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ABSTRACT 

The client-contractor bargaining problem addressed here is in the context of a multi-

mode resource constrained project scheduling problem with discounted cash flows, which is 

formulated as a progress payments model.  In this model, the contractor receives payments 

from the client at predetermined regular time intervals. The last payment is paid at the first 

predetermined payment point right after project completion. The second payment model 

considered in this paper is the one with payments at activity completions. The project is 

represented on an Activity-on-Node (AON) project network. Activity durations are assumed 

to be deterministic. The project duration is bounded from above by a deadline imposed by the 

client, which constitutes a hard constraint. The bargaining objective is to maximize the 

bargaining objective function comprised of the objectives of both the client and the 

contractor. The bargaining objective function is expected to reflect the two-party nature of the 

problem environment and seeks a compromise between the client and the contractor. The 

bargaining power concept is introduced into the problem by the bargaining power weights 

used in the bargaining objective function. Simulated annealing algorithm and genetic 

algorithm approaches are proposed as solution procedures. The proposed solution methods are 

tested with respect to solution quality and solution times. Sensitivity analyses are conducted 

among different parameters used in the model, namely the profit margin, the discount rate, 

and the bargaining power weights. 
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1. INTRODUCTION 

 

In this paper, we consider the client-contractor bargaining problem in the context of 

multi-mode resource constrained project scheduling. The bargaining objective is to maximize 

the bargaining objective function comprised of the objectives of both the client and the 

contractor. The objective of the client is to minimize the net present value (NPV) of the 

payments to the contractor, whereas the objective of the contractor is to maximize the net 

return. The individual objectives of the client and the contractor are in conflict most of the 

times. Hence, the bargaining objective should consider the incentives of both parties.  

In the literature, a number of exact and heuristic methods are proposed for solving the 

single objective resource constrained project scheduling problem with discounted cash flows 

(see, e.g., [14, 18]). Russell [28] introduces an initial version of the discounted cash flow 

problem in project scheduling with no resource constraints. Grinold [12] extends the model by 

Russell by introducing a project deadline. The NPV criterion and its impact on project 

scheduling are investigated by Bey et al. [4]. Baroum and Patterson [1] review the 

development of cash flow weight procedures for the problem. Exact solution procedures for 

the resource constrained version of the problem are given among others by Doersch and 

Patterson [9], Yang et al. [38], Içmeli and Erengüç [15], Baroum and Patterson [2], and 

Vanhoucke et al. [37]. A relatively recent review on project scheduling is provided by 

Kolisch and Padman [22]. 

Exact methods become computationally impractical for problems of a realistic size, 

since the model grows too large quickly and hence, the solution procedures become 

intractable. This leads to studies on a variety of heuristic procedures among others by Russell 

[29], Smith-Daniels and Aquilano [33], Padman and Smith-Daniels [26], Padman et al. [27], 

and Kimms [19]. Etgar et al. [11] present a simulated annealing (SA) solution approach to 

maximize the NPV of a project, where the net cash flow amounts are independent of the time 

of realization. Ulusoy et al. [36] solve the multi-mode resource constrained project scheduling 

problem with discounted cash flows using genetic algorithm (GA). They allow both positive 

and negative cash flows. In their paper they distinguish among four types of payment 

scheduling models: 

 

• Lump-sum payment. The client pays the total payment to the contractor upon 

successful completion of the project. 
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• Payments at event occurrences. Payments are made at a set of event nodes. The 

problem is to determine the amount, location, and timing of these payments.  

• Progress payments. The contractor receives payments at regular time intervals until 

the project is completed. The amount of payment is based on the amount of work 

accomplished since the last payment.  

• Fixed number of payments at equal time intervals. In this payment model, a fixed 

number of payments are made at predetermined equal time intervals over the duration 

of the project, and the final payment is scheduled on project completion. The amounts 

of the payments are either predetermined and fixed or are based on the amount of 

work accomplished since the last payment.  

Mika et al. [25] consider the multi-mode resource constrained project scheduling 

problem with discounted cash flows in the context of the above payment scheduling models 

using positive cash flows only. As solution methods, they employ SA and GA. 

Kazaz and Sepil [17] present a mixed-integer programming formulation of the 

progress payment model with the objective of maximizing the NPV of the cash flows for the 

contractor. Sepil and Ortaç [30] test the performance of some heuristic procedures for 

resource-constrained projects with progress payments. They define cash inflows occurring 

periodically as progress payments, and cash outflows as costs incurred whenever an activity is 

completed. 

Dayanand and Padman [5, 6] attack the problem of simultaneously determining the 

amount, location, and timing of the payments by the client to maximize the contractor’s NPV. 

They deal with this problem further from the perspective of the client [7] and later investigate 

the problem in the context of client and contractor negotiation and stress the need for a joint 

view in their treatise of the payment-at-event-occurrences model [8]. Ulusoy and Cebelli [35] 

include both the client and the contractor in a joint model. They introduce the concept of ideal 

solution, where the ideal solution for the contractor would be to receive the whole payment at 

the start of the project and for the client it would be a single payment at the completion of the 

project. They search for a solution, where the client and the contractor deviate from their 

respective ideal solutions by an equal percentage. They call such a solution an equitable 

solution. A competitive perspective, on the other hand, is provided by Szmerekovsky [34]. He 

considers the case where both the client and the contractor are assumed to act in their own 

best interest rather than trying to compromise. 
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2. PROBLEM DEFINITION 

 

The client-contractor bargaining problem addressed here is in the context of a multi-

mode resource constrained project scheduling problem with discounted cash flows, which is 

formulated as a progress payments model.  In this model, the contractor receives payments 

from the client at predetermined regular time intervals. The last payment is paid at the first 

predetermined payment point right after project completion. The second payment model 

considered in this paper is the one with payments at activity completions. 

The project is represented on an Activity-on-Node (AON) project network. Activity 

durations are assumed to be deterministic. The project duration is bounded from above by a 

deadline imposed by the client. The deadline constitutes a hard constraint meaning that 

exceeding the deadline violates feasibility. Thus, there is no need to specify a penalty for 

exceeding the deadline. There is no explicitly stated bonus for the contractor to finish the 

project earlier than the deadline. 

 Contractor’s cash outflows associated with an activity can occur anytime throughout 

its execution. However, it is assumed here that they are discounted to the starting time of the 

activity. The cash inflows for the contractor, which represent the cash outflows for the client, 

occur at predetermined equal time intervals. In this context, the earned value for the 

contractor corresponds to the payments regarding the activities completed within that specific 

period of time. The payments are specified as the sum of the costs incurred for all activities 

completed from the last payment point until the current payment point and multiplied with (1 

+ β), where β is the profit margin. Note that activities in progress are not included in this sum. 

The problem is formulated under zero-lag finish-start precedence constraints and multi-mode 

renewable resource constraints. 

The bargaining objective function is expected to reflect the two-party nature of the 

problem environment. The bargaining objective function seeks a compromise between the 

client and the contractor. The bargaining power concept is introduced into the problem by the 

bargaining power weights used in the bargaining objective function. Further details of this 

function are given in Section 3.  

The weight parameter as a notion of bargaining power is also used in the mathematical 

economics literature. For instance, Ervig and Haake [10] discuss the notion of weights for two 

agents that are involved in two different bargaining problems. Under certain assumptions 

about the class of bargaining problems and the individual utilities, they thoroughly analyze 

the equilibrium conditions. Again within the game theory field, Köbberling and Peters [23] 
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investigate the effect of decision weights in the bargaining problems. These decision weights 

are incorporated through probabilistic weight functions that determine the risk attitude of a 

decision maker. By varying the engaged agents’ attitudes towards risk, they discuss the 

different outcomes of the bargaining games. 

Marmol et al. [24] analyze an equitable solution for the multi-criteria bargaining 

games. To deal with the multiple objectives, they minimize the maximum deviation from the 

best minimum payoff values, which can be attained when the problem is solved for each 

individual criterion. To this extent, the distance concept in their study bears some similar 

features to the one used in the present study. However, Marmol et al. [24] do not consider the 

concept of bargaining powers. In the present paper, the bargaining power weights reflecting 

the respective powers of the involved parties cause significant nonlinearities in the objective 

function. If applied in our work (after some modifications), the solution approach suggested 

by Marmol et al. [24] would result in a nonlinear constrained integer programming problem - 

an extremely difficult problem to solve. In this paper, the bargaining power weights are 

defined to introduce the impact of the difference in relative bargaining positions of the client 

and the contractor. Furthermore, they are meant to reflect perceived quantities and do not 

represent exact point values. The bargaining objective function introduced is formulated using 

a max min approach so as to improve the position of the worse-off party among the client and 

the contractor, which would correspond to an acceptable position for both parties for the given 

bargaining power weights. Köbberling and Peters [23] have investigated the effect of decision 

weights in bargaining problems through the concept of probability weighting functions. In 

their approach, the solution to the bargaining problem depends exclusively on its image in 

utility space. Ervig and Haake [10] view bargaining power as ordinary goods that can be 

traded in exchange economy involving two countries. The final solution they define satisfies 

two main properties. First, it should be Pareto optimal in the aggregate, i.e., there is no other 

package of subsidies and expenditures that makes both countries better off. This is the same 

property adopted in the present study as well; that is, the objective function aims at finding the 

solution, which ensures that there is no other point in the utility space that brings players to a 

better position at the aggregate level. The second property states that, if one compares the 

final solution with the scenario, in which the players are treated separately, then neither of the 

players should be worse off in the final solution. So the favor exchange really should do a 

favor to both. In the present study, the bargain between players doesn’t constitute a favor 

exchange, but instead a pure trade-off among benefits is obtained. Mármol et al. [24] propose 

a solution concept for multi-criteria bargaining games, which is based on the distance to a 



 5 

utopian minimum level vector. The distance concept they introduce in their study is similar to 

the distance definition used in this study, in a way that both identify the distance from the 

minimum level point for both players.  

In practice, both the client and the contractor or an external consultant may use the 

overall approach presented here to reach a mutual agreement point through a series of trade-

offs. It provides an environment for scenario analysis, which the interested parties may utilize.  

 

3. MATHEMATICAL FORMULATION 

 

In this section, the formal mathematical programming model for the multi-mode 

resource constrained bargaining problem with progress payments is given. In the subsequent 

discussion, the following notation is employed: 

J is the set of activities, where i, j ∈  J denote the general activity indices, and |J| 

denotes the last activity. 

K is the set of resource types, where k∈K denotes the resource index.  

Mj is the set of modes for activity j∈J, where m∈Mj denotes the mode index; the 

convention employed here is that as the mode number increases, the resource usage decreases 

and the activity duration increases. 

t and q denote the time periods.  

ip  j : precedence relation; i.e., activity i∈J precedes activity j∈J. 

Ej : earliest finishing time of activity j∈J. 

Lj : latest finishing time of activity j∈J. 

djm : duration of activity j∈J in mode m∈Mj. 

D : predetermined deadline  

rjkm  : consumption of resource k∈K per unit time for activity j∈J in mode m∈Mj. 

Rk : availability limit of resource k∈K. 

Cmax : makespan. 

Cjm : cost of activity j∈J in mode m∈Mj in real terms discounted to the starting time 

of the activity. 

β : profit margin. 

γ : discount rate per period. 

αt : continuous discount factor in period t, exp(-γt).  

Tn : predetermined payment times, n = 1, …, N with  T1 = 0 and TN = D. 

PTn : client’s payment at period Tn, n = 1, …, N. 



 6 

xjtm: 1, if activity j∈J  is completed in period t with mode m∈Mj ; 0, otherwise. 

x: the decision vector with components xjtm ; i.e., the schedule. 

F: feasible region of the overall problem. 

 

The constraints are as follows: 
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The constraint set (1) ensures that each activity is assigned. The constraint set (2) 

makes sure that all precedence relations are satisfied. The constraint (3) secures that the 

project is completed on or before the deadline. The constraint set (4) makes sure that for every 

single resource the required amount does not exceed the corresponding resource constraint at 

any given point in time throughout the project duration. The last set of constraints (5) shows 

that the variables are binary. Notice that a decision variable is feasible when it satisfies the 

above constraints. In other words, the feasible region of the problem is given by 

F = {x : x satisfies constraints (1) – (5) }. 

Next, the bargaining objective of the mathematical model is presented. Let fA and fB 

denote the individual objective function value of the client (A) and the contractor (B), 

respectively. Then, we have 

fA(x) =  
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Suppose that x*
A and x*

B are the optimal solutions for the client and the contractor over the 

feasible region, respectively. Formally, 

x
*
A := arg max {fA(x) : x∈F },                                                                            (9) 

x
*
B := arg max {fB(x) : x∈F },                                                                           (10) 

Using now (6) and (7), the optimal objective function values for the client and the contractor 

are defined as f”A : = fA(x
*
A) and f”B : = fB(x

*
B), respectively. To introduce the objective of the 

bargaining problem, we define for the client the value f’A : = fA(x
*
B) and for the contractor the 

value f’B : = fB(x
*
A). These are the undesired values for the respective parties, and are defined 

as the objective function value for the player at the optimal solution of the other player. 

After these definitions, the bargaining objective of our mathematical model becomes 

max min 
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where w(A) ∈  (0,1) and w(B) ∈  (0,1) with w(A) + w(B) = 1 denote the bargaining power 

weights for the client and the contractor, respectively. The terms in parentheses in the 

bargaining objective function are called the bargaining values for the client and the 

contractor, respectively. The bargaining value raised to power by the bargaining power weight 

results in the weighted bargaining value, where a higher value is more desirable for both 

parties. The fundamental metric proposed in the bargaining objective function formulation is 

the normalized distance of the party involved from the respective undesired solution. The 

bargaining objective function tries to maximize the minimum of the normalized distances of 

the objective function values of the client fA(x) and of the contractor fB(x) from f'A and f'B, 

respectively. In other words, the bargaining objective function is formulated so as to improve 

the position of the worse-off party among the client and the contractor.  

The relative bargaining positions of the client and the contractor differ in general. To 

introduce the impact of this difference in relative bargaining positions, bargaining power 

weights are defined for both the client and the contractor. A large bargaining power weight 

implies a strong bargaining position. For each player, the optimal solution is the result of the 

respective single objective problem solved by a commercial solver. These values are 

employed in the bargaining objective function for normalization.  

The overall mathematical model considered in this paper is given as follows: 
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max min 
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s.t.       fA(x) =  







− ∑

=

N

n

TT nn
P

1

*α , 

fB(x) =  









−






 ∑∑ ∑∑
∈ = ∈

−
= Jj

L

Et Mm

jtmdtjm

N

n

TT

j

j j

jmnn
xCP ***

1

αα  ,  

           ∑ ∑ ∑
∈ += ∈−

+=
Jj

T

Tt Mm

jtmjmT

n

n j

n
xCP

11

**)1( β ,          n = 2,…, N, 

            x ∈  F. 

The above mathematical programming formulation is a non-linear zero-one programming 

problem. Hence, one would expect that exact methods would fail even for moderate size 

problems. 

Note that the base model above considers the progress payment model at predetermined time 

intervals. The last payment period is scheduled at the deadline. The second payment model 

considered in this paper is the one with payments at activity completions. In this case, the 

term PTn in the above mathematical model should be replaced by 
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and the first two equalities become 
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4. SOLUTION APPROACHES 

 

Conventional solution procedures for the resource constrained project scheduling 

problem with discounted cash flows adopt the perspective of either the client or the 

contractor. Hence, these procedures developed for optimizing the benefit for one party only 

would not be expected to produce good solutions for the bargaining objective, which aims to 

merge the objectives of both the client and the contractor into a single bargaining objective 

function. The optimization of such a bargaining objective function does not depend on 
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structured rules like completing the costly activities earlier, or delaying the project. For 

instance, delaying a costly activity may be beneficial for the contractor but if the client’s 

weighted bargaining value is less than the contractor’s, the bargaining objective function 

value may be decreased; or delaying an activity may not have an effect at all. The max min 

objective function itself invalidates such structured rules. Rather than devising an algorithm 

based on heuristic decision rules, it has been decided to employ two different meta-heuristics, 

SA and GA, in order to exploit their well-established capability of searching through the 

solution space effectively. Since the same solution representation and generation are 

employed both in SA and GA, a description of these is provided first. 

 

4.1 Solution Representation  

A solution is represented by a combination of three serial lists: activity list, mode list, 

and idle time list. The structure of these lists is as follows: 

1. Activity List: 

Activity list is a precedence-feasible permutation of activities. The dummy source and 

sink nodes are placed at the start and at the end of the list, respectively, by default. The 

list represents the priority ordering for the starting time of activities. That is, an 

activity appearing earlier in the list should start at the same time or at an earlier time 

than its immediate follower.  

2.Mode List:  

The mode list shows the assigned modes for each activity in the activity list.  

3.Idle Time List:  

The idle time value represents the exact idle time to be inserted before the start of the 

corresponding activity in the activity list.  

An example for a 14-activity network is as given in Figure 1.  In the example, the 

dummy activity 1 is assigned mode 1 and its start is delayed by 1 unit time, while activity 3 is 

assigned mode 2 and its starting time is delayed by 4 units of time. 

-------------------------------- 
Place Figure 1 about here 

                                                            --------------------------------- 
 

4.2 Feasible Solution Generation 

Feasible solutions are generated as follows. A list of eligible activities is kept, which is 

initially composed of activities with no predecessors. One of the activities from this set is 

randomly chosen to be inserted into the next position on the activity list. Then the eligible set 
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is updated by deleting the activity chosen and by inserting activities, all predecessors of which 

have already been inserted into the activity list.    

For each feasible activity list, a set of random mode and idle time lists are generated 

among which a feasible combination is searched for. For each triple of activity list, mode list, 

and idle time list, the feasibility is checked according to both the resource limitations, and the 

deadline. Infeasible solutions are discarded. Problem sets used in tests are redefined by 

extending the deadlines for each problem set versus the original problem sets; details are 

given in Section 5 on computational results. 

 

4.3. Simulated Annealing Method 

4.3.1. Neighborhood Generation Mechanism 

Neighboring solutions are generated by altering the three lists; i.e. the activity, mode 

and idle time lists. All feasible solutions generated by the mechanisms explained below are 

included in the neighborhood. 

a. Activity Replacement: An activity is chosen randomly and is moved together with its 

corresponding mode and idle time assignments to each one of the feasible alternative 

locations one by one. All feasible neighboring solutions are generated by applying the 

replacement operator.  

b. Mode Change: By keeping the activity list and the idle time list constant, mode 

changes are applied, one mode at a time. All possible mode changes for all activities 

are tried. 

c. Idle Time Change: By keeping the activity list and the mode list constant, idle time 

changes are applied, one at a time. All possible idle time changes for all activities are 

tried. For each of the activities all possible idle time changes are investigated by 

checking the feasibility of the solution on two dimensions, namely the deadline and 

the resource availability. 

The solutions that yield negative numerators in the bargaining objective function are 

ignored since such solutions are clearly inferior. This guarantees that no adopted schedule can 

provide one of the players a value worse than f’, which is the objective function value of that 

player at the optimal solution of the other player.  

4.3.2. Cooling mechanism 

The cooling scheme used here is a scheme effectively used by other researchers on 

complex problems ([3, 32]). The details are given below: 
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Tinit =(fmin-fmax)/(ln PA
init

)                                                                                          (15) 

cr = (ln PA
init

 / ln PA 
f 
) 

1/(maxIter-1)  (16) 

Tcurr = cr * Tcurr                                                                                                         (17) 

where cr is the cooling rate, Tinit and Tcurr are the initial and current temperatures, respectively; 

PA
init and PA

f are the initial and final acceptance probabilities, respectively; fmin and fmax are the 

minimum and maximum bargaining objective function values observed in an initial set of 

solutions, respectively; and maxIter is the maximum number of temperature reduction cycles. 

4.3.3. Stopping Criterion 

A fixed iteration count taken as the maximum number of temperature reduction cycles 

(maxIter) is adopted as the stopping criterion. The number of iterations carried for each 

problem depends on the number of activities; higher number of iterations is required in order 

to improve the objective function once the activity number of the problem increases. The 

(maxIter) value is determined based on several test runs on each type of problem – that is the 

minimum iteration count which delivers all observed improvement in the objective functions. 

Since the bargaining objective function is in max min format, the same bargaining objective 

function value may be observed at different solution points. Hence, other stopping criteria 

based on objective value improvements are not appropriate for the current problem. A record 

of the best solution ever encountered is kept throughout the run and is reported as the SA 

solution at termination. 

4.3.4. The Algorithm 

Step1: Find an initial solution and adopt it as the current solution S. Determine Tinit and cr. 

Take Tcurr as Tinit. 

Step2: Generate all alternative solutions in the neighborhood of S.  

Step3: Select randomly a solution S’ from the neighborhood of S. If S’ represents a better 

solution than S in terms of the bargaining objective, adopt S’ as the current solution If S’ 

represents a worse solution than S, adopt it as the current solution with probability of 

acceptance PA=e
-(∆z/Tcurr), where ∆z denotes the absolute difference between the bargaining 

objective function values of S and S’. If S’ is adopted as the current solution S, then go to Step 

2. Repeat Step 3 until the number of neighborhood solutions tested reaches Ntest.  

Step 4: If the number of temperature reduction cycles reaches maxIter, then terminate. If not, 

then update Tcurr and go to Step 2. 
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4.4. Genetic Algorithm 

GA is applied by using the chromosome representation explained in Section 4.1 and 

exemplified in Figure 1. The initial population is generated employing the feasible solution 

generation mechanism explained in Section 4.2. The fitness value is set equal to the objective 

function value. Roulette wheel selection mechanism is employed, where the probability of 

selection is proportional to an individual’s fitness [13]. Elitist selection is also applied such 

that the best few chromosomes are transferred directly to the new generation. 

4.4.1. Crossover Operator 

The most challenging problem when applying GA to multi-mode resource constrained 

scheduling problems is to reproduce feasible off-springs. The Multi Component Uniform 

Order Based Crossover (MCUOX) is employed, which preserves precedence feasibility when 

generating one offspring from parent chromosomes [31]. In this operator, one of the parents is 

selected randomly. Starting from the first activity, the next activity on that parent not assigned 

to the offspring yet is found. Then the mode assignment of that activity on each of the parents 

is determined and one is selected randomly. Finally, the idle time assignment of that activity 

on each of the parents is determined and one is selected randomly. This procedure is repeated 

until an offspring is generated fully.  

4.4.2. Mutation Operators 

• Activity replacement: A parent chromosome is selected randomly. Then an activity is 

selected randomly from the activity list of that chromosome. Next the position of that 

particular activity on the activity list is changed as follows. Activity’s replacement 

window is determined according to the precedence relations - replacement window for 

an activity is basically the window within the activity list between the slot where the 

predecessors of that specific activity ends and the slot where the successors of that 

specific activity starts.  The activity together with its mode and idle time assignments 

is moved to a location within the replacement window, and the whole list is adjusted 

accordingly. If the new solution satisfies all feasibility constraints, then it is accepted 

as an offspring.  

• Bit mutation: Bit mutation is applied either to the mode or to the idle time assignment 

dimension following a four-step approach: First, for each chromosome, it’s decided 

whether to bit mutate it or not. Once it is decided to apply bit mutation to a 

chromosome, the type of bit mutation, the activity to be mutated, and the direction of 

change are selected in sequence. If the mode bit mutation is going to be applied, the 

existing mode of the activity is replaced with another randomly chosen mode value. If 
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the idle time bit mutation is going to be applied, the existing idle time value is either 

decreased by 1 (if it is not 0), or increased by 1, where decision is randomly taken with 

0.5 probability on each alternative of decreasing and increasing the current idle time. 

4.4.3. Population Management  

The GA pool management scheme is shown in Figure 2. New generations are formed 

by the offspring of the crossover and the activity replacement mutation operators, the best 

individuals selected according to the elitist strategy, and fitness-based selected individuals. Bit 

mutation is applied to the members of this new population except the elites. 

-------------------------------- 
Place Figure 2 about here 

                                                            --------------------------------- 
4.4.4. Termination 

The whole cycle of generating a new population is repeated for 50-100 times, 

depending on the problem size. At each generation, the chromosome with the highest fitness 

value ever is kept in memory. The final solution is the solution with the best fitness value 

reached ever after the last cycle.  

 

5. COMPUTATIONAL RESULTS 

 

The test problems used are adopted from the project scheduling problem library 

PSPLIB ([20, 21]). The adoption has been made by eliminating the tardiness costs, relaxing 

the deadlines, and excluding the nonrenewable resources. For each problem size of 14, 20, 

and 32 activities, problem sets consisting of 30 problems are used adding up to a total of 90 

test problems. Problems are selected from Multi-Mode Resource Constrained Project 

Scheduling Problem (MRCPSP) directory of PSPLIB.  Within this directory following data 

sets are used for problems with 14, 20, and 32 activities respectively: j12.mm, j18.mm, and 

j30.mm. Within each of these sets there are around 550 problems, and among these 30 

problems are selected randomly from each data set. These problem sets had been modified by 

disregarding non-renewable resources and extending the deadlines in order to increase 

feasibility. These modified data sets are provided in Kavlak [16]. All of the problem sets used 

involve two renewable resources and three modes for the activities. The first mode consists of 

the highest activity cost with the shortest duration, and the last mode consists of the lowest 

activity cost with the longest duration. Initially, in order to investigate the behavior of the 

model and the performance of the solution procedures, in all tests the bargaining power 

weight of both the client and the contractor are set equal to 0.5.  
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For each problem set, initial solutions are generated as described in Section 4.2. First 

the activity lists are generated, then mode and idle time lists are generated randomly, and the 

resulting chromosome is subjected to feasibility checks. Table 1 illustrates the percentage of 

feasibility hits.  

-------------------------------- 
Place Table 1 about here 

--------------------------------- 
 

In SA, PA
init is set at 0.95, and PA

f is set to 0.001. A set of 100 solutions are generated 

using the feasible solution generation mechanism explained in Section 4.2 to determine the 

fmin and fmax values. Modifying the temperature plateau length, i.e. the number of neighbors 

tested at a given temperature level, has also been tested, but no significant improvement 

regarding the solution has been observed. Hence, Ntest is set at 100. The fixed iteration count 

maxIter for each problem set is given in Table 2. 

-------------------------------- 
Place Table 2 about here 

--------------------------------- 
 

GA follows a two step pool management strategy as shown in Figure 2. When moving 

from the old population to the new one, elites constitute 2%, fitness-based selected individuals 

constitute 48%, off-springs generated by MCUOX operator constitute 33%, and off-springs 

generated by activity replacement operator constitute 17% of each new population.  

The offspring generation process through MCUOX continues until the number of 

feasible offspring reaches 1/3rd of the original population. This proportion is a design choice, 

which enables highest improvement at each iteration when compared with other tested ratios 

of 1/6, 1/4, and 1/2. 

Activity replacement mutation operator is applied to randomly selected individuals 

from the original population until the number of feasible individuals reaches 1/6th of the 

population. This proportion is again a design choice which enables highest improvement at 

each iteration when compared with other tested ratios of 1/4 and 1/3. These ratios were tested 

for 9 problem sets of which 3 have 14-activities, 3 have 20-activities, and the last 3 have 32-

activities. Results showed that for all instances MCUOX offspring generation process 

continuing until the number of feasible offspring reaches 1/3rd of the original populations 

provided the highest improvement in the objective function. Similarly, continuing with the 

activity replacement mutation operator until the number of feasible offspring reaches 1/6th of 
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the original populations provided for all instances the highest improvement in the objective 

function. 

Bit mutation is applied with a four step approach, where selection probability is equal 

for the alternatives at each step. Figure 3 illustrates the bit mutation mechanism. 

-------------------------------- 
Place Figure 3 about here 

                                                            --------------------------------- 
 

Table 3 provides average percent deviations of the GA and SA solutions from the 

optimal solutions obtained by using the commercial solver GAMS 20.0. The t-test results 

stating whether GA delivering higher objective function values than SA is statistically 

significant or not are also reported in Table 3. With payments at 10 time periods and 

payments at 5 time periods, it is observed that GA delivering better results than SA is 

statistically significant, but it is not statistically significant for the instances with payments at 

activity completions. These results show that as the frequency of the payments increases and 

the number of activities decreases, better results are obtained and the likelihood of finding 

near optimal solutions increases, no matter which method is used. It is clear that the problem 

is getting more complex with increasing numbers of activities as can be seen from the 

increasing deviations for increasing numbers of activities in the rows of Table 3. As can be 

observed from the columns of Table 3, the deviations decrease with increasing frequency of 

payments, which indicates that the problem becomes less complex in that direction.  

-------------------------------- 
Place Table 3 about here 

                                                            --------------------------------- 
 

All tests are carried out on a Toshiba A10-S503 with Mobile Intel Celeron 2.20 GHz 

CPU, and 256 MB of RAM. Average CPU times for all test instances are given in Table 4. 

Here, for both SA and GA the number of objective function evaluations within the 

computational time is compatible. Still it is observed that the computation takes a little longer 

for GA when compared with SA at each instance. The reason for this may be due to the effort 

spent for the management of the objective function ranking list employed in GA to determine 

the elites. 

-------------------------------- 
Place Table 4 about here 

                                                            --------------------------------- 
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6. SENSITIVITY ANALYSES 

 

Sensitivity analyses are conducted for three important parameters used in the model:  

the profit margin, the payment discount rate, and the bargaining power weight. For profit 

margin and discount rate tests, exact optimal solutions obtained by using commercial solver 

GAMS.20.0 are used. For profit margin and discount rate tests, bargaining power weight of 

the players are kept constant and equivalent at 0.5. Hence, the effects of these two parameters 

are tested under equal conditions for both of the players. Bargaining power weight tests are 

held for varying discount rate γ  with constant profit margin β at 0.1. In these tests, GA 

solutions are employed, since optimal solutions for these problems could not be delivered by 

the commercial solver due to the non-linear nature of the problem.    

Since the client pays a profit margin β over the total cost at the predetermined payment 

points, the number and amount of each payment PT depends on the payment frequency, which 

is another parameter of the whole model. In this sense, both payments at activity completions 

and payments at every 5 time periods payment models are tested. The client prefers less 

frequent payments, which leads to bulk payments, whereas the contractor prefers more 

frequent payments in order to be able to receive its return on investment as soon as possible. 

That is, while the client prefers payment for each specific activity deferred, the contractor 

prefers payments at activity completions. This brings a trade-off between the profit margin β 

and the frequency of the payments. Since increasing the profit margin or the payment 

frequency both brings an NPV change in the same direction, the tests show that, depending on 

both β and the discount rate γ , there is a trade-off between them at a constant NPV point. 

Although all these changes affect NPVs of the players, they don’t have an affect on the 

bargaining power weights of either side. The reason is that, once a specific parameter is 

defined in the model, it is pursued as given in all individual calculations (f ”A, f ”B, f’A, and f’B 

values), so even if one observes a significant effect on the NPVs, one doesn’t see any 

bargaining power weight  effect in the decision making process. 

The sensitivity analyses are conducted on 30 test problems with 14 activities. As an 

example, the project network and the mode structure of the activities for one of the test 

problems are given in Figure 4 and Table 5, respectively. In all the test problems employed 

here, payments are due every 5 time periods. In this section, the different sensitivity analyses 

results are displayed as Box and Whisker plots, which give five number summaries: the 

smallest observation, lower quartile, median, upper quartile, and largest observation. 
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                                                -------------------------------- 

Place Figure 4 about here 
                                                            --------------------------------- 

-------------------------------- 
Place Table 5 about here 

                                                            --------------------------------- 
 

6.1 Sensitivity Analysis for the Profit Margin  

Within the model, the profit margin β directly affects the amount of payment made by 

the client to the contractor at each payment point (refer to Equation (8)).  

When the schedule is kept constant, increasing β would clearly increase the objective 

function value of the contractor, and decrease the objective function value of the client and 

vice versa. Since the schedule itself is also a decision variable in the model, the model is run 

with different β values (0.010; 0.250; 0.500) at different discount rate γ levels (0.005; 0.010; 

0.100). In Figures 5(a)–(c), examples can be found from a series of tests that display the best 

bargaining value (i.e., the minimum of the weighted bargaining values for the client and the 

contractor) for increasing profit margin β at different γ levels. In these figures, since the 

values for the client and the contractor are very close to each other, only the smaller of the 

weighted bargaining values for the client and the contractor are displayed.  

                                           ---------------------------------------- 

Place Figure 5(a)–(c) about here 
                                                        --------------------------------------- 

 

Here, it is observed that there is no correlation between β and the smaller weighted 

bargaining value. The main reason for this is the direct effect of β on payments at each 

payment time. Since variations of the payments in-between payment periods have significant 

effect on the adopted schedule, β exercises a major effect on the final schedule. Hence, the 

contractor can not always maintain his advantage on increased β. This result can be observed 

from Table 6, which shows the player whose weighted bargaining value corresponds to the 

bargaining objective function value at each β level. Since the model has a max min objective 

function, that particular player is the one who is less satisfied due to the inferior weighted 

bargaining value. 

-------------------------------- 
Place Table 6 about here 

                                                            --------------------------------- 
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From Table 6, it is observed that there is no specific pattern. This results from the 

client’s move for offsetting the contractor’s profit margin advantage by causing major 

changes in the overall schedule. That is, β is not the single determinant, and other factors 

influence the outcome regarding the minimum of the weighted bargaining values. 

Contrary to that, a direct relation is detected between the profit margin β and the 

objective function values of the client fA(x) and the contractor fB(x). Namely, as β increases, 

the objective function value of the client decreases and that of the contractor increases as 

expected. For the problem set, where γ is taken as 0.100, which is fairly high when compared 

to other tests, the initial values for both of the players at β = 0.10 are relatively close to each 

other, which indicates a trade-off between β and γ. The details of the progression of the 

objective function values for both players are shown in Table 7 displaying the average values 

over 30 test problems and for γ=0.010 in Figure 6. 

-------------------------------- 
Place Table 7 about here 

                                                --------------------------------- 

-------------------------------- 
Place Figure 6 about here 

                                                            --------------------------------- 

 

6.2 Sensitivity Analysis for the Discount Rate  

In the bargaining model, discount rate γ is used in NPV calculations within the 

objective functions of the players as given in Equations (6) and (7). Discount rate γ may affect 

the schedule preferences of the players due to different payment amounts at each payment 

point, and due to the fact that the contractor pays activity costs in advance although s/he 

receives payments only at upcoming payment points or activity completion. This shows that 

the level of discount rate γ affects the contractor in two aspects, whereas it affects the client 

only in one. An increase in γ is a source of an increase in the objective function value for the 

client and just the opposite for the contractor. The details are given in Table 8 displaying the 

average values over 30 test problems and for β=0.25 in Figure 7. 

---------------------------------- 
Place Table 8 about here 

                                                           ---------------------------------- 

-------------------------------- 
Place Figure 7 about here 

                                                            --------------------------------- 
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The schedule manipulations due to changes in the discount rate γ have more effect on 

the contractor’s weighted bargaining value than they have on the client’s. Test results are 

presented in Figures 8 (a)-(c), where only the smaller of the weighted bargaining values for 

the client and the contractor are displayed, since the values for the client and contractor are 

very close to each other. Here, it is clearly seen that increasing γ leads to increased weighted 

bargaining values. Consequently, the client and the contractor move to a position that is more 

desirable for them. The main reason for this is that as γ increases, the objective function value 

fB for the contractor decreases due to decreased net realization. This leads the bargaining 

model to introduce schedule improvements to decrease the effects of γ from which the 

contractor benefits at the expense of the client’s benefit. Although these changes still result in 

inferior fB value for the contractor when compared with the results of cases with lower γ, the 

percentage increase in individual objective function value within the bargaining model itself 

is higher for both players, since the benefit of the client is coupled with schedule changes that 

the contractor benefits from. 

---------------------------------------- 
Place Figure 8 (a)-(c) about here 

                                                       ---------------------------------------- 

6.3 Sensitivity Analysis for Bargaining Power Weights  

Within the model the bargaining power weight for each player is applied in the final 

step of the bargaining objective function evaluation in order to set the exact realized value for 

the players. The bargaining objective function is presented below again for convenience. 
 

Max min 





















−

−









−

−
)()(

'''

')(
,

'''

')(
Bw

BB

BB

Aw

AA

AA

ff

fxf

ff

fxf
 

Recall that in these tests, γ=0.05 and β=0.1, and the bargaining power weights of the 

client and the contractor add up to 1. The summary of the bargaining power weight tests 

conducted are given in Table 9 displaying the average values over 30 test problems.  

-------------------------------- 
Place Table 9 about here 

                                                            --------------------------------- 

The analysis of the bargaining values in Table 9 leads to the observation that, when the 

gap between the bargaining powers of the parties increases, the realized weighted bargaining 

values increase for both of the players. This is due to the fact that, if one of the players starts 

with a small bargaining power, his/her realized bargaining value increases considerably with 

increasing bargaining power, so that the other party tries to catch this increase by schedule 
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changes. Objective function values for the players follow a similar trend as the weighted 

bargaining values do with respect to bargaining power weight.  

Table 10 represents schedule examples at different bargaining power values. As the 

bargaining weight of the client increases, the contractor tries to compensate by changing the 

schedule.  The contractor accomplishes this by adjusting the modes and the idle times.  As can 

be observed in Table 10, on the average, the duration of the activities increase and the idle 

times decrease as the bargaining weight moves from the contractor to the client. This is a 

behaviour we expect to be valid in general. However, the changes in the duration and idle 

times for individual activities are not necessarily monotonic. For example, the mode for 

activity 13 is increased first, then decreased and later increased again. The delay time for 

activity 4, for example, is first decreased, then increased, and finally decreased again.  

--------------------------------- 
Place Table 10 about here 

            ---------------------------------   

The average weighted bargaining values over 30 test problems for each player at 

different bargaining power weight couples are displayed for varying discount rates γ in Table 

11 and in Figure 9 for γ=0.02. In Figure 9, only the smaller of the weighted bargaining values 

for the client and the contractor are displayed, since the values for the client and contractor are 

very close to each other. Here, one observes that, when the gap between bargaining power 

weights of the parties increases, the realized weighted bargaining values increase for both of 

the players. This is due to the fact that, if one of the players has a small bargaining power 

weight, his/her realized weighted bargaining value increases considerably, so that the other 

party tries to catch this increase by schedule changes.  On the other hand, as discount rate γ 

increases, it is observed that both the client and the contractor become more content with 

increasing weighted bargaining values for all bargaining power weight couples. Although the 

change in γ doesn’t change the pattern of increasing weighted bargaining values as the gap 

between bargaining power weights of the parties’ increases, it is observed that the percentage 

change on the weighted bargaining values is decreased as γ increases. In other words, at high 

discount rate γ, there is less room for bargaining value improvements introduced by schedule 

changes when the gap between bargaining power weights of the parties is high. 

-------------------------------- 
Place Table 11 about here 

                                                            --------------------------------- 

-------------------------------- 
Place Figure 9 about here 

                                                            --------------------------------- 



 21 

 

The progression of bargaining values of the players is illustrated in Figure 10, from 

which the direct relationship between the bargaining power weights and the bargaining values 

can be observed. 

---------------------------------- 
Place Figure 10 about here 

                                                           ---------------------------------- 

Objective function values for the players follow a similar trend as the weighted 

bargaining values do with respect to bargaining power weight. In Figure 11, one clearly 

observes this trend.  

-------------------------------- 
Place Figure 11 about here 

                                                            --------------------------------- 

 

Increasing the profit margin, the discount rate, or the bargaining power weight, with 

everything else staying constant, leads to six key trends in the objective function values of the 

players, which are summarized in Table 12. 

 --------------------------------- 
Place Table 12 about here 

                                                            --------------------------------- 

 

7. AN EXTENSION OF THE BARGAINING MODEL 

 

The bargaining model formulation is enriched by introducing a benefit term into the 

objective function of the client as a function of completion earlier than the predetermined 

deadline. In this extended bargaining model, the client receives a constant amount of benefit 

per each time period that the project is completed earlier than the deadline. No cost, on the 

other hand, is imposed on the client through the contractor. In a sense, this model proposes an 

additional benefit generated in the system regardless of any value trade off. To obtain the 

extended bargaining model, the base mathematical model is modified by replacing the client’s 

objective function value with the following function: 

fA(x) =  







− ∑

=

N

n

TT nn
P

1

*α + (D- ∑ ∑
= =

||

||

||

1
||*

J

J

jL

Et

M

m

tmJxt )*σ                                                      (18)       

where σ is the client’s benefit per time period resulting from early completion. 
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One of the more important impacts of this extension is on the adopted schedule. To 

demonstrate this, the example problem given earlier in Figure 4 and Table 5 is solved for 

different values of σ and the schedules obtained are displayed in Table 13. It is observed that 

as σ increases, the adopted schedule changes in a way that the project tends to finish earlier by 

choosing modes with higher cost and less duration. Similar analysis is carried for the 

remaining test problems. In all those tests, the schedule moves reported above are observed to 

be typical for all tested instances. The key conclusion reached as a result of the test problem 

solutions is that both players gain out of the benefit resulting from early completion. This 

leads to increases in the bargaining objective function value and the individual objective 

function values for both players due to the structure of the bargaining objective.  

 

--------------------------------- 
Place Table 13 about here 

                                                            --------------------------------- 

 

8. CONCLUSION 

In this paper, we have investigated the client-contractor bargaining problem in the 

context of multi-mode resource constrained project scheduling. The bargaining objective is to 

maximize the bargaining objective function comprised of the minimum of individual NPV 

maximizing objectives of both the client and the contractor.  

In this context, we have proposed two main solution methods, namely SA and GA 

approaches. Based on comparisons with the optimal results obtained by using a commercial 

solver (GAMS 20.0), one can conclude that GA has provided better results than SA. 

Sensitivity analyses results show that profit margin increase doesn’t cause significant 

changes in the bargaining objective function value, but it has effect on objective function 

value of the players. That is, even if one of the parameters changes in favor of a player, the 

bargaining mechanism offsets this advantage with schedule changes. For example, even if 

increasing the profit margin seems to be increasing the objective function value of the 

contractor, when the bargain ends, the contractor does not necessarily end up with an 

advantageous position.  

As expected, the objective function value of the contractor increases with increasing 

profit margin, whereas the objective function value of the client decreases. The tests we have 

conducted on the discount rate show that, although an increase in the bargaining objective 

function is observed with increasing discount rate, this is not a monotonic increase. However, 
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variation in the discount rate has significant impact on the objective functions of the players. 

The objective function value of the contractor decreases with increasing profit margin, 

whereas the objective function value of the client increases. Weight tests implemented show 

that bargaining power weights have significant impact on the solution, not only on the 

weighted bargaining values of the players but also on the objective function values of the 

players.  

During the problem solving stage, which appears as the bargaining stage, the variables 

interact with each other. For example, an increase in the profit margin has an impact in the 

same direction as an increase in the bargaining power weight of the contractor as would be 

expected  or vice versa. There are various means of bargaining. The bargaining process is not 

only affected by the bargaining power weights. An increase in the profit rate can be tried to be 

counterbalanced by schedule adjustments. Likewise, if the discount rates are increasing due to 

market dynamics, the contractor may try to compensate for its loss by offering an increase on 

profit margin, which has a positive effect on the objective function value of the contractor.  

An extension to the base model has also been investigated by introducing a benefit 

term into the objective function of the client as a function of completion earlier than the 

predetermined deadline. The key conclusion we have reached based on these benefit tests is 

that both players gain out of the benefit resulting from early completion. This leads to 

increases in the bargaining objective function value and the individual objective function 

values for both players due to the structure of the bargaining objective.  

Although various analyses on the parameters have been conducted, still a series of 

combinations is open for research through the proposed model. The effect of bargaining 

power weights on different payment models may be an important source of analysis for 

further investigation of the problem. The influence of the bargaining power weights and the 

types of payment model on the model outcomes can be investigated. Other payment models 

not considered here may also be investigated using various solution procedures. A further 

study can be the investigation on a benefit sharing model between the client and the contractor 

for the increased benefit due to early completion. For example, a model, which will study the 

trade off between the client’s benefit and the contractor’s bonus for early completion, may 

produce further interesting results. 
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Activity List 1 3 2 5 6 4 9 10 8 7 13 11 12 14 
               
Mode List 1 2 2 3 1 2 3 1 2 3 1 2 3 1 
               
Idle Time List 1 4 5 3 1 3 0 4 1 2 3 0 1 1 
               
Duration 0 3 2 4 2 4 2 1 2 3 2 2 3 4 
               
Starting Time 1 5 6 11 9 4 15 19 16 13 23 20 21 26 
               
Finishing Time 1 8 8 15 11 8 17 20 18 16 25 22 24 30 

 

Figure 1.  Solution representation (chromosome) for a 14-activity problem 
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Figure 2. GA pool management scheme 
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Figure 3. Bit mutation flow chart 
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Figure 4. Project network for the example problem  
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Figure 5 (a). Weighted bargaining values at different profit margin levels (γ =0.005) 
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Figure 5 (b). Weighted bargaining values at different profit margin levels (γ =0.010) 
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Figure 5 (c). Weighted bargaining values at different profit margin levels (γ =0.100) 
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Figure 6. Objective function values at different profit margin levels (γ=0.010) 
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Figure 7. Objective function values at different discount rate levels (β=0.25) 
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Figure 8 (a). Weighted bargaining values at different discount rate levels (β=0.10) 
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Figure 8 (b). Weighted bargaining values at different discount rate levels (β=0.25) 
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Figure 8 (c). Weighted bargaining values at different discount rate levels (β=0.50) 
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Figure 9.  Weighted bargaining values vs. bargaining power weights (γ=0.020) 
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Figure 10. Bargaining values of the players vs. bargaining power weights 
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Figure 11. Objective function values of the players vs. bargaining power weights 

 

 

Table 1. Percentage of feasibility hits for each problem set 

  14-activity problems 20-activity problems 32-activity problems 

Number of mode lists generated for 
each activity list 60 100 140 

Number of idle time lists generated 
for each activity list 60 100 140 

Percentage of feasible solution hits 16% 10% 7% 
 

 

 

Table 2. Iteration counts for each problem set 

  14-activity problems 20-activity problems 32-activity problems 
maxIter 1000 2000 5000 

 

 

Table 3. Average percent deviations from the optimal solutions and t-test results  

 % deviations 

 SA GA 
T-Test (p=0.05) 

 
14 activity 
network 

20 activity 
network 

32 activity 
network 

14 activity 
network 

20 activity 
network 

32 activity 
network 

14 activity 
network 

20 activity 
network 

32 activity 
network 

Progress 
payments at 10 
time periods 

6% 10% 16% 5% 9% 15% S S S 

Progress 
payments at 5 time 
periods 

4% 8% 14% 3% 7% 13% S S S 

Payments at 
activity completion 

1% 6% 12% 1% 5% 12% IS IS IS 

S: Superiority of GA results over SA results is statistically significant  

IS: Superiority of GA results over SA results is statistically insignificant 
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Table 4. Average CPU times  

 CPU times for SA (seconds) CPU times for GA (seconds) 

14-activity problems 63 74 
20-activity problems 239 265 
32-activity problems 529 564 

 

 

 

Table 5. Mode structure of the activities in the example problem 
 

  activities 

    2 3 4 5 6 7 8 9 10 11 12 13 

duration 3 2 3 5 3 3 4 1 5 2 4 3 

cost 130 200 440 110 560 260 98 390 400 250 340 189 

resource 1 10 7 3 6 1 8 2 2 3 0 0 9 
mode 1 

resource 2 0 0 0 0 0 0 0 0 0 10 1 0 

duration 8 6 3 6 3 5 5 4 8 7 8 3 

cost 80 90 210 78 460 179 45 289 320 147 218 103 

resource 1 9 0 0 4 0 7 0 0 0 0 9 0 
mode 2 

resource 2 0 8 8 0 7 0 7 7 8 9 0 6 

duration 10 10 5 8 4 9 8 9 10 10 9 10 

cost 67 55 100 34 290 98 23 160 170 110 178 65 

resource 1 7 0 0 0 0 0 1 1 0 0 4 0 
mode 3 

resource 2 0 6 4 6 6 10 0 0 7 8 0 4 

 

 

Table 6. Player with the worse weighted bargaining value 

Discount rate γ=0.01 β =0.1 β =0.15 β =0,2 β =0.25 β =0.30 β =0.35 β =0.40 

Minimum objective 
function belongs to: 

Contractor Client Client Client Contractor Client Client 

 

 

Table 7. Objective function values at different profit margin levels 

Objective Function Values β=0.10 β=0.25 β=0.50 

client -2650 -3075 -4175 
γ=0.005 

contractor 286 591 1096 

client -2339 -2756 -3516 
γ=0.010 

contractor 229 497 951 

client -228 -346 -542 
γ=0.100 

contractor -58 53 178 
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Table 8. Objective function values at different discount rate levels 

Objective Function Value γ=0.005 γ=0.01 γ=0.02 γ=0.05 γ=0.10 

client -2650 -2339 -1846 -950 -228 
β=0.10 

contractor 286 229 149 31 -58 

client -3075 -2756 -2233 -1413 -346 
β =0.25 

contractor 591 497 341 203 53 

client -4175 -3516 -2802 -1720 -542 
β =0.50 

contractor 1096 951 730 387 178 

 

 

 

Table 9. Summary of the bargaining power weighted tests (γ=0.05, β=0.10) 

      

Bargaining 
Power  Weight 

Value 
Bargaining 

Value 

Weighted 
Bargaining 

Value 

 Objective  
Function Value 

fA, fB 

client w(A) 0.1 0.186 0.845 -1055 w1 
contractor w(B) 0.9 0.827 0.843 50 
client w(A) 0.2 0.313 0.793 -1015 w2 
contractor w(B) 0.8 0.765 0.807 46 
client w(A) 0.3 0.376 0.746 -995 w3 
contractor w(B) 0.7 0.663 0.750 40 
client w(A) 0.4 0.423 0.709 -980 w4 
contractor w(B) 0.6 0.559 0.706 34 
client w(A) 0.5 0.491 0.701 -958 w5 
contractor w(B) 0.5 0.496 0.704 30 
client w(A) 0.6 0.559 0.705 -937 w6 
contractor w(B) 0.4 0.437 0.718 26 
client w(A) 0.7 0.644 0.735 -910 w7 
contractor w(B) 0.3 0.375 0.745 23 
client w(A) 0.8 0.761 0.804 -873 w8 
contractor w(B) 0.2 0.299 0.785 18 
client w(A) 0.9 0.839 0.854 -849 

w9 
contractor w(B) 0.1 0.199 0.851 12 
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Table 10. Schedules at different bargaining power values 

activity list 1 2 3 6 4 7 5 9 8 10 13 11 12 14 

mode list 1 1 1 1 1 1 1 1 1 2 1 2 1 1 w1 

idle time list 0 2 0 4 3 2 0 0 3 1 2 0 2 0 

activity list 1 2 3 6 4 5 7 9 8 10 13 11 12 14 

mode list 1 1 1 1 1 1 1 1 1 2 2 2 1 1 w2 

idle time list 0 2 0 4 3 2 0 0 3 1 0 0 2 0 

activity list 1 2 3 6 4 5 7 8 9 10 13 11 12 14 

mode list 1 1 1 1 1 2 1 1 1 2 2 2 1 1 w3 

idle time list 0 2 0 4 3 1 0 0 3 1 0 0 2 0 

activity list 1 3 2 5 6 7 4 8 9 10 13 11 12 14 

mode list 1 1 1 2 1 2 3 1 1 1 2 1 1 1 w4 

idle time list 0 0 2 1 4 0 0 0 3 2 0 0 2 0 

activity list 1 2 3 6 5 7 4 8 10 9 11 12 13 14 

mode list 1 1 1 1 2 1 3 1 1 2 2 1 2 1 w5 

idle time list 0 2 0 4 1 0 0 0 2 1 0 2 0 0 

activity list 1 3 2 4 6 5 7 9 8 10 11 12 13 14 

mode list 1 1 1 3 3 1 1 2 2 1 1 1 1 1 w6 

idle time list 0 0 2 0 1 2 0 1 0 1 2 1 1 0 

activity list 1 4 2 3 6 5 7 9 8 10 11 13 12 14 

mode list 1 1 1 3 1 3 2 1 1 3 1 1 1 1 w7 

idle time list 0 3 1 0 4 0 0 3 1 0 1 1 0 0 

activity list 1 2 3 6 5 4 10 7 8 9 11 13 12 14 

mode list 1 1 2 3 1 3 1 2 3 2 2 2 3 1 w8 

idle time list 0 1 1 1 2 0 1 0 0 1 0 0 0 0 

activity list 1 3 2 6 5 4 10 7 11 9 8 13 12 14 

mode list 1 2 2 3 1 3 1 2 3 2 3 2 3 1 w9 

idle time list 0 0 0 1 2 0 1 0 0 1 0 0 0 0 
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Table 11. Weighted bargaining values vs. bargaining power weights  

Weighted Bargaining Values w1 w2 w3 w4 w5 w6 w7 w8 w9 

client 0.810 0.738 0.672 0.619 0.583 0.616 0.672 0.734 0.819 
γ=0.005 

contractor 0.811 0.720 0.678 0.608 0.578 0.620 0.667 0.726 0.824 

client 0.817 0.743 0.682 0.631 0.606 0.634 0.679 0.754 0.840 
γ =0.010 

contractor 0.826 0.752 0.694 0.626 0.611 0.632 0.682 0.734 0.829 

client 0.831 0.759 0.705 0.659 0.648 0.677 0.716 0.755 0.842 
γ =0.020 

contractor 0.838 0.758 0.704 0.668 0.645 0.660 0.705 0.751 0.838 

client 0.845 0.793 0.746 0.709 0.701 0.705 0.735 0.804 0.854 
γ=0.050 

contractor 0.843 0.807 0.750 0.706 0.704 0.718 0.745 0.785 0.851 

client 0.948 0.910 0.880 0.852 0.836 0.860 0.883 0.912 0.954 
γ =0.100 

contractor 0.957 0.904 0.881 0.847 0.839 0.852 0.880 0.917 0.953 

 

 

Table 12. Direction of change of the objective function value with changing parameters 

  
profit margin 

(β) 
increases 

discount rate 
(γ) increases 

bargaining 
power weight 
w(A) increases 

bargaining 
power weight 
w(B) increases 

objective function 
value of the client 

(fA(x))   

    

objective function 
value of the 

contractor (fB(x))   

    

 

 

Table 13. Schedules for different benefit amounts 

 Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Finishing Time 0 14 15 24 20 20 20 24 25 25 30 30 30 30 
σ = 0 

Mode 3 3 1 3 1 3 1 2 1 1 1 1 2 3 

Finishing Time 0 10 5 10 15 14 19 20 20 24 24 24 24 24 
σ = 25 

Mode 3 3 1 3 1 3 1 2 1 1 1 1 2 2 

Finishing Time 0 5 10 19 15 15 19 20 20 20 24 24 24 24 
σ = 50 

Mode 3 1 1 3 1 3 1 2 1 1 1 1 2 2 

Finishing Time 0 3 6 14 11 10 15 16 16 16 20 20 20 20 
σ = 100 

Mode 3 1 1 2 1 3 1 2 1 1 1 1 1 1 

Finishing Time 0 3 6 5 11 10 15 16 16 16 20 20 20 20 
σ = 200 

Mode 3 1 1 2 2 2 2 2 1 1 1 1 1 1 

Finishing Time 0 3 6 15 11 10 15 16 16 16 19 20 20 20 
σ = 500 

Mode 3 1 1 1 1 1 1 2 1 1 1 1 1 1 

 

 


