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Abstract

We introduce a generalization of Sidel’nikov sequences for arbitrary finite fields. We
show that several classes of Sidel’nikov sequences over arbitrary finite fields exhibit
a large linear complexity. For Sidel’nikov sequences over F8 we provide exact values
for their linear complexity.

1 Introduction

For a prime power q let Fq be the finite field of order q and let d be a positive
divisor of q − 1. The cyclotomic classes of order d give a partition of F∗q :=
Fq \ {0} defined by

D0 := {αdn : 0 ≤ n ≤ (q − 1)/d− 1} and Dj := αjD0, 1 ≤ j ≤ d− 1,

for a primitive element α of Fq.
For a prime divisor d of q− 1, Sidel’nikov [24] introduced the (q− 1)-periodic
sequence S = s0, s1, . . . with terms in the finite field Fd (we will also write over
the finite field Fd) defined by

sn = j ⇐⇒ αn + 1 ∈ Dj, n = 0, . . . , q − 2, n 6= (q − 1)/2,

s(q−1)/2 = 0, and (1)

sn+q−1 = sn, n ≥ 0.

Independently in [16] Lempel, Cohn and Eastman studied the sequence (1)
for d = 2.

In the following we suggest a natural generalization of the sequence (1) for
arbitrary finite fields.
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Suppose that the divisor d = pt of q − 1 is a power of the prime p and let
{β0, β1, . . . , βt−1} be a basis of Fpt over Fp. Then we define the Sidel’nikov
sequence S = s0, s1, . . . with period q − 1 and terms in the finite field Fpt by

sn = ξj ⇐⇒ αn + 1 ∈ Dj, n = 0, . . . , q − 2, n 6= (q − 1)/2,

s(q−1)/2 = 0, and (2)

sn+q−1 = sn, n ≥ 0,

where ξj = j0β0+j1β1+ · · ·+jt−1βr−1 if (j0, j1, . . . , jt−1)p is the p-ary represen-
tation of the integer j. We remark that the exact appearance of the Sidel’nikov
sequence depends on the choice of the basis.

The linear complexity of an N -periodic sequence S = s0, s1, . . . over a finite
field Fd, denoted by L(S), is the smallest nonnegative integer L for which
there exist coefficients c1, c2, . . . , cL ∈ Fd such that

sn + c1sn−1 + . . . + cLsn−L = 0 for all n ≥ L.

The linear complexity is of fundamental importance as a complexity measure
for periodic sequences used as a keystream for a stream cipher in cryptography
(see [20], [21], [22], [23]).

The linear complexity of the binary Sidel’nikov sequence has been investigated
in [13], [15] and [19]. For results on the linear complexity of the Sidel’nikov
sequence defined by (1) for an arbitrary prime divisor d of q − 1 we can refer
to [4].

Since the finite field Fq, q = um, plays an important role in the construction
of the Sidel’nikov sequence S given by (1), it is also reasonable to interpret S
as a sequence over the prime field Fu. Results on the linear complexity of this
sequence can be found in [7], [8], [11], [12] if d = 2, and in [2], [5] and [14] for
arbitrary divisors d of q − 1 (in this case d need not necessarily be a prime).

In this article we investigate the linear complexity of the generalization (2) of
the Sidel’nikov sequence for arbitrary finite fields. After recalling some basic
facts and techniques in Section 2, in Section 3 we establish good lower bounds
on the linear complexity for several classes of sequences of the form (2). In
Section 4 we present exact values for the linear complexity of Sidel’nikov
sequences over F8.
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2 Preliminaries

Let d = pt be a power of the prime p and let S = s0, s1, . . . be an N -periodic
sequence over the finite field Fd. Then we can identify S with the polynomial
S(X) := s0+s1X+. . .+sN−1X

N−1 ∈ Fd[X] of degree at most N−1. The linear
complexity L(S) of the sequence S is then given by (cf. [6, Lemma 8.2.1])

L(S) = N − deg(gcd(XN − 1, S(X))). (3)

If N = psr with gcd(p, r) = 1, then we have XN − 1 = (Xr − 1)ps
. Conse-

quently, in order to calculate the linear complexity of S we are interested in
the multiplicities of the rth roots of unity as roots of the polynomial S(X).
The multiplicity of roots of the polynomial S(X) can be determined with the
kth Hasse derivative (cf. [10]) S(X)(k) of S(X), which is defined by

S(X)(k) =
N−1∑
n=k

(
n

k

)
snX

n−k.

The multiplicity of γ as root of S(X) is v if S(γ) = S(γ)(1) = . . . = S(γ)(v−1) =
0 and S(γ)(v) 6= 0 (cf. [17, Lemma 6.51]).
Consequently we are interested in the Hasse derivatives of the polynomial
S(X) which corresponds to the sequence (2):
The binomial coefficients modulo p appearing in S(X)(k) can be evaluated
with Lucas’ congruence (cf. [9,18])

(
n

k

)
≡
(
n0

k0

)
· · ·

(
nc

kc

)
mod p,

if n0, ..., nc and k0, ..., kc are the digits in the p-ary representation of n and k,
respectively. We immediately see that(

n

k

)
≡
(

i

k

)
mod p

for k < pc ≤ dl and n ≡ i mod dl.

As before we denote the cyclotomic classes of order δ by Dj, j = 0, . . . δ − 1,
for a divisor δ of q − 1. The cyclotomic numbers (i, j)δ of order δ are defined
by

(i, j)δ = |(Di + 1) ∩Dj|, 0 ≤ i, j ≤ δ − 1.

(For monographs on cyclotomic numbers we refer to [3,25].) Then for the kth
Hasse derivative at 1 of the polynomial S(X) corresponding to the sequence
(2) we obtain
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S(1)(k) =
q−2∑
n=k

(
n

k

)
sn =

dl−1∑
i=k

(
i

k

) ∑
n≡i mod dl

sn =
dl−1∑
i=k

(
i

k

) ∑
n≡i mod dl

d−1∑
m=1

∑
sn=ξm

ξm

=
dl−1∑
i=k

(
i

k

)
dl−1−1∑

j=0

d−1∑
m=1

(i, dj + m)dlξm, (4)

where l = 1 if k = 0 and l = blogd(k)c+ 1 if k ≥ 1.

Remark. As a more general result (which will not be used in this article since
in general the determination of cyclotomic numbers of order δ is difficult if δ
is not small) one can show that for a primitive rth root of unity γ over Fd we
have

S(γ)(k) =
r−1∑
h=0

dl−1∑
i=k

(
i

k

)
dl−1r−1∑

j=0

d−1∑
m=1

(u(h, i), dj + m)dlrξmγh, (5)

where u(h, i) is (by the Chinese-Remainder-Theorem) the unique integer u
with 0 ≤ u ≤ dlr − 1, u ≡ h + k mod r, and u ≡ i mod dl. For details on the
determination of formula (5) for prime fields we refer to [4,19].

For the construction of Sidel’nikov sequences of the form (2) with guaran-
teed large linear complexity we need bases of Fd over Fp with some special
properties.

Let Tr(ξ) denote the trace function from Fd into its prime field Fp. We call a
basis {β0, β1, . . . , βt−1} of Fpt over Fp such that Tr(βj) = 0 for 1 ≤ j ≤ t − 1
and Tr(β0) = 1 a one trace-one basis.
As it is generally known, each finite field Fpt has a normal basis N =
{β, βp, βp2

, . . . , βpt−1}. Since otherwise the elements of N are linearly depen-
dent over Fp, the element β satisfies Tr(β) = c 6= 0, and hence all elements ofN
have trace c. Consequently the basis B = {c−1β, βp−β, βp2−β, . . . , βpt−1−β}
is a one trace-one basis of Fpt over Fp.

For efficient calculation purposes one is interested in polynomial bases P =
{1, β, β2, . . . , βt−1} such that the minimal polynomial f(X) of β over Fp has a
small number of nonzero coefficients. In [1] Ahmadi and Menezes investigated
polynomial one trace-one bases for the important case that p = 2:
Let f(X) ∈ Fp[X] be an irreducible trinomial (pentanomial) of degree t, i.e. a
polynomial which has only three (five) nonzero coefficients, and let β be a root
of f(X), then P = {1, β, β2, . . . , βt−1} is called a trinomial (pentanomial) basis
of Fpt over Fp. Ahmadi and Menezes showed conditions under which irreducible
trinomials and pentanomials, respectively, correspond to a basis P containing
exactly one element having trace 1. Clearly, if the extension degree t is odd,
then Tr(1) = 1. For each of the 545 extension degrees t ∈ [2, 1000] for which
a trinomial basis with just one element having trace one exists, Ahmadi and
Menezes presented a corresponding irreducible trinomial of degree t, and for
all extension degrees 6 ≤ t ≤ 809, they provided an irreducible pentanomial
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for which the corresponding pentanomial basis has only one element with trace
one.

3 Lower bounds on the linear complexity

In this section we establish lower bounds on the linear complexity of
Sidel’nikov sequences S = s0, s1 . . . of the form (2). We assume that the
Sidel’nikov sequence S over Fpt is constructed with a (not necessarily polyno-
mial) one trace-one basis B = {β0, . . . , βt−1} of Fpt over Fp. We will use the
following lemma.

Lemma 1 Let χp denote the nontrivial multiplicative character of Fq with

χp(α
k) = e2π

√
−1k/p, and let εp = e2π

√
−1/p. Then

εTr(sn)
p = χp(α

n + 1), 0 ≤ n ≤ q − 2, n 6= (q − 1)/2. (6)

Proof. Since we suppose that Tr(β0) = 1 and Tr(βj) = 0 for 1 ≤ j ≤ t− 1, we
have Tr(sn) = j0 if sn = j0β0 + j1β1 + · · ·+ jt−1βt−1. The identity (6) follows
then from the definition of the Sidel’nikov sequence (2). 2

With the next two propositions we can exclude some special (q−1)-th roots of
unity of being roots of S(X). This enables us in the following to establish good
lower bounds on the linear complexity of Sidel’nikov sequences constructed
with a one trace-one basis for several classes of period lengths.

Proposition 2 Let r 6= p be a prime divisor of q− 1. If pt is a primitive root
modulo r and r ≥ q1/2 + 1, then for each r-th root of unity γ 6= 1 we have
S(γ) 6= 0.

Proof. Since γr = 1 we get

S(γ) =
q−2∑
n=0

snγ
n =

r−1∑
h=0

(q−1)/r−1∑
j=0

sh+jrγ
h.

Note that the least residue of (q − 1)/2 modulo r is 0. Since pt is a primitive
root modulo r the polynomial Φr(X) = 1 + X + . . . + Xr−1 is irreducible and
thus the minimal polynomial of γ over Fpt . Consequently S(γ) = 0 implies

(q−1)/r−1∑
j=0

sh+jr =
(q−1)/r−1∑

j=0

sjr, h = 1, . . . , r − 1.
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Therefore we must have

Tr

(q−1)/r−1∑
j=0

sh+jr

 = Tr

(q−1)/r−1∑
j=0

sjr


or equivalently

(q−1)/r−1∑
j=0

Tr(sh+jr) =
(q−1)/r−1∑

j=0

Tr(sjr)

for all h = 1, . . . , r − 1. We note that

(q−1)/r−1∏
j=0

(
αjrX + 1

)
= 1−X(q−1)/r.

Hence with (6) we obtain that

ε

∑(q−1)/r−1

j=0
Tr(sh+jr)

p =
(q−1)/r−1∏

j=0

χp(α
h+jr + 1) = χp(1− αh(q−1)/r)

has the same value for all h = 1, . . . , r − 1. Now

r − 1 =

∣∣∣∣∣
r−1∑
h=0

χp(1− αh(q−1)/r)

∣∣∣∣∣ = r

q − 1

∣∣∣∣∣∣
q−2∑
h=0

χp(1− αh(q−1)/r)

∣∣∣∣∣∣
≤ r

q − 1

((
q − 1

r
− 1

)
q1/2 + 1

)
< q1/2

by Weil’s bound for character sums (see e.g. [17, Theorem 5.41]) contradicting
our assumption on r. 2

For odd characteristic we also have to consider 2r-th roots of unity.

Proposition 3 Let p > 2 and let r 6= p be a prime divisor of q − 1. If pt is a
primitive root modulo r and

r ≥ q1/2 1

min0≤a≤d−1 | cos 2πa/p|
+ 1,

then for each 2r-th root of unity γ 6= ±1 we have S(γ) 6= 0.

Proof. For γr = 1 the statement follows from Proposition 2.

If γr = −1 we get

S(γ) =
q−2∑
n=0

snγ
n =

r−1∑
h=0

(q−1)/r−1∑
j=0

(−1)jsh+jrγ
h.
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Again from the irreducibility of Φr(X) = 1−X+. . .−Xr−2+Xr−1 we conclude
that Φr(X) is the minimal polynomial of γ over Fpt , and that S(γ) = 0 implies

(q−1)/r−1∑
j=0

(−1)jsh+jr = (−1)h
(q−1)/r−1∑

j=0

(−1)jsjr, h = 1, . . . , r − 1.

Denote the sum on the left side by G(h). Then it is obvious that G(h + r) =
−G(h) and that G(0) = G(2) = . . . = G(2r − 2) = −G(1) = −G(3) = . . . =
−G(2r − 1). Hence,

2(r − 1) min
0≤a≤p−1

| cos 2πa/p| ≤
∣∣∣(r − 1)

(
εTr(G(0))

p + ε−Tr(G(0))
p

)∣∣∣
=

∣∣∣∣∣∣∣
2r−1∑
h=1
h6=r

ε
Tr

(∑(q−1)/r−1

j=0
(−1)jsh+jr

)
p

∣∣∣∣∣∣∣ . (7)

Note that

(q−1)/r−1∏
j=0

(
αjrX + 1

)(−1)j

=
(
1 + X(q−1)/2r

) (
1−X(q−1)/2r

)−1
,

where we denote the function on the right side by f(X). Hence, for 1 ≤ h ≤
2r − 1 except for h = r, it follows together with (6) that

ε
Tr

(∑(q−1)/r−1

j=0
(−1)jsh+jr

)
p = ε

∑(q−1)/r−1

j=0
(−1)jTr(sh+jr)

p

=
(q−1)/r−1∏

j=0

χp(α
h+jr + 1)(−1)j

= χp(f(αh)).

Now, together with (7) this yields

2(r − 1) min
0≤a≤p−1

| cos 2πa/p| ≤
∣∣∣∣∣
2r−1∑
h=0

χp(f(αh))

∣∣∣∣∣ = 2r

q − 1

∣∣∣∣∣∣
q−2∑
h=0

χp(f(αh))

∣∣∣∣∣∣
≤ 2r

q − 1

((
q − 1

r
− 1

)
q1/2 + 1

)
< 2q1/2

by Weil’s bound for character sums contradicting our assumption on r. 2

Propositions 2 and 3, and equation (3) immediately yield the following lower
bounds for the linear complexity of the Sidel’nikov sequence S defined by (2)
constructed with a one trace-one basis.

Theorem 4 Suppose that q − 1 = 2sur, u 6= r, u odd, for a prime r ≥
q1/2 + 1 and suppose that d = 2t is a primitive root modulo r. Then the linear
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complexity of the Sidel’nikov sequence S over Fd satisfies

L(S) ≥ (r − 1)2s.

Example. Let t = 3 and S be the Sidel’nikov sequence over F23 of length
q − 1 = 23 ∗ 11 = 88. Then we have L(S) ≥ 80.

Theorem 5 Let p > 2 and q − 1 = 2psur, u 6= r, u odd with gcd(u, p) = 1,
for a prime r with

r ≥ q1/2 1

min0≤a≤p−1 | cos 2πa/p|
+ 1,

and suppose that d = pt is a primitive root modulo r. Then the linear com-
plexity of the Sidel’nikov sequence S over Fd satisfies

L(S) ≥ 2(r − 1)ps.

Example. Suppose d = 33 and let S be the Sidel’nikov sequence over F33 of
length q − 1 = 2 ∗ 33 ∗ 233 = 12582, then L(S) ≥ 12528.

Example. Suppose d = 53 and let S be the Sidel’nikov sequence over F53 of
length q − 1 = 2 ∗ 53 ∗ 2753 = 688248, then L(S) ≥ 688000.

4 Linear complexity for Sidel’nikov sequences over F8

Let β be a root of the polynomial X3 + X + 1 ∈ F2[X], then the basis B =
{1, β, β2} of F8 = F2[X]/(X3+X+1) satisfies Tr(1) = 1 and Tr(β) = Tr(β2) =
0.
Let q = 8t + 1 be a prime power, then we can consider the (q − 1)-periodic
Sidel’nikov sequence S = s0, s1, . . . over F8 defined as in (2) with the basis B.
Let S(X) = s0 + s1X + · · · + sq−2X

q−2 be the polynomial corresponding to
this Sidel’nikov sequence. Then we can determine the multiplicity of 1 as a
root of S(X) with equation (4), which in the considered case reduces to

S(1)(k) =
7∑

i=k

(
i

k

)
7∑

m=1

(i, m)8ξm (8)

for 0 ≤ k ≤ 7. The cyclotomic numbers of order 8 contained in (8) are given
in terms of the parameters x, y, a, b for which we have

q = x2 + 4y2 = a2 + 2b2, x ≡ a ≡ 1 mod 4,
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and if q = pm with a prime p ≡ 1 mod 4 additionally gcd(q, x) = 1, and
gcd(a, q) = 1 if q = pm with a prime p ≡ 1 or 3 mod 8. Tables for the cyclo-
tomic numbers of order 8 can be found in [3,6,25]. We recall these tables in the
appendix at the end of this paper, and note that the sign of y is ambiguously
determined, which is a consequence of the freedom to choose the primitive el-
ement α of Fq. Since the cyclotomic numbers take different values, we have to
distinguish between the cases Ia where q ≡ 1 mod 16 and 2 is a fourth power
in Fq, Ib where q ≡ 1 mod 16 and 2 is not a fourth power in Fq, IIa where
q ≡ 9 mod 16 and 2 is a fourth power in Fq, and IIb where q ≡ 9 mod 16 and
2 is not a fourth power in Fq. The next proposition deals with the case that
q ≡ 1 mod 16. In the proof we will not go into all technical details.

Proposition 6 Suppose that q ≡ 1 mod 16. Then

(i) X − 1 divides gcd(Xq−1 − 1, S(X)),
(ii) (X − 1)2 divides gcd(Xq−1 − 1, S(X)) if and only if 4|y,
(iii) (X − 1)3 divides gcd(Xq−1 − 1, S(X)) if and only if 4|y and 8|b,
(iv) (X − 1)4 divides gcd(Xq−1 − 1, S(X)) if and only if 4|y, 8|b and

(x− 1)/8 ≡ y/4 mod 2,
(v) (X − 1)k, k = 5, 6, 7, 8, divides gcd(Xq−1 − 1, S(X)) if and only if 4|y, 8|b

and (x− 1)/8 ≡ y/4 ≡ 0 mod 2.

Proof. With (8) and the first table in the appendix we obtain

S(1) = [(0, 1)8 + (0, 3)8 + (0, 5)8 + (0, 7)8]β

+[(0, 1)8 + (0, 2)8 + (0, 3)8 + (0, 5)8 + (0, 6)8

+(0, 7)8 + (1, 2)8 + (1, 3)8 + (1, 6)8 + (2, 5)8]β
2.

First we suppose that 2 is a fourth power of Fq and use the table in the
appendix giving the cyclotomic numbers for the considered case to calculate
the coefficients of β and β2 in S(1). Putting ∆ = q − 7 + 2x + 4a, for the
coefficient of β we obtain

(0, 1)8 + (0, 3)8 + (0, 5)8 + (0, 7)8

=
∆ + 16y + 16b

64
+

∆− 16y + 16b

64
+

∆ + 16y − 16b

64
+

∆− 16y − 16b

64

=
y

2
+

y

2
= 0,

where the calculation is performed modulo 2. Since in the considered case
(1, 2)8 = (2, 5)8 and (1, 3)8 = (1, 6)8, the coefficient of β2 reduces to

(0, 2)8 + (0, 6)8 =
q − 7 + 6x + 16y

64
+

q − 7 + 6x− 16y

64
=

y

2
= 0,
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where in the last step we use that 2 is a fourth power of Fq if and only if 4|y
(cf. Theorem 7 in [25]). If 2 is not a fourth power in Fq then (0, 1)8 = (0, 3)8 =
(0, 5)8 = (0, 7)8 and the coefficient of β in S(1) vanishes. Since (1, 2)8 = (2, 5)8,
the coefficient of β2 reduces to

(0, 2)8 + (0, 6)8 + (1, 3)8 + (1, 6)8

=
q − 7− 2x− 8a− 16y

64
+

q − 7− 2x− 8a + 16y

64
+

q + 1 + 2x− 4a− 16b

64
+

q + 1 + 2x− 4a− 16b

64

=
y + b

2
.

We also have
y + b

2
=

7∑
m=0

(1, m)8 ≡ 0 mod 2, (9)

which is one of the elementary relationships between the cyclotomic numbers
(cf. Lemma 3(d) of [25]). Consequently X − 1 divides gcd(Xq−1 − 1, S(X)).
The coefficients of 1, β and β2 in S(1)(k), k = 1, . . . 7, are obtained similarly
with (8) and the tables in the appendix giving the cyclotomic numbers of order
8. The results relevant for our considerations are listed below in Table 1 and
Table 2. In the case that 2 is not a fourth power in Fq, i.e. 4 6 |y, (X + 1)2

does not divide S(X) since (9) implies that b/2 is odd, which is the coefficient
of β in S(1)(1). Hence in the following we suppose that 4|y. Therefore, from
(9) we get 4|b. From Table 1 we see that S(1)(1) = (b/2)β = 0. Moreover,
S(1)(2) = (b/4)β2 = 0 if and only if 8|b. Supposing that 8|b we obtain S(1)(3) =
((1−x)/8−y/4)β2, which vanishes if and only if (x−1)/8 ≡ y/4 mod 2. This
yields the conditions for (X + 1)k dividing gcd(Xq−1− 1, S(X)), k = 1, 2, 3, 4.
If 16|(q − 1) and 2 is a fourth power in Fq then 16|(x − a) which can be
seen from (2, 5)8 − (2, 4)8 = (x − a)/16. Therefore, assuming that 8|b, we
obtain that S(1)(4) = (y/4)β2, which vanishes if and only if y/4 ≡ 0 mod 2.
As it is easy to see, under the above established conditions, namely 8|b and
(x−1)/8 ≡ y/4 ≡ 0 mod 2, all (further) coefficients in Table 1 are zero, which
completes the proof of the proposition. 2

For the case that q ≡ 9 mod 16 we obtain the following proposition.

Proposition 7 Suppose that q ≡ 9 mod 16. Then X − 1 divides gcd(Xq−1 −
1, S(X)) and (X − 1)2 does not divide gcd(Xq−1 − 1, S(X)).

Proof. We start with the observation that q = x2 + 4y2 ≡ 9 mod 16, x ≡
1 mod 4, implies x ≡ 5 mod 8.
First we consider the case that 2 is a fourth power in Fq, or equivalently 4|y,
and point out that then 4 6 |b. From (2, 1)8 − (0, 0)8 = (4 + x − a)/16 we
see that 8|(4 + x − a). Suppose that 4|b, then (1, 2)8 − (1, 3)8 = (−x + a +
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2b)/8 = (−x+a)/8+ b/4 and 8|(x−a) which is a contradiction. With Table 3
(the polynomials in Table 3 and Table 4 are again obtained with (8) and the
adequate tables in the appendix) we obtain that S(1) = ((1− x)/4 + b/2))β2

which vanishes since x ≡ 5 mod 8 implies (x − 1)/4 ≡ 1 mod 2. Since the
coefficient of β (and β2) in S(1)(1) equals (y + b)/2 ≡ 1 mod 2, the polynomial
(X + 1)2 does not divide gcd(Xq−1 − 1, S(X)).
If 2 is not a fourth power in Fq, then with Table 4 we get ((x+1+2a)/4)β2 for
S(1). From x ≡ 5 mod 8 we obtain 8|(x+1+2a), and consequently S(1) = 0.
Since the coefficient of β2 in S(1)(1) equals y/2 ≡ 1 mod 2, the polynomial
(X + 1)2 again does not divide gcd(Xq−1 − 1, S(X)). 2

Before we state the main result of this section we need to show a numberthe-
oretical lemma.

Lemma 8 If the prime q = x2 +4y2 ≡ 1 mod 16, x ≡ 1 mod 4, is of the form
q = 2sr + 1 for a prime r 6= 3 such that 8 is a primitive root modulo r, then
we either have x ≡ 1 mod 16 and 4|y, or x ≡ 9 mod 16 and 4 6 |y.

Proof. Clearly 8 = 23 can only be a primitive root modulo a prime r if
gcd(3, r−1) = 1, which implies r = 3 or r ≡ 2 mod 3. For a prime r ≡ 2 mod 3
the number q = 2sr+1 is not divisible by 3 if and only if s is odd. Consequently
the prime q must be of the form q = 2sr + 1 with an odd integer s.
We recall that q ≡ 1 mod 16 implies x ≡ 1 mod 8, and consider the case that
x ≡ 9 mod 16 and 4|y. In this case we have q = (9+16k)2+64l2 = 24(5+18k+
16k2 + 4l2) + 1 for some integers k, l. Thus s = 4 is even, which contradicts q
being a prime. With the same argument we see that x ≡ 1 mod 16 and 4 6 |y
implies s = 4, which leads to the same contradiction. 2

We are now able to obtain exact values for the linear complexity of the
Sidel’nikov sequence over F8 for certain period lengths.

Theorem 9 Let q ≡ 1 mod 8 be a prime with q = x2 + 4y2 = a2 + 2b2, x ≡
a ≡ 1 mod 4, and let S be the (q − 1)-periodic Sidel’nikov sequence over F8 =
F2[X]/(X3 + X + 1) defined by (2) with the basis B = {1, β, β2}, where β is
a root of the polynomial X3 + X + 1. If q is of the form q = 2sr + 1, s > 3,
where r ≥ q1/2 + 1 is an odd prime such that 8 is a primitive root modulo r,
then the linear complexity L(S) of S satisfies

(i) L(S) = q − 2 if 4 6 |y,
(ii) L(S) = q − 3 if 4|y and 8 6 |b,
(iii) L(S) = q − 4 if 4|y, 8 6 |y and 8|b,
(iv) q − 1− 2s ≤ L(S) ≤ q − 9 if 8|y and 8|b.

If q is of the form q = 8r + 1 with an odd prime r ≥ q1/2 + 1 such that 8 is a
primitive root modulo r, then L(S) = q − 2.

11



Proof. The case where q = 8r + 1 immediately follows from Propositions 2
and 7, and equation (3).
The statements (i) and (ii) immediately follow from Proposition 2, Proposi-
tion 6(i)–(iii), and equation (3).
If 4|y then by Lemma 8 we have (x − 1)/8 ≡ y/4 mod 2 if and only if
y/4 ≡ 0 mod 2. Therefore (iii) of Proposition 6 coincides with 8 6 |y, (iv)
of Proposition 6 is not possible for the considered class of primes, and (v) of
Proposition 6 coincides with 8|y. Together with Proposition 2 and equation
(3) we obtain then the statements (iii) and (iv) of the theorem. 2

Example.

(1) q = 1697 = 25 ∗ 53 + 1. We have x = 41, y = 2, a = −27, b = 22. Hence,
L(S) = q − 2 = 1695.

(2) q = 1889 = 25 ∗59+1. We have x = 17, = y = 20, a = 33, b = 20. Hence,
L(S) = q − 3 = 1886.

(3) q = 288257 = 29 ∗ 563 + 1. We have x = −31, y = 268, a = 513, b = 112.
Hence, L(S) = q − 4 = 288253.

(4) q = 8609 = 25 ∗ 269 + 1. We have x = −47, y = 40, a = 81, b = 32.
Hence, q − 1− 2s = 8576 ≤ L(S) ≤ q − 9 = 8600.

(5) q = 89 = 23 ∗ 11 + 1. Hence, L(S) = q − 2 = 87.

Table 1: Subcase Ia.

S(1) = y
2
β2 S(1)(4) = y

2
+ b

4
β + x+2y−a

8
β2

S(1)(1) = b
2
β + y

2
β2 S(1)(5) = y

2
+ 1−x−2y−2b

8
β + x−a

8
β2

S(1)(2) = b
2

+ y+b
2

β + b
2
β2 S(1)(6) = 1−x−2y−2b

8
+ b

4
β + b

4
β2

S(1)(3) = b
2

+ b
2
β + 1−x−2y−2b

8
β2 S(1)(7) = 1−x−2y−2b

8
(1 + β + β2)

Table 2: Subcase Ib. S(1) = y+b
2

β2 S(1)(1) = y
2
β + y+b

2
β2

Table 3: Subcase IIa. S(1) = y
2
β + 1−x+2b

4
β2 S(1)(1) = y

2
+ y+b

2
β + y+b

2
β2

Table 4: Subcase IIb. S(1) = 1+x+2a
4

β2 S(1)(1) = b
2
β + y

2
β2
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5 Appendix

Case I: The relation between the cyclotomic numbers of order 8 if q ≡ 1 mod
16:

(0, 1)8 = (1, 0)8 = (7, 7)8; (0, 2)8 = (2, 0)8 = (6, 6)8

(0, 3)8 = (3, 0)8 = (5, 5)8; (0, 4)8 = (4, 0)8 = (4, 4)8

(0, 5)8 = (5, 0)8 = (3, 3)8; (0, 6)8 = (6, 0)8 = (2, 2)8

(0, 7)8 = (7, 0)8 = (1, 1)8

(1, 2)8 = (2, 1)8 = (1, 7)8 = (7, 1)8 = (6, 7)8 = (7, 6)8

(1, 3)8 = (3, 1)8 = (2, 7)8 = (7, 2)8 = (5, 6)8 = (6, 5)8

(1, 4)8 = (4, 1)8 = (3, 7)8 = (7, 3)8 = (4, 5)8 = (5, 4)8

(1, 5)8 = (5, 1)8 = (3, 4)8 = (4, 3)8 = (4, 7)8 = (7, 4)8

(1, 6)8 = (6, 1)8 = (2, 3)8 = (3, 2)8 = (5, 7)8 = (7, 5)8

(2, 4)8 = (4, 2)8 = (2, 6)8 = (6, 4)8 = (4, 6)8 = (6, 4)8

(2, 5)8 = (5, 2)8 = (3, 5)8 = (5, 3)8 = (3, 6)8 = (6, 3)8

The cyclotomic numbers of order 8 for the case that q ≡ 1 mod 16, q =
x2 + 4y2 = a2 + 2b2, x ≡ a ≡ 1 mod 4:

Case Ia: 2 is a fourth power in Fq

(0, 0)8 = (q − 23− 18x− 24a)/64

(0, 1)8 = (q − 7 + 2x + 4a + 16y + 16b)/64

(0, 2)8 = (q − 7 + 6x + 16y)/64

(0, 3)8 = (q − 7 + 2x + 4a− 16y + 16b)/64

(0, 4)8 = (q − 7− 2x + 8a)/64

(0, 5)8 = (q − 7 + 2x + 4a + 16y − 16b)/64

(0, 6)8 = (q − 7 + 6x− 16y)/64

(0, 7)8 = (q − 7 + 2x + 4a− 16y − 16b)/64

(1, 2)8 = (1, 4)8 = (1, 5)8 = (2, 5)8 = (q + 1 + 2x− 4a)/64

(1, 3)8 = (1, 6)8 = (q + 1− 6x + 4a)/64

(2, 4)8 = (q + 1− 2x)/64
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Case Ib: 2 is not a fourth power in Fq

(0, 0)8 = (q − 23 + 6x)/64

(0, 1)8 = (0, 3)8 = (0, 5)8 = (0, 7)8 = (q − 7 + 2x + 4a)/64

(0, 2)8 = (q − 7− 2x− 8a− 16y)/64

(0, 4)8 = (q − 7− 10x)/64

(0, 6)8 = (q − 7− 2x− 8a + 16y)/64

(1, 2)8 = (q + 1− 6x + 4a)/64

(1, 3)8 = (q + 1 + 2x− 4a− 16b)/64

(1, 4)8 = (q + 1 + 2x− 4a + 16y)/64

(1, 5)8 = (q + 1 + 2x− 4a− 16y)/64

(1, 6)8 = (q + 1 + 2x− 4a + 16b)/64

(2, 4)8 = (q + 1 + 6x + 8a)/64

(2, 5)8 = (q + 1− 6x + 4a)/64

Case II: The relation between the cyclotomic numbers of order 8 if q ≡ 9 mod
16:

(0, 0)8 = (4, 0)8 = (4, 4)8; (0, 1)8 = (3, 7)8 = (5, 4)8

(0, 2)8 = (2, 6)8 = (6, 4)8; (0, 3)8 = (1, 5)8 = (7, 4)8

(0, 5)8 = (1, 4)8 = (7, 3)8; (0, 6)8 = (2, 4)8 = (6, 2)8

(0, 7)8 = (3, 4)8 = (5, 1)8

(1, 0)8 = (3, 3)8 = (4, 1)8 = (4, 5)8 = (5, 0)8 = (7, 7)8

(1, 1)8 = (3, 0)8 = (4, 3)8 = (4, 7)8 = (5, 5)8 = (7, 0)8

(1, 2)8 = (2, 7)8 = (3, 6)8 = (5, 3)8 = (6, 5)8 = (7, 1)8

(1, 3)8 = (1, 6)8 = (2, 5)8 = (6, 3)8 = (7, 2)8 = (7, 5)8

(1, 7)8 = (2, 3)8 = (3, 5)8 = (5, 2)8 = (6, 1)8 = (7, 6)8

(2, 0)8 = (2, 2)8 = (4, 2)8 = (4, 6)8 = (6, 0)8 = (6, 6)8

(2, 1)8 = (3, 1)8 = (3, 2)8 = (5, 6)8 = (5, 7)8 = (6, 7)8
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The cyclotomic numbers of order 8 for the case that q ≡ 9 mod 16, q =
x2 + 4y2 = a2 + 2b2, x ≡ a ≡ 1 mod 4:

Case IIa: 2 is a fourth power in Fq

(0, 0)8 = (q − 15− 2x)/64

(0, 1)8 = (0, 5)8 = (q + 1 + 2x− 4a + 16y)/64

(0, 2)8 = (q + 1 + 6x + 8a− 16y)/64

(0, 3)8 = (0, 7)8 = (q + 1 + 2x− 4a− 16y)/64

(0, 4)8 = (q + 1− 18x)/64

(0, 6)8 = (q + 1 + 6x + 8a + 16y)/64

(1, 0)8 = (1, 1)8 = (q − 7 + 2x + 4a)/64

(1, 2)8 = (q + 1− 6x + 4a + 16b)/64

(1, 3)8 = (2, 1)8 = (q + 1 + 2x− 4a)/64

(1, 7)8 = (q + 1− 6x + 4a− 16b)/64

(2, 0)8 = (q − 7− 2x− 8a)/64

Case IIb: 2 is not a fourth power in Fq

(0, 0)8 = (q − 15− 10x− 8a)/64

(0, 1)8 = (0, 3)8 = (q + 1 + 2x− 4a− 16b)/64

(0, 2)8 = (q + 1− 2x + 16y)/64

(0, 4)8 = (q + 1 + 6x + 24a)/64

(0, 5)8 = (0, 7)8 = (q + 1 + 2x− 4a + 16b)/64

(0, 6)8 = (q + 1− 2x− 16y)/64

(1, 0)8 = (q − 7 + 2x + 4a + 16y)/64

(1, 1)8 = (q − 7 + 2x + 4a− 16y)/64

(1, 2)8 = (q + 1 + 2x− 4a)/64

(1, 3)8 = (2, 1)8 = (q + 1− 6x + 4a)/64

(1, 7)8 = (q + 1 + 2x− 4a)/64

(2, 0)8 = (q − 7 + 6x)/64
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