations cannot be pipelined. After all the 
transform coefficients in a block are quantized, inverse quantization 
starts followed by inverse transform.  

4. IMPLEMENTATION RESULTS 
The proposed architecture is implemented in Verilog HDL. The 
implementation is verified with RTL simulations using Mentor 
Graphics ModelSim SE. The Verilog RTL is then synthesized to a 
2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using 
Mentor Graphics Leonardo Spectrum [7]. The resulting netlist is 
placed and routed to the same FPGA using Xilinx ISE Series 5.2i.  
The FPGA implementation including input and output register files 
as well is placed and routed at 81 MHz under worst-case PVT 
conditions. Since, in the worst-case, it takes 2500 clock cycles to 
process a MB, the FPGA implementation can code 27 VGA frames 
(640x480) per second. The FPGA implementation is verified to 
work in a Xilinx Virtex II FPGA on an Arm Versatile Platform 
development board.  
The FPGA implementation including input and output register files 
as well used the following FPGA resources; 4054 Function Gen-
erators, 2027 CLB Slices, 1 Block Multiplier, and 583 Dffs 
/Latches, i.e. 4.35% of Function Generators, 4.35% of CLB Slices, 
0.60% of Block Multipliers, and 0.61% of Dffs /Latches. The 
FPGA implementation excluding input and output register files 
used the following FPGA resources; 2497 Function Generators, 

1249 CLB Slices,  1 Block Multiplier, and 581 Dffs /Latches, i.e. 
2.68% of Function Generators, 2.68% of CLB Slices, 0.60% of 
Block Multipliers, and 0.61% of Dffs /Latches. 
The Verilog RTL is also synthesized to Virtual Silicon UMC 0.18µ 
standard-cell library using Synopsys Design Compiler. The 
synthesis results are presented in Table 1. The netlist excluding 
input and output register files has an area of 23K gates. The netlist 
is verified to work at 210 MHz under worst-case PVT conditions 
with post synthesis simulations. This 0.18µ ASIC implementation 
can code 70 VGA frames (640x480) per
 

Table 1 
 

 Critical Path 
Delay [ns] 

Area  
[Gate Count] 

Transform part of the Datapath 2.77 1978 
Datapath 4.78 12773 

Datapath + Control Unit 4.8 23162 
Datapath + Control Unit +  

Input Register File +  
Output Register File TQ 

4.8 130505 

 

5. CONCLUSIONS 
In this paper, we presented a high performance and low cost 
hardware architecture for real-time implementation of H.264 
forward transform and quantization and inverse transform and 
quantization algorithms. The hardware architecture is based on a 
reconfigurable datapath with only one multiplier. This hardware is 
designed to be used as part of a complete low power H.264 video 
coding system for portable applications. The proposed architecture 
is implemented in Verilog HDL. The Verilog RTL code is verified 
to work at 81 MHz in a Xilinx Virtex II FPGA and it is verified to 
work at 210 MHz in a 0.18µ ASIC implementation. The FPGA and 
ASIC implementations can code 27 and 70 VGA frames (640x480) 
per second respectively. 

ay 2003 

03 

REFERENCES 
[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra 
“Overview of the H.264/AVC Video Coding Standard”, IEEE Trans. 
on Circuits and Systems for Video Technology vol. 13, no. 7, pp. 
560–576, July 2003 
[2] I. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 
2003 
[3] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, 
Draft ITU-T Recommendation and Final Draft International 
Standard of Joint Video Specification, ITU-T Rec. H.264 and 
ISO/IEC 14496-10 AVC, M
[4] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, 
Joint Model (JM) Reference Software Version 9.2, 
http://bs.hhi.de/suehring/ 
[5] H. Malvar, A. Hallapuro, M. Karczewicz. and L. Kerofsky, 
"Low-Complexity Transform and Quantization in H.264 / AVC", 
IEEE Trans. on Circuits and Systems for Video Technology, vol. 
13, no. 7, pp. 598–603, July 2003. 
[6] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, 
“Parallel 4x4 2D Transform and Inverse Transform Architecture 
for MPEG-4 AVC / H.264”, Proc. of IEEE ISCAS, 20
[7] Xilinx Inc., Virtex-II™ Platform FPGAs: Complete Data Sheet 
DS031, http://www.xilinx.com, March 2004 

http://www.xilinx.com/

	A HIGH PERFORMANCE AND LOW COST HARDWARE ARCHITECTURE FOR H.
	ABSTRACT
	INTRODUCTION
	OVERVIEW OF H.264 TRANSFORM AND QUANTIZATION ALGORITHMS
	PROPOSED HARDWARE ARCHITECTURE
	IMPLEMENTATION RESULTS
	CONCLUSIONS
	REFERENCES



