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ABSTRACT 
 

An integral equation based numerical solution is developed when the particles are 

illuminated with collimated and focused incident beams. The solution procedure uses the method 

of weighted residuals, in which the integral equation is reduced to a matrix equation and then 

solved for the unknown electric field distribution. In the solution procedure, the effects of the 

surrounding medium and boundaries are taken into account using a Green’s function 

formulation. Therefore, there is no additional error due to artificial boundary conditions unlike 

differential equation based techniques, such as finite difference time domain and finite element 

method. In this formulation, only the scattering nano-particle is discretized. The results are 

compared to the analytical Mie series solution for spherical particles, as well as to the finite 

element method for rectangular metallic particles. The Richards-Wolf vector field equations are 

combined with the integral equation based formulation to model the interaction of nanoparticles 

with linearly and radially polarized incident focused beams. 

 

INTRODUCTION 

 

Nano-optics is a rapidly growing field with a diverse set of existing and emerging 

practical applications [1-5]. A number of parameters have to be optimized in order to achieve 

large transmission efficiency while keeping the optical spot size well below the diffraction limit. 

Selecting an optimum set of parameters for a nano-optical transducer is important in achieving 

small spots and large transmission efficiencies. Due to the large number of geometry, material 

composition, and source-related parameters in nano-optical systems, the simulation times can be 

too large to optimize practical nano-optical systems. 

To obtain accurate and fast computational solutions of nano-optical systems that involve 

a large number of geometry, material composition, and source-related parameters, the 

development of efficient and accurate modeling and simulation tools for near-field optical 

systems is necessary. In this study, an integral equation based numerical solution is developed 

for nano-optical particles when they are illuminated with collimated and focused incident beams. 

The numerical technique developed in this study requires only the discretization of the nano-

optical transducer, rather than the entire structure. Therefore, it results in a fewer number of 

unknowns than the numerical algorithms currently being utilized for solutions of nano-optical 

systems, such as finite difference time domain and finite element method.  

In this work, we provide a formulation for an integral equation based modeling and 

design tool for nano-optical systems. Similar tools have been successfully used for the analysis 

and design of other nano-optical systems in the literature. Nano-optical system modeling studies 

in the literature utilize differential equation based approaches, such as finite difference time 

domain (FDTD) [6-11] and finite element method (FEM) [11,12], as well as integral equation 

based techniques [13-20]. Previous integral equation based techniques have not presented three-

dimensional results when the incidence excitation is composed of linearly and radially polarized 
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tightly focused beams. A tightly focused beam of incident light provides a large incident electric 

field onto nanoparticles, improving the near-field radiation in the vicinity of the particle. 

Therefore, it is desirable to obtain integral equation based solutions when the incidence 

excitation is composed of linearly and radially polarized tightly focused beams. In this study, a 

three-dimensional integral equation based solution is obtained when the incidence excitation is 

composed of linearly and radially polarized tightly focused beams. 

A full-wave implementation of the method of weighted residuals (MWR) [21-25], which 

is also known as the method of moments (MoM), has a number of advantages over FDTD and 

FEM for nano-optical system analysis. In MWR, the effects of the surrounding medium and 

boundaries are taken into account using a Green’s function formulation. Therefore, MWR 

requires only the discretization of the nano-optical transducer, whereas FDTD and FEM require 

the discretization of the entire computational space. Therefore, the resulting matrix equations of 

the MWR are smaller in size. An additional advantage of an integral equation based approach is 

the reduction of the additional error due to the discretization of the boundaries. In an integral 

equation based approach, the boundary conditions are handled in Green's function formulation; 

therefore, there is no additional error due to the discretization of the boundaries. In a differential 

equation based approach, such as FDTD and FEM, however, there is additional error introduced 

into the solution due to artificial boundary conditions. In addition, the integration of complicated 

excitation functions, such as focused beams in a dense medium, is easier in an integral equation 

based MWR compared to FDTD. 

In this work we provide a formulation of the integral equation based numerical solution. 

The integral equation is discretized into a matrix equation using the method of weighted 

residuals. In this study, the results of the numerical technique are compared to the results of the 

analytical Mie series solution for spherical particles and the finite element method for 

rectangular metallic particles. We also extended the formulation to the case where the incident 

excitation is defined as a focused beam of light. Richards-Wolf vector field equations are 

combined with the integral equation based formulation to model linearly and radially polarized 

focused beams. 

METHOD OF WEIGHTED RESIDUALS 

 

The total electric field is a result of the interaction of an incident optical beam with a 

nanoparticle. The total electric field )(rEtot

rr
 is composed of two components 

            (1) 

where )(rEinc

rr
 and )(rEscat

rr
 are the incident and scattered electric field components, respectively. 

The incident electric field can be defined as the electric field propagating in space in the absence 

of a scattering object. The scattered electric field )(rEscat

rr
 in Eq. (1) represents the fields 

resulting from the interaction of the incident field )(rEinc

rr
 with the particles. In three-dimensional 

space, the scattered field )(rEscat

rr
 can be written as 

 

            (2) 
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where )(rJ
rr

 is the induced current over the particle, ω  is the angular frequency, µ is the 

permeability, and  

            (3) 

 

is the dyadic Green’s function in free space . To solve )(rJ
rr

, we will expand it into a summation  

            (4) 

where )(rb j

rr
 represents known basis functions with unknown coefficients jI . In this work, 

triangular rooftop basis functions are used to discretize the induced current over the nanoparticle. 

These basis functions are originally proposed by Glisson and Wilton [26] on rectangular domains 

and used on triangular domains by Rao et al. [27]. Triangular rooftop basis functions have been 

very popular due to their ability to model realistic geometries. Particle geometry is discretized in 

order to expand the induced current with triangular basis functions. 

By utilizing the expansion given in Eq. (4), the electric field integral equation is obtained 

as 

                          (5) 

 

Due to the approximation of the induced current with the summation in Eq. (4), there is a 

residual error in Eq. (5). The residual error in space can be written as 

 

                        (6) 

 

In the method of weighted residuals the error is distributed so that it is minimized in the 

minimum mean square sense. For this purpose, a new set of functions, known as weighting 

functions  ( )rwi

rr
 are used. The residual error ( )r

r
ℜ  is distributed in space by equating the inner 

product of the residual error ( )r
r

ℜ  with the weighting function ( )rwi

rr
 to zero 

                          (7) 

 

By placing the weighting functions into Eq. (7) we can obtain the resulting equations for 

the unknown coefficients of the basis functions. After mathematical manipulations, the result can 

be expressed as a system of linear equations as  

             (8) 

where jiZ ,  is the impedance matrix element on the i
th

 row and j
th

 column which is given as 

 

             (9) 

 

and iV  is the excitation source element on the i
th

 row given as 

                       (10) 

 

By solving the matrix equation in Eq. (8), we obtain the unknown coefficients of the basis 

functions in the induced current expansion in Eq. (4).  
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      (a)                     (b)  

Figure 1. A comparison of the MWR results with the Mie series solution for the RCS of a 

conducting sphere with a radius of 140 nm. The operating wavelength is 700 nm. θ and 

φ components of the radar cross section are plotted on various cuts: (a) RCSθ as a function of φ 

on θ=90° cut, (b) RCSθ as a function of θ on φ=0° cut. 

Using the integral equation based formulation given in the previous section, the 

interactions of a collimated beam with both a conducting metallic sphere and cube are studied. 

The collimated beam is modeled as a linearly polarized plane wave propagating in the z 

direction. In Fig. 1, the radar cross section of a sphere with a radius of 140 nm is presented to 

compare MWR results with the analytical Mie series solution. The operating wavelength of the 

laser source is 700 nm. A comparison of the MWR results with the analytical Mie series solution 

shows a good agreement between the results. 

                      
      (a)                     (b)  

Figure 2. A comparison of the FEM and MWR results for the radar cross section of a conducting 

cube with a side length of 200 nm. The operating wavelength for the incident beam is 700 nm. 

θ component of the radar cross section is plotted on various φ cuts: (a) RCSθ as a function of θ 

on φ=0° cut, (b) RCSθ as a function of θ on φ=90° cut. 

 In Fig. 2, the scattering cross section of a conducting metallic cube with a side length of 

200 nm is obtained on various cuts in the far-field. There is no analytical solution for a cube, 

therefore, we utilized an FEM solution as a reference. Similar to the previous calculations, a 

linearly polarized plane wave is utilized. The operating wavelength is 700 nm. In Fig. 2 (a) and 

(b) the θ component of the radar cross section is plotted on φ=0
°
 and φ=90

°
 cuts. The MWR and 

FEM results show a good agreement. 

 

LINEARLY AND RADIALLY POLARIZED FOCUSED BEAMS 

 

It is also very desirable to obtain solutions when the incidence excitation is composed of 

linearly and radially polarized focused beams. In the previous section, the integral equation 



based solutions are provided when the incident beam is a plane wave. In this section, the solution 

is obtained for the case where the incident beam is a focused beam. Richards and Wolf 

developed a method for calculating the electric field semi-analytically near the focus of an 

aplanatic lens [28, 29]. Using the Richards-Wolf method, we can obtain both transverse and 

longitudinal components near the focus for both linear and radial polarizations. 

In Fig. 3 (a), various components of the near-field radiation from a sphere are plotted 

when the incident beam is a linearly polarized focused beam obtained from an optical lens 

system with a numerical aperture of 0.85. The operating frequency is 700 nm.  The results are 

plotted for spherical particles with radii 70 and 140 nm. The 
xE  and 

zE  components are plotted 

on the 2/πφ =  cut as a function of θ . For small spheres, the 
xE  component has a maximum at 

2/πθ = . As the spherical particle gets larger, we observe a shift of the location at which the 
xE  

component has a maximum field. This is due to the increased interaction between a larger sphere 

and a wider range of angular components of a focused beam. As the size of the spherical particle 

gets larger, the particle interacts more with components that are incident to larger angles. A 

similar shift is also observed in the
zE  component, as shown in Fig. 3 (a). 

In Fig. 3 (b), various components of the near-field electric field are plotted for a radially 

polarized incidence beam.  The results are plotted for spherical particles with radii 70 and 140 

nm. 
xE  and 

zE  components are plotted on the 2/πφ =  cut as a function of θ . The incident beam 

parameters are identical to the previous set of results with the exception that a radial polarization 

is used instead of a linear polarization. Contrary to the results in Fig. 3 (a), 
xE  shows a minimum 

at 2/πθ =  in Fig. 3 (b). This is due to the difference in the strength of various components of the 

linearly and radially polarized incident focused beams. For the linearly polarized focused wave, 

the x-component of the electric field is much stronger than the other two components. The 

radially polarized wave, on the other hand, has a strong z-component in the focal region. 

      
                         (a)                               (b)  

Figure 3. Electric field components when a focused beam of light interacts with spheres 

of various sizes: (a) linearly polarization, (b) radial polarization. 

CONCLUSIONS  

 

In summary, an integral equation based numerical solution was developed. The 

formulations for both plane waves and focused beams were given. For focused beams, the 

Richards-Wolf vector field equations were combined with the integral equation based 



formulation to model both linearly and radially polarized focused beams. The results of the 

integral equation based solution were compared to the results of the analytical Mie series 

solution for spherical particles and the finite element method for rectangular metallic particles. 

The methods showed a good agreement. 
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