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Abstract 
The paper deals with a linear belt-driven 
servomechanism. It proposes new position tracking 
control algorithm that has been designed by Sliding Mode 
Control theory. The selected sliding manifold was 
extended by non-rigid modes of the elastic servodrive. 
However, the proposed control scheme retains simple and 
practical for implementation. The experiments presented 
in the paper show that it effectively suppresses vibrations 
and furthermore extends the closed-loop bandwidth. 
 
 
1. Introduction 
 

The use of timing belts in drive trains is attractive 
because of their high speed, high efficiency, long travel 
lengths and low-cost [9]. On the other hand, they yield 
higher transmission error since they feature elasticity, 
compliance and often more friction then screw ball drives 
[12]. Consequently, belt-drives suffer from lower 
repeatability and accuracy; moreover, the belt-drives 
introduce more resonance frequencies, which can cause 
vibrations if not suppressed.  

A conventional control approach often fails if 
vibrations appear in a servodrive operation [16]. 
Therefore, an advanced control scheme must be applied in 
order to achieve accurate position tracking performance. 
Vibration analysis is a good foundation for improved 
design method [23]. Although a control signal filtering 
method may improve performance [4], closed-loop 
stability is better with the use of state observer [2], [17]. 
Hori has presented advanced methods that deal with 
torsional vibrations in elastical servodrives [10]. 
Disturbance observer [11], [22], acceleration feedback 
[5], [20] or joint torque feedback [13], [18] may be also 
applied to suppress vibrations. Although the research of 
the flexible joint/link control is widely present in the 
robotics related works, the methods often do not address 
the load side position control problem, which is a key 
issue in position tracking of a linear servodrive.  

Plant parameter variations, uncertain dynamics, and 
disturbances, are issues that have to be addressed to 

guarantee robust system stability and high performance of 
a linear belt-driven servomechanism. Some authors have 
involved Sliding Mode Control (SMC) theory in order to 
improve robustness of an elastic system [6], [14], [15]. 
Hace [8] and later Šabanovič [19] addressed a linear 
servomechanism with a timing belt. It has been shown that 
vibration-free performance can be achieved by 
introduction of belt-stretch control. In [8] the author has 
proposed the advanced motion control law with the inner-
loop controller for vibration suppression and robust 
position control scheme in the outer-loop. A 2-stage 
design has been applied in the development of the 
vibration-free position controller. The SMC design in the 
outer loop has involved the position control objective, and 
a PD-type belt-stretch control scheme in the inner loop 
has been added to extend closed-loop bandwidth.  

In this paper, a new robust position control algorithm 
for the linear belt-driven servomechanism is presented. 
The model of a linear beltdrive is briefly described in the 
2nd section. The 3rd section presents derivation of the 
proposed algorithm. Experimental results are shown in the 
4th section, which follows with conclusions in the 5th 
section. 
 
2. Mathematical Model 
 

A typical linear belt-drive is presented by Fig.1. It 
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Fig.1. Linear belt-driven servomechanism 



consists of a motor, a speed reducer and a belt drive. The 
belt drive converts rotation of the motor into linear motion 
of the cart. The cart represents the load side of the system. 
The belt-drive (Fig. 2) consists of a timing belt and two 
pulleys: a driving pulley and a driven pulley that stretch 
the belt. It represents a complex non-linear distributed 
parameter system. The mathematical model of the belt-
driven servomechanism can be obtained using modal 
analysis. Let assume that the motor can ensure a high-
dynamic torque response with a negligible time delay, link 
between motor shaft and the driving pulley is totally rigid, 
and no backlash is present in the system. 

Furthermore, let linear mass-less spring characterizes 
elasticity of the belt in the multi-mass system with 
concentrated parameters. Friction present in the motor and 
pulley bearings, the speed reducer, the cart guidance is 
considered as an unknown disturbance. Then we can 
obtain a sixth order mathematical model (1), where: 
 

1J , 2J  the inertia moment of the driving and the 
driven pulley, respectively 

GJ , mJ  the inertia moment of the speed reducer 
and the motor, respectively  

cM  the mass of the cart 
G  the speed reducer ratio 
R  the radius of the pulleys 
1K , 2K , 3K  the position dependant elasticity 

coefficients of the belt 
1q , 2q ,ϕ  the angular position of the driving pulley, 

driven pulley, and the motor 
x  the cart position 
τ  the torque developed by the motor 

1fτ , 2fτ  the friction torque which affects the 
pulleys 

ff  the friction force on the cart 
 

The model (1) is a highly-coupled and nonlinear higher 
order system with external disturbances which enter at the 

driving side as well as the load side. However, the pulley 
inertia is small in comparison with the motor and the load 
side inertia. Therefore, the model can be simplified and 
reduced to a two-mass system: 
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where J  denotes inertia of the motor side (approximately 
equals the motor inertia), M denotes mass of the load side 
(approximately equals the cart mass), fτ  stands for 
friction on the motor side, and w  denotes belt-stretch, 
respectively. L  denotes a transmission constant  
( /L x ϕ= ∂ ∂ ). We assume constant elasticity coefficient 
K . The mathematical model (2) can be further rearranged 
according to a vibration analysis of belt-drives [1]. One 
can express dynamics of the belt stretch w . If we assume 
unit transmission constant ( 1L = ) to simplify further 
algebra, then it yields: 

 w wf
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+ =
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where wf f ffτ τ κ= − , ( )1wK K κ= + . /J Mκ = is so 
called inertia ratio. The block scheme of the linear belt-
driven servomechanism design model is presented by 
Fig.3. 
 
3. Control Design 
 

SMC law can be used if the uncertainties in the model 
structure are bounded with known bounds [21]. Let 

( ) ( ) ( )z f z b z u d t= + + . The goal of the control design is 
to find a control input u  that restricts the motion of the 
system states z  to a selected sliding manifold. SMC 
action with discontinuities on the sliding manifold 

( , ) 0t zσ =  may enforce sliding mode if the derivative of 

Lyapunov function candidate 2 / 2v σ=  is negative 
definite. One such solution can be found if the derivative 
can have form 2v Dσ= − , 0D > . From condition 

2Dσσ σ= −  one can derive control equ u Dσ= +  that 
assures invariant system motion in sliding mode if 
disturbance ( )d t  complies to matching conditions [3]. 
Equivalent control equ  is solution of 
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Fig.2. Spring model of the belt drive 
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SMC law reduces the system order and decouples from 
disturbances. However, SMC law has some disadvantages 
related to well known chattering in the system due to the 
discontinuous bang-bang control action. This phenomena 
is undesirable in the control of mechanical systems, since 
it causes excessive control action leading to increased 
wear of the actuators and to excitation of the high order 
unmodeled dynamics. Consequently, the demanded 
performance can not be achieved, or even worse - 
mechanical parts of the servo system can be destroyed. 
This paper follows chattering-free SMC design introduced 
by Hace [7], which augments the original system with 
additional system state in order to eliminate 
discontinuities on control signal. The SMC design has 
been applied for a rigid mechanical system, the switching 
function was chosen as 

 ( )( )e v pr t x K x K xσ = − + +  (4) 

where ( )r t  and x  denote reference signal and actual 
position, respectively. This paper extends this idea to the 
non-rigid mechanism model. Let equation (5) 
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describes nominal model, where dist
wτ  and distf  involve 

unmodeled and uncertain dynamics as friction or 
parameter uncertainties and variation. In this paper is 
proposed that the sliding mode manifold is constructed by 
the following switching function: 

 ( )( ) v pr t x K x K x w wσ γ α = − + + + +   (6) 

The sliding mode manifold now involves also belt 
elasticity. The portion of belt-stretch dynamics ( w wα+ ) 
is added to the definition of the switching function. In the 
case of “stiff” belt performance ( 0w = , 0w = ) the 
switching function (6) can be reduced to (4): eσ σ= . 
However, in order to reduce vibrations due to belt 
compliance and elasticity, the control design parameters 

vK , pK , α , and γ , shall be selected in order to shape 
asymptotically stable motion dynamics on the sliding 
manifold. 

The sliding manifold is constructed so to allow driving 
position error to zero at vibration-free operation. The 

control law can be now derived following the SMC 
procedure. From condition ( ) 0eqσ τ τ= =  and by simple 
algebra application one can find the equivalent control eqτ  
from (5) and (6): 

 ( )2
02

0

( ) ( )c dist
eq J M a J w wβτ α β ω τ

ω
= + − + − +  (7) 

where 1dist dist dist
w fτ τ κγ −= +  denotes disturbance, 

( )( )c
v pa r t K x K x= − + , α and 1 /K Mβ γ −=  are the 

design parameters that shape the system motion dynamics 
when 0σ = . 0ω  is a natural frequency of the belt-drive, 
which can be computed from the equation 

2
0 (1/ 1/ )K J Mω = + . The control law can be derived 

from condition Dσ σ= −  in order to obtain control signal 
in the form equ u Dσ= + . However, the disturbance 

signal distτ  from (7) is not known in practice. Therefore, 
the equivalent control signal eqτ  is replaced with the 
estimated value êqτ . It yields: 

 2
0

ˆ ( )eq J M Dβτ τ σ
ω

= + + ⋅  (8) 

where the equivalent control signal estimation is 
determined by (9). 

 ( )2
02

0

ˆ ( ) ( )c
eq J M a J w wβτ α β ω

ω
= + − + −  (9) 

The control law (8) has two components. One is 
representing estimation of the equivalent control. Another 
is robust controller representing the disturbance 
estimation and the convergence to the selected sliding 
mode manifold. Consequently, the system motion 
projection on the σ-space is governed by (10), 
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which in combination with the equation 2Dσσ σ= −  
proves asymptotically stable reaching phase: convergence 
to stable origin 0σ =  can be guaranteed if 0distτ = . Then 
the derivative of the Lyapunov function 2 / 2v σ=  is 
negative definite, i.e. 2v Dσ= − , 0D > . In systems with 
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Fig.3. Belt-stretch model block scheme of linear servomechanism 



high sampling rate fast convergence rate can be achieved. 
If disturbance changes slowly ( 0distτ ≈ ), the control law 
can keep the system states close to the sliding manifold 
( 0σ ≈ ) that can allow for good performance in practice. 
However, the proposed controller cannot decouple the 
closed-loop dynamics from the load-side disturbance since 
the matching condition fails. The system dynamics when 

0σ =  is governed by (11). 

( )
dist dist

v p
f fx x x K x K x r t

M
αα β β β ++ + + + = −  (11) 

The selection of the sliding manifold guarantees 
elimination of steady state error. Furthemore, proper 
design of the control parameters can desensitize from the 
load-side disturbance dynamics. 
 
4. Results 
 

The proposed control algorithm is simple for 
application, no high order signal derivatives are required, 
and however, the signals of position and velocity of the 
motor and the cart, respectively, are necessary for 
implementation. A design method for selecting of the 
proper control parameters is another significant feature for 
practical application. It can be figured out from closed-
loop dynamics analysis.  

Let choose the reference signal ( )r t  by (12), 

 ( ) ( ) ( ) ( )r r r
v pr t x t K x t K x t= + +  (12) 

where ( )rx t  is reference position trajectory and 
( )re x t x= −  is position error. Then, the closed-loop 

dynamics can be described by (10) and (13).  

( )
v p e

dist dist
c c

e e e

e K e K e

f fa a
M

σ

ασ ασ βσ βσ α

+ + =

++ + = + + +
 (13) 

On the sliding manifold ( 0σ = ), the position error 
dynamics is driven by derivatives of the signal ca  and the 
signal of load-side disturbance distf , respectively. The 
first portion could be eliminated by modification of 
sliding manifold definition, i.e. by inclusion of higher-
order derivatives of the reference position trajectory. 
However, in order to desensitize the system motion from 
the load-side friction one shall carefully choose the design 
parameters. From (13) two transfer functions can be 
considered to determine the disturbance sensivity: 

 1 2 2

1( ) ( ) ( ) sF s F s F s
s Ds sσ σ σ α β

= =
++ +

 (14) 
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( )F sσ  links eσ  with disturbance signal distτ , and ( )eF s  
links position error with load-side disturbance. The 
amplitude responses in frequency domain are depicted by 
Fig. 4 and 5, respectively, where βω β= . As shown by 
Fig.4, performance of the robust controller from (8) is a 
key issue in desensitizing from the disturbance. It allows 
for implementation of rapid vibration-free belt response, 
which in turn can also help to reject load side disturbance 
(see Fig. 5). Moreover, although high value of gain β can 
extend robust operational bandwidth, it is always limited 
in a practical application due to neglected higher order 
system dynamics and discrete implementation of the 
control algorithm. Furthermore, in beltdrives a time delay 
in force transmission always occurs, that can cause 
unstable belt response if too high operational bandwidth is 
prescribed. 

The experiments were conducted on a low-cost timing 
belt-servomechanism. A DC-motor was attached to the 
belt-drive via a gearbox with speed reduction ratio G=29. 
The maximum travel length of the cart was about 2m. The 

 

Fig.4. Frequency characteristic of ( )F sσ  Fig.5. Frequency characteristic of ( )eF s  
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position reference trajectory was shaped by sin2 profile 
with amplitude of 30cm. The "belt-stretch" has been 
calculated on the basis of measurement of the cart position 
and motor angle.  

Fig. 6 shows results achieved by the control scheme 
introduced in [8] (diagrams a) and c)), and by the control 
scheme proposed in this paper (diagrams b) and d)) at low 
and high speed, respectively. The error curve shows peaks 
at velocity zero crossings due to backlash and stiction 
effect. Large backlash in the servomechanism was 
demonstrated by the "belt-stretch" curve. Although the 
backlash phenomena can not be compensated in a 
moment, the tracking error was compensated with 
prescribed dynamics and then kept close to zero value. 
Vibrations were also effectively suppressed. However, if 

0γ =  and retaining the position control parameters vK , 

pK  at same value (see (6)) experiments showed unstable 

response of the system. The proposed control scheme was 
compared with the controller introduced in [8]. At low 
speed, the later control scheme performs slightly better in 
terms of position error. Then we increased the reference 
speed that caused higher position tracking error. In this 
case, the proposed control scheme assured better position 
error tracking performance. It performed more robustly at 
extended bandwidth. 
 
5. Conclusion 
 

The paper has proposed new control algorithm for 
position following task of a linear belt-driven 
servomechanism. It has utilized SMC theory and has 
extended the switching function definition in order to 
include also non-rigid modes due to the belt elasticity. 
The proposed control scheme is practical for the 
implementation, since it involves only position and 

 

Fig.6. Experimental results 
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velocity signals. Higher order derivatives are not 
necessary.  The proposed control scheme utilizes two 
sensors: one for motor angle measurement and another for 
cart position measurement. The control design method 
suggests easy control parameters tuning procedure. The 
experiments have shown that the proposed control scheme 
effectively suppresses vibrations and furthermore extends 
position closed-loop bandwidth. However, in the future, 
further consideration shall show if motor angle 
measurement may be replaced by state observer values, 
thus eliminating one sensor from the control scheme.  
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