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Abstract

In a recent paper by Azaiez and Bier [Optimal resource allocation for security

in reliability systems, European Journal of Operational Research, 181, (2007), 773-

786], the problem of determining resource allocation in series-parallel systems (SPSs)

is considered. The results for this problem are based on the results for the least-

expected cost failure-state diagnosis problem. In this note, it is demonstrated that

the results for the least-expected cost failure-state diagnosis problem for SPSs in

Azaiez and Bier [2007] are incorrect. In addition relevant results that were not cited

in the paper are summarized.

Key words: Sequential testing, series-parallel systems.

1 Introduction

In Azaiez and Bier [2007], the problem of determining an optimal allocation

of resources to the individual components of an SPS for security under a

limited budget is considered. In order to develop a solution methodology for
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this problem, the authors use certain results for the least-expected cost failure-

state diagnosis problem for SPSs. In this paper we will present instances of

the least-expected cost failure-state diagnosis problem for which the algorithm

proposed in Azaiez and Bier [2007] produce non-optimal solutions. In fact we

will demonstrate that the algorithm proposed in Azaiez and Bier [2007] can

produce arbitrarily bad solutions for certain instances. In addition, we will

summarize the results from the literature that were not cited by Azaiez and

Bier [2007] related to the least-expected cost diagnosis of SPSs.

Let us first recall the definition of an SPS. The most basic SPSs are the simple

series (parallel) systems where the system functions when all (at least one)

components function. More complicated SPSs can be obtained by a series (or

parallel) connection of other SPSs. The least-cost diagnosis problem for an SPS

requires a strategy to find whether the SPS is functioning or not by testing the

individual components of the SPS, where ci is the cost of testing component

i and pi is the probability that component i functions. It is assumed that the

components fail or function independent of each other.

It is easy to show that it is optimal to test the components of a series (parallel)

system in increasing order of ci/(1 − pi) (ci/pi) by an interchange argument.

This result has been published in various papers, the earliest to our knowledge

being Mitten [1960]. We shall say that the simple series (parallel) system has

depth one. The depth of any other SPS is 1+max{the depth of any maximal

subsystem}. For instance the SPS in figure 1 has depth 3 since it consists

of two maximal subsystems.These two maximal subsystems are connected in

series with each other. One of them consists of component 1, with depth 1

and the other consists of components 2, 3 and 4 with depth 2. The latter

maximal subsystem itself consists of two maximal subsystems of depth 1. One
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of them is the series system consisting of component 2 and the other is the

series system consisting of components 3 and 4.

The following lemma and theorem are mentioned in section 4.1 of Azaiez

and Bier [2007] and later used in section 5 for the main results of the paper.

(In Azaiez and Bier [2007] these are referred to as Lemma 4.1 and Theorem

4.1.) Specifically, these results are used in section 5.3 for general combined

series/parallel systems.

Lemma 1 Consider any ordered series or parallel subsystem S = (S1, ..., Sn).

Then in order to minimize the expected testing cost, testing of any basic con-

stituent Si must be performed to completion before moving on to testing of

another basic constituent with a subscript higher than i.

Theorem 1 Consider a combined series/parallel system S, ordered according

to the initialization algorithm. Then, the optimal testing policy that minimizes

the expected testing cost is to follow the orderings specified in the initialization

algorithm. Moreover, if a basic constituent Si
j of subsystem Sj = (S1

j , ..., S
n
j )

is to be tested, then it should be tested to completion before moving on to

testing of basic constituent Si+1
j of that subsystem (or testing of some other

subsystem), if needed. In this case, the optimal expected testing cost of the

system will equal C(S), as computed in the above algorithm.

In Azaiez and Bier [2007], Lemma 1 is used to prove Theorem 1. The counter

example presented below shows that Lemma 1 and Theorem 1 are incorrect as

stated. Obviously, for some SPSs they may hold. In particular, for SPSs with

depth 1 or 2, they are correct (Ben-Dov [1981], Boros and Ünlüyurt [2000]).

In addition, the strategy produced by Initialization could be a good heuristic

algorithm for more general SPSs. As mentioned before, these results are for
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general combined series/parallel systems. In the paper, there are also results

for simple series and simple parallel systems that are correct.

The Initialization algorithm mentioned above essentially does the following.

Starting at the deepest level of the SPS where we have simple series (or par-

allel) systems, these simple series (parallel) systems are replaced with a single

component whose testing cost is the optimal testing cost of the simple series

(parallel) system and whose probability of functioning (failing) is the product

of the functioning (failing) probabilities of the individual components. This

operation is continued until a simple series (parallel) system is obtained. The

theorem essentially states that it is optimal to test whole system by testing

the maximal subsystems one by one to completion in the optimal order for

the final simple series (parallel) system.

For instance, for the SPS in figure 1, let us assume that c = (5.0, 1.8, 1.0, 6.0)

and p = (0.5, 0.5, 0.5, 0.5) where ci is the cost of testing component i and

pi is the probability that component i functions. Initialization algorithm first

replaces the simple series system consisting of components 3 and 4 by a single

component say component 34 whose testing cost is 1.0 + 0.5 × 6 = 4.0, and

whose probability of functioning is 0.5 × 0.5 = 0.25. Then it replaces the

simple parallel system consisting of components 2 and 34, by a component

say 234, with testing cost 1.8+0.5×4.0 = 3.8 and whose probability of failing

is (1− 0.5)× (1− 0.25) = 0.375. The resulting SPS is a simple series system

that consists of components 1 and 234. The ci/(1− pi) ratio is 5/0.5 = 10 for

component 1 and the ratio is 3.8/0.375 = 10.13 for component 234. So the

total cost of inspecting these in the optimal order gives 5 + 0.5 × 3.8 = 6.9

and the testing sequence is (1, 2, 3, 4).

4



In the next section, we will provide a better strategy than this one for this

particular example. In this better strategy, the maximal subsystems are not

tested to their entirety. Hence Lemma 1 and Theorem 1 are incorrect as stated.

In fact, we will provide a series of examples such that applying the Initializa-

tion algorithm misses the optimal solution by a factor k for any given k where

the number of individual components is a polynomial function of k. Finally in

section 3 we will conclude by a brief discussion.

2 Counter Examples

2.1 Counter example 1

Consider the SPS shown in figure 1 with c = (5.0, 1.8, 1.0, 6.0) and p =

(0.5, 0.5, 0.5, 0.5) where ci is the cost of testing component i and pi is the prob-

ability that component i functions. If the Initialization algorithm of Azaiez

and Bier [2007] is applied to this problem, the claimed permutation turns

our to be (1,2,3,4) and the expected cost of this strategy turns out to be

6.9 as computed in the previous section. Let us consider the following strat-

egy that starts by testing component 2 first. If component 2 functions, then

component 1 is tested. If component 2 fails, then the resulting system is a

simple series system and the optimal ordering can be obtained by check-

ing the ci/(1 − pi) ratios as (3,1,4). The expected cost of this strategy is

c2 + p2c1 + (1− p2)(c3 + p3c1 + p3p1c4) = 6.8. Actually, it can be shown that

this strategy is the only optimal strategy.

So the strategy produced by Initialization is not optimal. This example is

presented in Boros and Ünlüyurt [2000].
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Fig. 1. SPS for the counter example

Let us say that the testing strategies that inspect relevant components in a

fixed order are called permutation strategies. A relevant component is one

whose functionality affects the functionality of the whole system, given the

states of the already inspected components. It is clear that the strategies

produced by Initialization are permutation strategies. In general, strategies

can naturally be described by binary trees where the node corresponds to

the component that will be tested and the two branches correspond to the

failing and functioning states of the component. In this respect, permutation

strategies are very easy to represent. One just needs to keep a permutation

of the components rather than a binary tree. So it may be interesting to find

the best permutation strategy. The strategy produced by Initialization for

the counter example was (1,2,3,4). When we examine the better strategy, we

observe that it is also a permutation strategy corresponding to (2,1,3,4). So

Initialization does not always produce the best permutation strategy either.

Let us note that the better strategy starts by testing the maximal subsys-

tem consisting of components (2, 3, 4). If component 2 fails, then the strategy

switches to the maximal subsystem consisting of only component 1. So it

does not test a maximal subsystem to its entirety as stated in Lemma 1 and

Theorem 1.

In fact, in Boros and Ünlüyurt [2000], examples demonstrating the following
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Fig. 2. SPS for the second counter example

are also provided.

a) Even when all components are identical in terms of testing costs and all

probabilities are 0.5, one can construct an example SPS for which the Ini-

tialization algorithm produces a non-optimal testing strategy.

b) One can construct an instance of an SPS where no permutation strategy is

optimal.

2.2 Counter example 2

In this section, we show that it is possible to construct an SPS for which the

algorithm proposed in Azaiez and Bier [2007] misses the optimal solution value

by a factor of k for any given k, Ünlüyurt [1999].

Let us consider the SPS in figure 2. We can make the following observations

regarding this SPS.

a) There exists a p such that when pi = p for all components, the probability

that the whole system functions is also p and 0 < p < 1. (One possible such

value of p is 3−√5
2

, found using MAPLE. This value is one solution of the
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equation [1− (1− p)2]{1− (1− p)[1− (1− (1− p)2)2]}.)
b) There exists an ε such that when the costs are defines as c1 = 5, c2 = ε,

c3 = 1, c4 = ε, c5 = 1, c6 = ε and c7 = 6 and the probabilities are defined as

in (a), Initialization does not produce an optimal testing strategy. One can

achieve this by choosing an ε such that the second subsystem is inspected

first. For instance ε = 0.1 satisfies this condition. In that case component 3

has to be inspected first. If it is functioning, one ends up with a non-optimal

strategy for the residual system. It is easy to see that an optimal strategy

should switch to the first subsystem that consists of components 1 and 2.

c) In this SPS, every individual component belongs to a parallel subsystem.

Let C be the expected cost of the strategy induced by the algorithm Initial-

ization and let Cbetter be the cost of the better strategy presented in property

(b) above where Cbetter = (1− σ)C for some 0 < σ < 1.

Let us now consider another SPS that is obtained by replacing each individual

component of the original SPS by a copy of the original SPS, where the costs

of individual components are multiplied by ci/C where ci is the testing cost of

the component that is being replaced and C is the cost of the strategy induced

by the algorithm Initialization.

First of all, in this new SPS, each copy of the original SPS is a maximal

subsystem due to property (c) and since the original system is globally series.

This means that the ratios will be calculated for each copy of the original SPS.

Let us now consider one such copy, say the one that replaces component i.

Due to property (a), the probability that this subsystem works is p. Moreover,

the expected cost of the strategy induced by Initialization will be ci because

of the fact that all costs are multiplied by ci/C. In turn, this means that if
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Initialization is applied to this SPS, the total expected cost will still be C.

On the other hand, if we apply the better algorithm to each copy of the original

SPS and replace the subsystems by a single component whose expected cost

and probabilities are calculated correspondingly, we obtain the original SPS,

where each component has cost (1−σ)ci. If we apply the same strategy again

the total expected cost would be (1− σ)2C.

If we apply this replacing operation iteratively α times, then the strategy

induced by Initialization will have cost C and the other strategy (that tests

each copy by the better algorithm) will have cost (1−σ)αC. In order to create

an instance for which the strategy induced by Initialization misses the optimal

solution by a factor of k, one needs to iterate this replacing operation for

α = −logk
log1−σ

times. The resulting SPS will have polynomially many components

in k.

3 Conclusion

In the previous section we showed that, Lemma 4.1 and Theorem 4.1 of Azaiez

and Bier [2007] are incorrect. In fact, we provided an instance where it can be

arbitrarily bad. On the other hand, it is shown in Boros and Ünlüyurt [2000]

that the testing strategy induced by Initialization is optimal for 2-level deep

general SPSs and 3-level deep SPSs that consists of identical components

(ci = c and pi = p). This is no longer true if we have 4-level deep SPSs

consisting of identical components. As a matter of fact, one could improve

the Initialization algorithm by recomputing all ratios after determining the

next component to test. Even this improvement does not make the algorithm
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optimal as can be seen in case of the SPS in figure 1. The least-expected cost

diagnosis problem has been studied for systems other than SPSs. A review of

the results and applications can be found in Ünlüyurt [2004].
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