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Assoc. Prof. Dr. Mustafa ÜNEL ..............................................

(Thesis Advisor)

Assist. Prof. Dr. Kemalettin ERBATUR ..............................................

Assist. Prof. Dr. Ahmet ONAT ..............................................
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Abstract

With the recent advances in the fields of micro and nanotechnology, there has

been growing interest for complex micromanipulation and microassembly strategies.

Despite the fact that many commercially available micro devices such as the key

components in automobile airbags, ink-jet printers and projection display systems

are currently produced in a batch technique with little assembly, many other prod-

ucts such as read/write heads for hard disks and fiber optics assemblies require flex-

ible precision assemblies. Furthermore, many biological micromanipulations such as

invitro-fertilization, cell characterization and treatment rely on the ability of human

operators. Requirement of high-precision, repeatable and financially viable opera-

tions in these tasks has given rise to the elimination of direct human involvement,

and autonomy in micromanipulation and microassembly.

In this thesis, a fully automated dexterous micromanipulation strategy based

on vision and force feedback is developed. More specifically, a robust vision based

control architecture is proposed and implemented to compensate errors due to the

uncertainties about the position, behavior and shape of the microobjects to be ma-

nipulated. Moreover, novel estimators are designed to identify the system and to

characterize the mechanical properties of the biological structures through a synthe-

sis of concepts from the computer vision, estimation and control theory. Estimated

mechanical parameters are utilized to reconstruct the imposed force on a biomem-

brane and to provide the adequate information to control the position, velocity and

acceleration of the probe without damaging the cell/tissue during an injection task.
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GERİBESLEMEYE DAYALI YENİ KESTİRİM VE KONTROL TEKNİKLERİ

Hakan BİLEN
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Özet

Mikro ve nanoteknolojideki gelişmelerle birlikte kompleks mikromanipülasyon ve

mikromontaj yöntemlerine olan ilgi büyüyerek artmaktadır. Otomobil havayastık-

larındaki, püskürtmeli yazıcı kafalarındaki ve görüntülü projeksiyon sistemlerindeki

anahtar komponentler gibi birçok ticari mikro aygıt, günümüzde az miktarda mon-

taj içeren toplu üretim teknikleriyle üretilirken, sabit disk yazma/okuma kafaları ve

optik entegreler gibi birçok başka mikro aygıtın üretimi içinse esnek hassas mon-

taja ihtiyaç duyulmaktadır. Bunun yanında, yapay döllenme, hücre karakteriza-

syonu ve tedavisi gibi birçok biyolojik mikromanipülasyonun başarısı operatörlerin

yeteneklerine baǧlıdır. Bu uygulamalarda yüksek hassasiyette, tekrarlanabilir ve

finansal açıdan uygulanabilir operasyonlara ihtiyaç duyulması mikromanipülasyon

ve mikromontajda doǧrudan insan müdahalesinin elenmesi ve özerkliǧin artmasına

neden olmaktadır.

Bu tezde, görüş ve kuvvet geribeslemesine dayalı tamamen otomatik hünerli

bir mikromanipülasyon stratejisi geliştirilmiştir. Özellikle mikro objelerin pozisyon,

davranış ve şekillerindeki belirsizliklerinden kaynaklanan hataları gidermek için gür-

büz görsel temelli kontrol mimarisi önerilmiş ve uygulanmıştır. Ayrıca kullanılan

sistemi tanımlamak ve biyolojik yapıların mekanik özelliklerini karakterize etmek

için bilgisayarla görme, kestirim ve kontrol senteziyle yeni kestiriciler tasarlanmıştır.

Kestirilen mekanik parametreler bir enjeksiyon operasyonu sırasında biyomembrana

uygulanan kuvveti yeniden kurmak ve probun pozisyon, hız ve ivme kontrolünü

hücre/dokuya zarar vermeden saǧlamak için kullanılmştır.
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Chapter 1

Introduction

In his famous lecture “There is plenty of the room at the bottom” in 1959, Richard

Feynman considered a number of interesting ramifications on the problem of ma-

nipulating and controlling things on a small scale. In his talk Feynman described

the problem of writing an enormous amount of text, the entire 24 volumes of the

Encyclopedia Britannica, on a surface about the size of the head of a pin. He also

discussed even more interesting possibilities to construct micromachines such as a

tiny mechanical surgeon which can goes into blood vessels. Although it was not

possible to realize his big dream for small things at that time, he deserves the credit

for recognizing the potential of miniaturization of the conventional devices that will

have a major impact on society and everyday life.

With the recent advances in the fields of micro and nanotechnology, the com-

mercial markets, including microelectromechanical system (MEMS) products such

as the key components in automobile airbags (Fig. 1.1), ink-jet printers and pro-

jection display systems (Fig. 1.2), have been growing rapidly. Despite the fact

that these commercially available micro devices are currently produced in a batch

technique with little assembly, many other products such as read/write heads for

hard disks (Fig. 1.3) and fiber optics assemblies require flexible precision assem-

blies [4]. However, the assembly of these products are mostly done in manual or

semi-automatic operations. Furthermore, many biological micromanipulations such

as invitro-fertilization, cell characterization and treatment rely on the ability of hu-

man operators. Requirement of high-precision, repeatable and financially viable

operations in these tasks has given rise to the elimination of direct human involve-

ment, and autonomy in micromanipulation and microassembly.

1



(a) (b)

Figure 1.1: A Low-g Accelerometer [1]

(a) (b)

Figure 1.2: A Digital Micromirror Device [2]

(a) (b)

Figure 1.3: A Hard Drive’s Read/Write Head [3]
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In the literature, several research efforts on autonomous micromanipulation and

microassembly tasks under optical microscope can be found in [4]- [14]. Kim et al. [4]

proposed a hybrid assembly method which combines the vision-based microassembly

and the scaled teleoperated microassembly with force feedback. With these tools,

980 nm pump laser is manufactured by manipulating and assembling optoelectrical

components. Beyeler et al. [7], have reported a robotic workstation consisting of

a MEMS gripper and an ultrasonic manipulator. Manipulation experiments with

polymer spheres, glass spheres and cancer cells are demonstrated using the ultrasonic

alignment and force feedback. Wang et al [14] present a microrobotic system for

fully automated zebrafish embryo injection based on computer vision and motion

control. The microrobotic system performs autonomous injection at a high speed,

with a successful survival rate.

Different microscope technologies such as scanning electron microscope (SEM)

[24] and atomic force microscope (AFM) [16] are also preferred to monitor the ma-

nipulation process in the literature. Although these monitoring technologies ensure

higher resolutions, SEM can be used only in vacuum environments for some specific

particles and AFM cannot provide an online imaging during manipulation tasks.

Thus optical microscope for manipulating micro particles has certain advantages

including real-time imaging, reconfigurable workspace and low cost, despite the fact

that small working distance and depth of field pose challenges to the three dimen-

sional micromanipulation and microassembly.

Automated assembly of micron scale components is still an open and active re-

search field. There exists strong demand for accurate and robust control approaches

to compensate the inaccuracies in the mechanical design due to imprecise manufac-

turing, and to autonomously combine micro-parts from two or more different sources

under non-clean room conditions. It is also desired to have more degrees of freedom

for handling full 3D structures, instead of thin planar objects, with minimum user

guidance and tuning.

1.1 Contributions of the Thesis

This thesis aims to develop robust and provably correct generic algorithms based on

feedback provided from the imaging and force sensors which significantly enhance

3



our ability to observe, position, and physically transform the micro objects and con-

tribute to applications ranging from biotechnology to MEMS. In the first part of the

thesis, a robust vision control structure is designed with the real-time object and

end-effector detection, optical system calibration, autofocusing and visual controller

modules. Employing the developed vision based controller synthesis, the versatility

and accuracy of the microassembly system is greatly improved by compensating the

errors arising in open loop control. In the second part, previously designed tools

combined with a motion planner in conjunction with force feedback from the end

effector enable the system to achieve fully automated micromanipulation schemes

which are able to achieve high accuracies using full visual feedback at each control

iteration. A fully automated micromanipulation task which aims to arrange micro-

spheres through a collision free path using vision and force feedback is successfully

demonstrated to show the validity of the established algorithms. In the third part,

novel estimators are developed to identify the system and to characterize the me-

chanical properties of the biological structures through a synthesis of concepts from

the computer vision, estimation and control theory.

1.2 Outline of the Thesis

Chapter 2 introduces the concept of micromanipulation with a summary of physi-

cal effects in the microdomain. Then, an overview of the experimental setup and

the fundamentals of visual servoing are given. Chapter 3 explains the vision and

force subsystems for autonomously manipulating microobjects. In Chapter 4, the

development of parameter estimation methods for offline and online calibration of

the optical system, and characterization of the mechanical properties of a biological

structure is described. Chapter 5 is on the experimental results which are imple-

mented on the microassembly workstation. Finally Chapter 6 concludes the thesis

with some remarks and gives an outlook of future works.

4



Chapter 2

Micromanipulation

2.1 What is Micromanipulation?

Micromanipulation is an area of microrobotics which emerged and recognized as a

branch of robotics at the beginnings of 1990s. Depending on their overall size, sens-

ing and actuation precision, part or tool size, task space, and physics being macro

or microscale, robotic systems can be classified as macrorobotics or microrobotics

respectively [22]. Microrobotics has two research thrust areas concerning microob-

ject manipulation and, design and fabrication of microscale robotic agents. The first

area is called micromanipulation which is defined as manipulation of objects with

characteristic dimensions in the millimeter to micrometer range [23]. In a typical

micromanipulation task, the size of overall system is large whereas the end effec-

tors, manipulated objects, and sensing, actuation, and manipulation precision are

demanded to be at the microscale. On the other hand, the second area focuses on

miniaturization of robots down to submillimeter sizes including actuators, sensors,

motion mechanisms, power sources, computing power, and wireless communication

capability.

Robotic manipulation in microscale differs from the macromanipulation in many

aspects. The applications of micromanipulation include manipulation of biological

cells and assembly of microsized parts, thus novel tools and sensors are required to

access smaller spaces. Moreover, scaling of physical effects is different and makes

the object manipulation challenging in micro domain. As objects are scaled down

to micrometer domain, the surface-to-volume ratio increases, surface properties and

forces begin to dominate bulk or volume-based properties and forces. At this scale,

inertial forces and weight are almost negligible and micro surface interatomic forces,

5



fluid dynamics, heat transfer, surface chemistry, and adhesion based forces dominate

the robot mechanics. In other words, nevertheless the same physical laws govern

the microscopic world as the macroscopic world, the relative importance of them

are changed [23].

In order to visualize the effect of scaling, a simple task to lift an object using a

tool with electrostatic, magnetic and van der Waals forces is designed. The attractive

forces are given in terms of ratio between the resulting interaction forces and the

weight of the object in Fig. 2.1. For the magnetic interaction, it is assumed that two

permanent magnets are aligned along their magnetization, while in the electrostatic

case, the tool is assumed to behave as an infinite halfspace. To compute the magnetic

force, the tool is considered to be cylindrical with radius 4r and height 8r, where r is

the radius of the sphere. In both the magnetic and electrostatic cases, the distance

between the tool and the sphere is assumed to be αr, where α is a positive scalar. It

is observed that gravity is the dominant force for r > 1 m, while the magnetic force

is sufficient to lift the sphere. For r < 10−4 m the electrostatic force dominates over

gravity. In addition, the van der Waals force governs the interaction for r < 10−7 m.

Figure 2.1: Attractive Forces in the Micro Domain [23]

Depending on the dominant forces and the functional requirements at the micro,

specific actuators, grippers and sensors are demanded in manipulation tasks. In typ-

ical micromanipulation systems, single-axis and multi-axis micromanipulators with

a travel range of a few millimeters and a resolution better than 1 µm are preferred.

6



Dc motors, stepper motors, or piezo drives are characteristically used to drive the

positioning stages. In addition to the stages, micromanipulation tasks require spe-

cific end effectors such as probes, micropipettes, or microgrippers to access to small

spaces, shown in Fig. 2.2. Exploiting the dominant forces at microscale, several

potential object handling types are shown in Fig. 2.3.

(a) (b) (c)

Figure 2.2: Micro End Effectors (a) Probe, (b) Gripper, (c) Micropipette [11]

Figure 2.3: Microobject Handling Strategies Using (a) Traditional Gripping, (b)

Impulsive Forces, (c) Vacuum Forces, (d) Surface Tension, (e) Electrostatic Forces,

(f) van der Waals Forces [23]

Besides the positioning stages and end effectors, an important issue in microma-

nipulation concerns the measurement and control of the forces. The involved force

magnitudes typically vary between 10−3 to 10−6 N and below in the micro domain.

Thus, novel force sensors with high resolution and accuracy are also required to use

force sensors to measure and to characterize the manipulation forces in microscale.

To satisfy these requirements, force measurements in micro domain are usually done

by measuring the change in certain properties of the sensing elements such as strain

gauges, piezoelectric, capacitive sensors or using laser-based optical techniques such

7



Figure 2.4: Entire Model of Workstation

as atomic force microscope [20].

2.2 Microassembly Workstation

In the microworld, there exists certain uncertainties about the position, behavior

and shape of the objects to be manipulated. Parts may stick, flip away and de-

formed with an applied force in micromanipulation tasks. In addition, the shapes of

micron sized objects may not agree with the designed geometry, since manufactur-

ing systems cannot ensure very high precisions in µm. Therefore, a microassembly

workstation was developed to compensate the mentioned uncertainties and to ma-

nipulate small parts with small tolerances and at high accuracies. The model of the

overall experimental system setup is shown in Fig. 2.4.

The mentioned functional requirements for the microassembly workstation call

for the use of external sensors to guide manipulation tasks. Thus, three types of

feedback are provided from the vision, position and force sensors in the system.

The vision system constitutes the key component in the setup, since high precision

micromanipulation is strongly dependent on the visual feedback which allows direct

measurement of positions and orientations of the objects and the end effectors. A

visually guided manipulation implies the use of monitoring devices with high mag-

nifications such as microscopes. Based on the specifications of a micromanipulation
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scenario, the size of the object to be manipulated and thus the required resolution

and field of view may vary. Before the properties of the vision system are presented,

some basic definitions about optical microscopy should be reviewed.

• Magnification is the ratio between distance between two points on a specimen

and their corresponding projections in an image under the assumption that

these points lie on a surface parallel to the image plane.

• Field of view is the maximum visible area that can be monitored by the op-

tical system. High magnifications imply narrower field of view. Thus, using

multiple vision sensors at different magnifications, we can provide to monitor

a relatively large field with better resolution.

• Depth of field is the distance between the closest and farthest objects in focus

within a scene as viewed by a lens at a given focus. The manipulators and

objects must move within the depth of field to be monitored and tracked at

each iteration. Due to the small depth of field in optical microscopes, it is

challenging to realize 3D manipulation tasks under an optical microscope.

• Working distance is the distance between the closest surface of the monitored

object and the objective front lens. It must be large to allow unobstructed

motions of the manipulators.

In the microassembly workstation different magnification and resolution levels

are available. In order to allow global and local visual information, a coarse and

a fine view with variable zooming are employed. These cameras are mounted on a

stereo optical microscope, Nikon SMZ1500 with 1.5x objective and 0.75:11.25 zoom

ratio. While an A602fc Basler with 9.9x9.9 µm cell sizes provides coarse view for

the sample stage, a Sony XCD-X710CR with 4.7x4.7 µm cell sizes is used for fine

and narrower field of view. The vision system is shown in Fig. 2.5.(a).

A typical visually guided manipulation requires the position information of the

object and the end effector in x, y and z to realize 3D manipulation tasks. However,

it is challenging to get the measurement in z axis for a micromanipulation task, since

optical microscopes suffer from the low depth of field which limits the focal plane

into a small range and causes defocused view of the object monitored outside this
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Figure 2.5: Vision Hardware of Workstation

region. Although exploiting defocus can yield a coarse information along the z axes,

it results in poor accuracy for micron precision applications and it is computationally

expensive. Thus, to acquire the height information for the interested object, a

lateral microscope with an additional CCD camera is employed. A Sony XCD-

X710CR coupled to a 35x close focus microscope with variable zoom and relatively

long working distance is used to acquire the height information between the sample

stage and the end effector, shown in Fig. 2.5.(b).

It is also important to accurately handle the micro parts for a dexterous ma-

nipulation, since the micro parts to be manipulated are usually fragile. Therefore

two types of end effectors, a probe and a microgripper which are integrated with

capacitive force sensors and are able to sense the forces down to 0.4 µN and 0.01 µN

respectively. The force sensing probe and gripper are mounted on tilted holders to

reach the desired point effectively. An illustrative figure is given in Fig. 2.6.(a).

The inclined end effectors can approach to micro samples without touching unde-

sired points on the sample stage. However, the inclination leads to the requirement

of relatively large working distance and depth of field. Therefore a 1.5x objective
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Figure 2.6: Microassembly Workstation

with 44.5 mm working distance is utilized to provide well focused images of the end

effectors and samples.

Transporting and positioning the microparts are crucial for the execution of the

microassembly tasks as well as the handling issues. The force sensing probe and

gripper are mounted on two separate 3-DOF fine positioning stages (PI M111.1DG

with effective x-y-z range of 15x15x15 mm and 50 nm closed loop precision). On

an x-y-θ positioning stage, (PI M111.1DG with effective x-y range of 15x15 mm,

50 nm close loop precision, and 4.5× 10−5 degrees rotation resolution) a glass slide

is mounted and is positioned under the force sensing probe and microgripper. On

the glass slide, the samples, polystyrene balls and biological cells which are used in

experiments can be located. The high precision positioning stages are depicted in

Fig. 2.6.(b).

The system consists of three IEE1394 cameras, 9 DC motors and an illumination

system. All those components are controlled with a centralized structure including a

main and a slave control computer. While the main control computer gives reference

values without any direct connections to the actuators, force and positioning sensors,

the slave one runs a fast control loop based on the directives from the main computer.

The control software is written in the C programming environment and provides

real-time control for moving and positioning the stages precisely. Moreover, video

data from the IEE1394 cameras is directly transferred to the main computer and

the computer vision software is written in C++ environment by using the OpenCV

library.
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2.3 Visual Servoing

The majority of the industrial robots operate in certain workplaces which are de-

signed to suit the robots. In today’s world, robots are not fully capable of working

in uncluttered environments due to the limitations in their sensory information and

data processing capability. Although it has already been known that enhancing the

number and output quality of sensors improves the versatility and flexibility of the

commercial robots, it has not been proved to be cost-effective yet.

The development of digital camera and microprocessor technology in the early

1990’s enables to use low-cost and high performance vision units in robotic appli-

cations. Nevertheless vision is not prevalently used in factories yet, using visual

information has become one of the effective way to compensate the uncertainties

in the calibration of systems, manipulators and workspaces in some fields such as

micromanipulation and microassembly. In the micro domain, high precision relies

on an accurate calibration of the system. However, strictly depending on the model

of the systems suffers from the thermal growth errors that can only be compen-

sated using large and expensive cooling systems [6]. Moreover, it is more difficult

to model the mentioned forces in micro domain. Thus, visual servoing methods are

employed to compensate the modeling uncertainties for cost effective and reliable

manipulations in this setup.

Visual servo control refers to using visual feedback to control a robot. The

visual information may be obtained from a camera that is mounted on a robot and

moving with the robot or the camera can be stationary and observe the robot motion

from a fixed point. These two configurations are called eye-in-hand and eye-to-

hand systems respectively. An illustrative figure is shown in Fig. 2.7. In addition,

different configurations such as multiple cameras on pan-tilt heads observing the

robot motion also exist in the literature.

Visual servoing has been extensively studied in various forms for more than

three decades starting from simple pick-and-place tasks to today’s real-time, ad-

vanced manipulation of objects. Over the past years, intense research effort in this

area has resulted in numerous visual servoing approaches. In 1980 visual servo sys-

tems were classified into two groups in terms of their control structure by Sander-

son and Weiss [26]. In the first group, control of the robot is performed in two
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Figure 2.7: Top: (a) Eye-in-hand system. (b) Eye-to-hand system. Bottom: Oppo-

site image motion produced by the same robot motion [30]

stages. Vision controller transmits the input to robot controller and it converts the

signal into joint feedback. This group is called dynamic-look-and-move systems.

In the second group, the vision controller directly sends the control input to the

joints which is called direct visual servoing [29]. Another taxonomy classifies the

visual servo schemes into two main groups, image-based visual servoing (IBVS) and

position-based visual servoing (PBVS) [27], [28]. In IBVS, two dimensional image

measurements are used directly to estimate the desired movement of the robot. The

second approach is based on computation of camera pose from a set of measurements

which requires a calibrated camera and the 3D model of the observed object. IBVS

and PBVS structures are schematically shown in Fig. 2.8 and Fig. 2.9 respectively.

In the figures, the joint inputs and the visual control laws are denoted by q̇ and v

respectively. From the figures, one can observe that visual servo control relies on

techniques from image processing, estimation and control theory. The basic compo-

nents of the IBVS scheme, feature extraction, real-time tracking and visual control

law design are explained in the next chapter.

Formally speaking, a typical vision based control scheme can be formulated as

follows. The error function e(t) for a conventional visual servoing method can be

given by

e(t) = s(m(t), a)− s∗ (2.1)

where m(t) denotes a set of image measurements (e.g., corner, object centroid) and a

contains an additional information about the system such as the intrinsic parameters
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Figure 2.8: Image Based Visual Servoing Scheme

Figure 2.9: Position Based Visual Servoing Scheme

of the camera or 3D model of the object. These terms are used to compute a vector

of k visual features, s(m(t), a). s∗ contains the desired values of these features.

According to the previously stated taxonomy, IBVS and PBVS differ how we design

the vector s. In IBVS, s contains a set of features which are already available in the

image. In PBVS, s consists of a set of 3-D parameters, which has to be computed

from image measurements.

Having selected the way how to design the vector s, a velocity control law can be

easily designed by exploiting the relationship between s and the spatial velocity of

end effector in the camera frame. Let the kinematic screw is denoted by (v = (v, ω)T )

with the instantaneous linear velocity v of a point in the space and the instantaneous

angular velocity ω of the end effector frame.

The relationship between s and v is given by

ṡ(p, t) =
∂s

∂p

dp

dt
+

∂s

∂t
= Lsv +

∂s

∂t
(2.2)

where p is the pose between the camera and the end effector, k is the number of the

image features, v is the difference between the end effector and the camera velocity,
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LsεR
k×6 is the image interaction matrix which is a function of the visual features

and intrinsic/extrinsic parameters of the visual sensor.

Having (2.1) and (2.2), the relationship between the time variation of the error

and the end effector velocity is given

ė = ṡ− ṡ∗ = Lev +
∂e

∂t
− ds∗

dt
(2.3)

where Le = Ls and ∂e
∂t

is the time variation of e.

Considering v as the input to the robot controller, numerous solutions are pro-

posed to regulate the task function (2.3) such as P, PI, PID [27], nonlinear control

law [31], optimal control [32], predictive control [33], robust control [34] and invari-

ant visual servoing [35].
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Chapter 3

Micromanipulation Using Vision & Force

In the literature, several micromanipulation works are presented with no sensor [19],

only visual feedback [17], [18] and both vision and force information [4], [10], [15].

Since manipulating an object needs the ability to observe, position, and physically

transform the object, both vision and force are essential feedback types for our ver-

satile micro-assembly system. In this chapter, we are presenting the end-effector and

object detection, real-time tracking, visual controller synthesis, autofocus methods,

force feedback and path planning algorithm.

3.1 Visual Feedback

3.1.1 Object and End Effector Detection

Manipulating micro objects with the probe/gripper requires the knowledge of po-

sition of the probe/gripper and the object. In order to obtain these information,

we need to have a priori information about the size and shape of the probe/gripper

and the object. In the micromanipulation experiments, micro polystyrene balls with

different diameters (between 8 and 70 microns) are manipulated by the probe which

is mounted on the x-y-z positioning stage. In each experiment, only one type of

polystyrene balls with same diameter size is used. Thus, we can use this a priori

knowledge on the geometrical models of the objects and the probe in the detection

algorithms.

Having characterized the geometrical properties of the objects and the probe, it is

important which information has to be extracted from the image. Center of gravity

of an object, corner point, area of a surface and distance between two points can

be given as examples to the image features. In the experiments, it is aimed to push
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the microobjects to the desired locations accurately using a probe. To facilitate

such a scenario, we need to have the information about the center of gravity of

the microball, its diameter, the tip location and orientation of the probe. Thus,

several image processing algorithms, using a priori size and shape information, are

developed to obtain the desired features in the setup.

Object Detection

Since the probe moves in the three dimensional space, it is vital to detect the three

dimensional coordinates of the contact point on the ball. Thus, real-time extraction

of that point from the top and side cameras becomes crucial. Since the top and

side views can be assumed to be calibrated, the same algorithm is implemented for

the images from the cameras. Since the cameras have different configurations and

have been exposed to different illumination effects, different thresholding values are

assigned for the two views.

The first step in the circle detection algorithm aims to remove the noise and the

perturbations by using a smoothing filter. An illustrative top view of the workcell

which contains several microballs and some dust particles is shown in Fig. 3.1.

One can observe that back-lighting is used to illuminate the sample stage, since the

Microspheres

Dust
Probe

Cluster of
Microspheres

Figure 3.1: Top View of the Sample Stage

illumination from above makes the image processing harder and unstable due to the

reflectance from the shiny surface of the polystyrene balls.

The next step is to differentiate the balls from the background. Since the back-

light illumination power is controllable, a threshold is automatically set by using the
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90 percent of background intensity value. It can be observed from the Fig. 3.2.(a),

the large number of pixels gathered around the intensity value 235 which is the mean

background grayscale value. The thresholded image is depicted in Fig. 3.2.(b).

(a) (b)

Figure 3.2: (a) Histogram of the Sample Stage Image, (b) Image After Thresholding

In the next step, a connected component finder algorithm is employed to retrieve

all the contours and organizes them into two-level hierarchy for the thresholded

image in the previous step. As the connected components are found, the contours

whose areas are in the predetermined range are chosen as the region of interests. Now

we can eliminate the regions where the clusters of microballs and relatively bigger

dust from the microspheres standing alone. Note that the cluster of balls are not

chosen to be manipulated due to difficulty in separation. The resulting segmentation

yields the regions which contains only the individual microspheres, depicted in Fig.

3.3. Having the balls segmented, the generalized Hough transform which is robust

under noise is implemented to detect the spheres, shown in Fig. 3.4. It should be

notified that the Hough transform with a minimum distance criteria between the

centers might be employed to detect the circles in the entire frame without using the

previous steps. However, it would not allow a real-time performance. On the other

hand, using the explained algorithm, the center positions and radii of the spheres

are detected at a rate of 60 Hz in the experiments.

End Effector Detection

It is vital to detect and update position of the end effector from the top and side

cameras during the experiments in order to increase manipulation precision. Since

18



Figure 3.3: Segmentation Result

Figure 3.4: Extracted Circles

the end effector is moved in the 3D, two individual algorithms are required to detect

the position of the probe in the x-z and x-y plane.

The geometries of the end-effector in the x-y and x-z planes which can be mea-

sured with the two microscopes (optical and close focus) are constant. It is well

known that template matching methods give good results for this sort of detection

problems. Template matching compares for the best match with a reference tem-

plate by sliding the template from the top left to the bottom right of the image.

One of the drawbacks of template matching is its large computational cost. The

size of the template and image are the factors that determine the computation time.

However, the template size is also important for the robustness of detection. Thus,

an optimal size of image with a region of interest and template is chosen in the ex-

periments. Another shortcoming is that template matching does not give subpixel
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(a) (b)

Figure 3.5: (a) Original Image of the Probe (b) Extracted Edge Pixels of the Probe

results, unless it is modified with an interpolation algorithm. Since it is not required

to have subpixel accuracy in the x-z plane (side camera), the probe is detected by

using template matching with the Normalized Cross Correlation (NCC) technique

comparison method,

C(u, v) =

∑
x,y(I(u + x, v + y)− Iu,v)T (x, y)∑

x,y(I(u + x, v + y)− Iu,v)2
∑

x,y T (x, y)2
(3.1)

where I(u, v), T (x, y) and I(u, v) denote the image, template and local image mean

at location (u, v) respectively. The brightness of the image and template can vary

due to lighting conditions during the experiments. Thus NCC method which uses

the normalized images is employed to eliminate the illumination effects.

Computing the contact point of the probe in the x-y plane is vital to locate

microspheres to the desired targets precisely. Therefore the detection of probe tip

is computed in subpixel accuracy by exploiting the known geometry of the probe.

In the algorithm, the edge points of the probe are extracted by the Canny edge

detector. The original image and edge map of the probe are shown in Fig. 3.5.

Since we have a priori information about the geometry and the orientation of the

probe, the edge pixels with the predetermined slopes can be fitted to two parallel

lines in a subpixel accuracy. It is assumed that the probe tip is on the line which is

parallel and in the middle of the previously extracted lines. The exact coordinate

of the tip is computed through searching the first edge pixel along the line. The

detection algorithm is illustrated in Fig. 3.6. Note that in the presented detection

algorithms in x-y and x-z planes, it is assumed that the home position of the probe
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Figure 3.6: Computed Image Features for the Probe

is known.

3.1.2 Real-Time Tracking

After the initial detection of the object and the probe, it is not required to process

the entire image for the following frames. Having computed the required image

features of object (xobj
k−1) and the probe tip (xtip

k−1) for t = k − 1, the positions can

be estimated using an estimator for the next time step t = k. Assuming that the

motions of the object and the probe are governed by the linear difference equations,

xk = Axk−1 + Buk−1 + wk−1 (3.2)

with a measurement z ∈ <m

zk = Hxk + vk (3.3)

where xk ∈ <n is the state vector and A ∈ <n×n is the state transition matrix.

The matrix B ∈ <n×l relates the optional control input u ∈ <l to the state xk.

The matrix H ∈ <m×n relates the state xk to the measurement zk. The random

variables wk−1 and vk represent the white process and measurement noise with

normal probability distributions respectively.

Based on the model in (3.2) and (3.3), the estimated object center x̂obj
k and the

probe tip x̂tip
k can be computed using the discrete Kalman filter [40]. Once we have

x̂obj
k and x̂tip

k , these coordinates can be used to define new regions of interest at

t = k in which the detection is performed. Employing a region of interest improves
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the computation time and robustness of the mentioned detection algorithms. As a

result, the locations of two image features, position of the probe tip and the sphere

which is being pushed are tracked by the tracking module in real-time during the

micromanipulation experiments.

3.1.3 Visual Control Law

The complex geometry of the observed biological samples and high numerical aper-

tures of optical microscope, which results in small depth of field, lead to a challenging

3D pose estimation problem. Therefore, an image based visual servoing approach is

preferred in the micromanipulation tasks. In addition, eye-to-hand configuration is

assumed in the vision based control design, since the vision sensors are stationary in

the setup. Thus, considering v as the input to the robot controller in the equation

(2.2), a simple proportional control to ensure an exponential decoupled decrease of

the error (ė = −λe) is designed:

v = −λLs
†e (3.4)

where λ is a scalar and Ls
†εR6×k is the pseudo inverse of Ls matrix. Note that the

derivation of the interaction matrix for a point feature is given in the Appendix A.

It is also possible to design control laws that optimize various system performance

measures.

Optimal Visual Controller Synthesis

Equation (2.2) can be written in discrete time as

s(k + 1) = s(k) + TLs(k)v(k) (3.5)

where s ∈ <2N is the vector of image features being tracked, N is the number of the

features, T is the sampling time of the vision sensor, and v(k) is the velocity vector

of the end effector.

Employing the optimal control techniques in [32], the cost function can be rede-

fined to penalize the pixelized position errors and the control energy as

E(k + 1) = (s(k + 1)− s∗(k + 1))T Q(s(k + 1)− s∗(k + 1)) + vT (k)Lv(k) (3.6)
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The resulting optimal control input v(k) which minimizes the cost function can

be derived as

v(k) = −(TJT (k)QTJ(k) + L)−1TJT (k)Q(s(k)− s∗(k + 1)) (3.7)

The weighting matrices Q and L can be adjusted to ensure desired response.

3.1.4 Autofocusing

It is challenging to use visual feedback in microassembly due to the small depth

of field in microscopes. When we use microobjects with different heights, inclined

surfaces or cameras whose optical axis are not perpendicular to the scene, only small

portions of the workspace might be in focus. However, object detection algorithms

often demand sharply focused images to obtain the certain information. Thus, it

is important to capture focused images of a moving image feature such as tip of

an end effector in the 3D space during a microassembly task. In order to use the

visual feedback efficiently in the experiments, we developed an autofocusing module

to continuously have sharp images of the features tracked.

According to Krotkov [36], the first problem of automatic focusing is that given

the projection P ′ = (u, v) onto the focal plane of an object point P = (x, y, z)

(z unknown), what focal length, produces the sharpest definition of P ′; and the

second problem is given the focal length acquired from autofocusing, to recover the

z component of P which is the depth. Our main consideration in the experiments

is the first one.

In the literature, a variety of algorithms to measure the sharpness of an image

are proposed and compared [36], [37]. These methods can be classified into three

main groups: derivative, statistics and histogram based methods. The derivative

based methods relate the focus measure with the high frequency content in the

images. The second group searches for focused images using correlation and/or

variance. The third, one focus measure is determined by exploiting the histogram of

spatial and frequency intensities in the image. In order to judge the performance of

the focus measures for the manipulation experiments, the best three criterions, two

derivative based (Tenengrad and energy laplace) and a statistics (normed variance)

based methods are evaluated. The focus criterion functions for the measures are
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given as

FTenengrad =
∑

Width

∑

Height

I2
x(u, v) + I2

y (u, v)

Fenergylaplace =
∑

Width

∑

Height

C(u, v)

Fnormedvariance =
1

Height×Width× µ

∑

Width

∑

Height

(I(u, v)− µ)2

(3.8)

where Ix and Iy are the derivatives of the image I along x and y directions respec-

tively. C(u, v) is the second derivative of I image and µ is the mean of the intensities

in I.

In order to test the algorithms, a sequence of the images at different Z coordi-

nates are captured. Since all the regions in the field of view do not have the same

height, a planar patch on the captured object using 50×50 pixels window are chosen

to be processed during the experiment. The microscope moves along the z axis in a

range of 1750 microns with 5 micron steps. In order to eliminate the displacement

of the object in x and y directions due to the tilt angles between the camera and the

sample frame during the z movement, the center of the monitored object is aligned

with the image center. The positioning stages are driven to minimize the distance

between the image and object center using the visual feedback. Figure 3.7 shows

two aligned images of a resistance with the dimensions 2 × 1 × 0.5 mm from the

captured array at different depths.

(a) (b)

Figure 3.7: (a) Defocused and (b) Focused Images

The results of the presented focus measures are depicted in Fig. 3.8. Note that

in order to make valid comparisons, the focus curves are normalized.

Before evaluating the results, it should be known that creating an image sequence

with small linear incremental steps is a very slow process. Thus, the optimal focus

24



0 200 400 600 800 1000 1200 1400 1600 1800
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Z Position (µ m)

F
oc

us
 M

ea
su

re

0 200 400 600 800 1000 1200 1400 1600 1800
0.04

0.05

0.06

0.07

0.08

0.09

0.1

Z Position (µ m)

F
oc

us
 M

ea
su

re

(a) (b)

0 200 400 600 800 1000 1200 1400 1600 1800
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

Z Position (µ m)

F
oc

us
 M

ea
su

re

(c)

Figure 3.8: Results for (a) Tenengrad, (b) Energy Laplace, (c) Normed Variance

measure should be unimodal, monotonic, and should reach the maximum only when

the image is focused in order to support a faster algorithm [38]. According to this

criterion, the statistics based algorithm, the normalized variance performs better

performance than the other two algorithms. It is more selective to the focus changes

and has less local maximums. Although this algorithm amplifies the effect of noise,

the images can be pre-processed before the focus measure.

Based on the unimodal assumption of the focus measure profile, the normalized

variance focus measure was applied using Fibonacci Search, a technique to narrow

the parameter space down to the peak sharpness in the mentioned z-axis range for

the focusing motor. In the application of this technique, an interval in the z-axis

is chosen i.e. [a, b]. Then, in this interval, two z-axis values a1 and b1 are chosen,

where a1 < b1 using Fibonacci numbers. At a1 and b1, the sharpness is calculated

according to the normalized variance focus measure. Finally, if sharpness at a1 is

bigger, the new interval is [a, a1], else the new interval is [b1, b]. The search algorithm
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works that way and at each step, the interval where the highest sharpness will be

searched becomes smaller. As a result, the algorithm finds at which depth the

highest sharpness occurs and acquires the sharpest image. The initial and focused

images of two samples using the presented algorithm are depicted in Fig.3.9.

(a) (b)

(c) (d)

Figure 3.9: (a) Defocused and (b) Focused Images of a Drosophila (c) Defocused

and (d) Focused Images of Pumpkin Cells

3.2 Force Feedback

Visual information without force feedback is not adequate for sophisticated micro-

manipulation tasks which requires a high degree of dexterity. Using only visual

data, we can model and control positioning of an object. However, pure position

control for delicate or fragile objects such as biological material cannot ensure safe

and successful manipulation strategies. Thus, force control is required to manip-

ulate the objects successfully without damaging to the object. Furthermore, force
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feedback in the micromanipulation tasks can also be used to detect the interaction

forces between the end effector and the object. This information is employed to

reconstruct the state of the objects and to characterize the mechanical properties of

the object by the authors of [13], [14].

In our setup, the end effectors, the probe and the gripper, are equipped with

capacitive force sensors which can sense compression and tension. In the microma-

nipulation tasks, we are able to continuously sense the interaction forces during a

contact between the object and the probe. This information can be used to control

the manipulation force in order to prevent excessive forces that may damage the

probe and the object, and push the object to undesired locations. An example plot

which demonstrates the interaction force between the microsphere and the force

sensing probe is given in Fig. 3.10.
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Figure 3.10: The Contact Force Between the Probe and the Microsphere

3.3 Path Planning for Collision-Free Transportation of Microobjects

In the previous sections, we explore the required modules to dexterously manipulate

the microparticles. Using the object detection, tracking, visual and force control

modules, we are able to construct an algorithm to push a microsphere along a

designed path and locate it to the desired target. An illustrative scene for the

problem task is given in Fig. 5.8.

The stated micromanipulation task for a microsphere can be extended to the

scenarios which aim to move several microparticles serially along the computed
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Figure 3.11: Automatic Micromanipulation of a Microsphere, (a) Initial Position,

(b) Final Position

path and to generate different patterns.

3.3.1 Algorithm

The algorithm to achieve the desired pattern formation is given below:

1. The side camera determines the optimal z position by processing the sample

stage scene and the probe is moved to the determined contact point in the x-z

plane.

2. Workspace is explored, the particle and obstacle map are recorded before the

workspace is occluded by the moving probe.

3. If there are not adequate microballs for predetermined pattern, the program

is terminated.

4. The closest microsphere to the target is chosen as the first particle to be pushed

so that there will be no obstacle along the pushing line.

5. Unless there is no obstacle along the line between the probe tip and center of

the particle, the probe directly approaches to the destination at a given speed

in the x-y plane. If any obstacle is detected, the obstacle avoidance determines

the path until no obstacle exists along the way to the particle.

6. The probe is moved to the determined contact point in the x-y plane by having

the visual feedback from the top camera.
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7. The particle is pushed along the line which connects the center of the sphere

to the target until the particle is located at the target.

8. After the recorded obstacle map (in the second step) is reprocessed, the probe

is moved to its initial position directly, if there is no obstacle along the path to

the initial position. If any obstacle is detected on the way, obstacle avoidance

mode is activated until no obstacle exists along the line between the probe tip

and its initial position.

9. Go to the Step 2 until the predetermined pattern is generated.

The serial micromanipulation process includes five stages such as z movement,

explore, obstacle avoidance, pushing and home modes. In the z movement mode,

the probe tip is positioned along the z axes by processing the workspace image

acquired from the side camera. In the explore mode, probe is positioned such that

all the workspace is visible and no occlusion occurs due to the probe position. Thus

the global particle map can be extracted and used for the following steps. As the

probe approaches to the determined particle, there may be an obstacle on the line

to the destination. Then the region twice the size of the obstacle is surrounded by

a rectangular path, and it is followed by the probe until no obstacle exists on the

way to the particle. An illustrative figure is shown in Fig. 3.12.

In the home mode, the probe is moved to its initial position with the obstacle

avoidance support so that the particle map in the workspace can be updated with

no occlusion of the probe.
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Figure 3.12: Obstacle Avoidance
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Chapter 4

Parameter Estimation Schemes Using Vision and/or Force

4.1 Background

The problem of parameter estimation can be summarized as follows: Suppose that

a set of candidate models have been selected, and this set is parameterized using a

parameter vector θ. Searching for the best model within the set then turns into a θ

estimation problem. In the literature, several methods were proposed to systemize

such a search based on different priorities [39].

Having determined a model structure M(θ), the set of models using the param-

eter vector θ ∈ DM ⊂ <d is defined as,

M∗ = M(θ) | θ ∈ DM (4.1)

Suppose that our system is described as

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (4.2)

where y(t), q and e(t) are the output of the system, the forward shift operator and

a sequence of independent random variables with zero mean values and variances

λ respectively. G(q, θ) is the transfer function of the system and H(q, θ)e(t) is the

descriptor for additive disturbance.

Let a batch of data be collected from the system:

ZN = [y(1), u(1), y(2), u(2), . . . , y(N), u(N)] (4.3)

Now we are looking for a test to assess the ability of utilizing the information in

the obtained data for different models. We can define a prediction error given by a

certain model M(θ∗) to evaluate the prediction performance

ε(t, θ∗) = y(t)− ŷ(t|θ∗) (4.4)
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where ŷ(t|θ∗) is the predicted output for the model and these errors are computed

for t = 1, 2, . . . , N . In order to understand the magnitude of the prediction error

sequence, we can define a norm for the filtered ε(t, θ),

VN(θ, ZN) =
1

N

N∑
t=1

`(L(q)ε(t, θ)) (4.5)

where `(.) and L(q) are a scalar-valued function and a linear stable filter respectively.

Then the best estimate θ̂N can be computed as the minimization of (4.5),

θ̂N = arg min
θ∈DM

VN(θ, ZN) (4.6)

There are several methods to fit models in a given set to observed data which aim

to minimize the prediction error sequence [39]:

• The prediction error identification approach (PEM) which was defined above

contains well-known the least-squares (LS) method and the maximum likeli-

hood (ML) method.

• The subspace approach to identifying state-space models consists of estimating

the states from the given data and estimating the state-space matrices using

the LS method.

• There is also an alternative approach called the correlation approach which

contains the instrumental-variable (IV) technique.

In this chapter, some offline and online parameter estimation techniques are

employed to identify optical parameters in the first two sections and to characterize

the mechanical properties of the zebrafish emryos in the last section.

4.2 Optical System Calibration

In the Microassembly Workstation, the visual information is the crucial feedback

type to enable the micro-manipulation and -assembly tasks. Processing the visual

data determines the path of the end effector in the image frame, however the input of

manipulator is given in its own frame. Thus the mapping between the manipulator

frame and the image frame forms a critical component for servoing of the probe and
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the gripper. In order to compute the mapping, a calibration method is developed

and implemented.

Several calibration methods exist in the literature that are mostly used in macro

scale vision applications [41], [42], [43]. However, these methods cannot directly be

employed to calibrate an optical microscope coupled with a CCD camera due to the

unique characteristics of the optical system. Large numerical apertures and high

optical magnifications, and thus very small depth-of-field property of optical micro-

scopes restricts the calibration to a single parallel plane. Because standard Tsai

calibration requires the calibration pattern tilted at least 30 degrees and standard

Zhang calibration needs at least three images of the model plane for different orien-

tations, these methods could not propose a direct solution to the calibration of the

optical microscope system [41], [42]. Modifications to Tsai’s and Zhang’s algorithms

have resulted in several camera calibration algorithms ( [44], [45], [46]) for optical

microscope and camera systems.

The camera calibration for a near parallel case is proposed by Zhuang and Wu

[44]. Under the assumption of small rotations of the camera about the axes (x

and y), rotation angles (α and β) were linearized to simplify the extraction of the

extrinsic parameters by the small angle approximation. However, this model cannot

give accurate rotation angles and needs precalibration of the focal length which is not

possible for the optical microscope system. The calibration of an optical microscope

has been carried out by Zhou and Nelson that is based on the Tsai’s model, specially

modified for the parallel case and experimentally validated [45]. A further method

is proposed by Ammi et al. that is based on Zhang’s model and modified for a

single image [46]. Instead of conventional calibration pattern, a virtual calibration

pattern was constructed using a micromanipulator with sub-pixel localization in the

image. However, these methods are computationally complex and cannot propose

a solution for the close focus microscope, side view, since it does not have the same

image forming components with a typical microscope. Thus, a generic calibration

algorithm for the optical systems with high magnifications is designed based on weak

perspective camera model and Tsai’s algorithm [41].

In this method, the complex combination of the image forming elements in the

optical pathway is modeled via a weak perspective camera model. Three coordinate
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systems, objective (F o), image (F i) and world (Fw) coordinate systems, are used

in this model, shown in Fig. 4.1. The origin of the objective coordinate system

is the optical center point (o), the Xo and Y o axes are aligned with the rows and

columns of image frame respectively. The Zo axis is aligned with the optical axis

of the microscope. The origin of the image coordinate system is intersection of the

virtual image plane with the optical axis and X i, Y i are parallel to the Xo and Y o

axes. The world frame can be chosen arbitrarily. However, it is more convenient to

attach the frame to tip of the end effector.

Microscope
+

Camera

Xw

Yw

Zw

Xo

Yo

Yi

Zo

Xi

Fo
o

Fw

Fi

Manipulator

Optical Axis

Focal Plane

Figure 4.1: Assigned Image, Objective and World Coordinate Systems

The transformation from the world frame to the objective frame is given by a

rotation matrix (R) and a translation vector (T )



Xo

Y o

Zo


 =




r11 r12 r13

r21 r22 r23

r31 r32 r33







Xw

Yw

Zw


 +




Tx

Ty

Tz


 (4.7)

where

R =




cos α cos β cos α sin β sin γ − sin α cos γ cos α sin β cos γ + sin α sin γ

sin α cos β sin α sin β sin γ + cos α cos γ sin α sin β cos γ − cos α sin γ

− sin β cos β sin γ cos β cos γ




and α, β, γ are the roll, pitch, yaw angles respectively.

We can write the image of a point (Xo, Y o, Zo) in the undistorted image coordi-

nates (u′, v′) as

u′ = f
sx

Xo

Zo + ox

v′ = f
sy

Y o

Zo + oy

(4.8)
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where f is the objective focal length, sx and sy are horizontal and vertical pixel sizes

respectively, (ox, oy) are the coordinates of image center. Plugging the equation (4.7)

into (4.8) gives

u′ − ox = fx
r11Xw+r12Y w+r13Zw+Tx

r31Xw+r32Y w+r33Zw+Tz

v′ − oy = fy
r21Xw+r22Y w+r23Zw+Ty

r31Xw+r32Y w+r33Zw+Tz

(4.9)

where fx = f/sx and fy = f/sy. Since the object plane is nearly parallel with the

image plane and depth of the object itself is much smaller than the mean distance

(Z) along the optical axis, the undistorted image coordinates of an object can be

written in the objective frame as

u′ ≈ fx
Xo

Z
= MxX

o

v′ ≈ fy
Y o

Z
= MyY

o
(4.10)

where Mx and My are the magnifications along the x and y axes of the objective. It

is assumed that only first term of radial distortion is dominant for the microscope.

Thus

u′ = u(1 + κ1r
2)

v′ = v(1 + κ1r
2)

(4.11)

where (u, v) are the distorted image coordinates of a point and κ1 is the radial

distortion coefficient. Combining the above equations gives the following relation

between the image coordinates and world coordinates in terms of the parameters to

be calibrated (assuming Zw = 0)

u(1 + κ1r
2) = Mx(r11X

w + r12Y
w + Tx)

v(1 + κ1r
2) = My(r21X

w + r22Y
w + Ty)

(4.12)

Now we can start to solve for the unknown parameters. The first step of the algo-

rithm employs the Radial Alignment Constraint (RAC) from Tsai’s algorithm [41].

For each point i with (Xwi, Y wi, Zwi) and (ui, vi) as the 3D world coordinate and

the corresponding image coordinate, we can write the following relation using 4.12

(
viXwi viYwi vi −uiXwi −uiYwi

)




T−1
y r11

T−1
y r12

T−1
y Tx

T−1
y r21

T−1
y r22




= ui (4.13)
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Using five or more points, we can solve for T−1
y r11, T

−1
y r12, T

−1
y Tx, T

−1
y r21, T

−1
y r22.

Considering that the rotation matrix (R) is orthonormal with determinant +1, Ty

can be computed as

T 2
y =

Sr − [S2
r − 4(r′11r

′
22 − r′21r

′
12)

2]
1
2

2(r′11r
′
22 − r′21r

′
12)

2
(4.14)

where r′ij is scaled rij and Sr = r′211 + r′212 + r′221 + r′222. After the scale factor is

obtained, (Tx, Ty) can be computed and the rotation matrix can be recovered with

the following formula

R =




r11 r12 (1− r2
11 − r2

12)
1
2

r21 r22 s(1− r2
21 − r2

22)
1
2

r31 r32 r33


 (4.15)

where s = −sgn(r11r21 + r12r22) and third row can be computed as cross product of

the first two rows. It is straightforward to recover Tx.

In the second step, the total magnification (M) of the system and the radial

distortion coefficient (κ1) can be obtained by a least square solution. Note that the

aspect ratio (a = sy/sx) is assumed to be unity without loss of generality. Let

m = r11X
w + r12Y

w + Tx

n = r21X
w + r22Y

w + Ty

(4.16)

Combining (4.12) and (4.16) gives a homogenous linear system,

M(m + n)− κ1(u + v)r2 − (u + v) = 0 (4.17)

Rewriting the Eq.(4.17) gives

(
m + n −(u + v)r2

)

 w1

w2


 = u + v (4.18)

where w1 = κ̂1 and w2 = M̂ can be solved by a least square method.

4.2.1 Selection of Calibration Pattern

Camera calibration methods use reference calibration patterns with known geom-

etry. The correspondence between the geometry of the pattern and the extracted

features from the image of this pattern are used to compute the camera calibration
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parameters. The precision of the calibration pattern design plays an important role

in the accuracy of calibration. In addition to designing precise 3D points, using ro-

bustly extractable image features is also important to establish the correspondence.

Moreover, employing more correspondences in calibration improves the quality of

calibration.

In the literature, several calibration patterns with a variety of geometry (2D/3D),

shapes (circular/square) and geometric primitives (point/line) are reported. How-

ever, number of calibration pattern designs are limited in microscopy literature due

to the small depth of field of light microscopes. Zhou et al. [45] uses microfabricated

square arrays in various sizes. For every magnification level, they assign different

square sizes. This pattern contains a large number of calibration points which are

extracted using robust image processing algorithms. Ammi et al. [46] use the tip of

the micromanipulator to construct a virtual calibration pattern. The 3D position

of the AFM tip is determined from the position of micromanipulator with 100 nm

nominal positioning precision.

In this setup, two lithographically etched glass calibration patterns with square

and circle grids and a virtual calibration pattern are employed to calibrate the op-

tical system. These patterns are shown in Fig.4.2 . The square and circular ones

have many robustly extractable image features. For the square one, a Sobel edge

operator, edge linking and then a line fitting algorithm were applied to obtain every

edge line of the squares. Corners of the squares -intersections of the calculated edge

lines- were taken as the calibration points. For the round calibration grid, the cen-

ter coordinates of the circles were calculated through a least square solution. Using

static calibration patterns are not practical in microsystems due to the difficulty of

installing and removing the pattern in a small workspace. Moreover, each magnifi-

cation level requires patterns in different sizes. Another drawback is that the static

patterns cannot be employed to calibrate the lateral microscope. Constructing a

virtual calibration pattern with moving the manipulator is another alternative. Al-

though the lithographically etched glass calibration patterns are manufactured in

the precision of ∓2 microns, the micromanipulator can provide 50 nm nominal

positioning precision. Thus, the tip detection algorithm probably determines the

precision of the correspondence. In addition to intrinsic parameters, using manip-

37



(a) Square (b) Circular (c) Virtual

Figure 4.2: Calibration Patterns

ulator data provides the rotation and translation between the manipulator and the

objective frame which is crucial for the visual servoing applications. Furthermore,

it is possible to calibrate the system under every magnifications for the top and lat-

eral microscopes. Therefore, moving the micromanipulator to establish a calibration

pattern has many advantages over the static ones in microscope calibration.

4.2.2 Novel Calibration Algorithm

The algorithm which calibrates the optical system using a virtual pattern is given

as follows:

1. The end effector is detected using a template matching method and is started

to be tracked.

2. The controller generates a number of points for the end effector which corre-

sponds to the corners of a virtual calibration grid.

3. For each given position, the image coordinates of the probe/gripper is com-

puted using the Normalized Cross Correlation (NCC) technique.

4. Once the positions of the end effector in camera and manipulator space are

collected, the Radial Alignment Constraint (RAC) [41] is employed to compute

the rotation and translation from the manipulator coordinate frame to the

image coordinate frame.

5. The total magnification (M) of the system and the radial distortion coefficient

(κ1) can be obtained by a least square solution which minimizes the equation

(4.17).
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4.3 Online Optical System Calibration

In vision based micromanipulation and assembly applications, transporting mesoscale

objects within micron or submicron accuracies and assembling parts at different sizes

may require coarse to fine manipulation strategies. During these tasks, the objects

may need to be monitored and tracked under different optical magnifications. Thus

the optical microscope must be calibrated for each zoom level to effectively use vi-

sual feedback in micromanipulation and assembly tasks. A look-up table for different

optical settings can be generated to relate world and image coordinates. However,

constructing a look-up table is time consuming, and a very small change in position

or orientation of optical or mechanical components in the workcell requires the re-

construction of the look-up table. Therefore an online optical calibration scheme is

proposed to overcome the drawbacks of generating a look-up table in this section.

Since none of the optical microscope calibration methods ( [45], [46]) in the litera-

ture can be used for an online calibration procedure, a new formulation of optical

microscope calibration via a recursive least square method is presented.

4.3.1 Estimation of Projection Matrix

The geometrical relation between the 3D coordinates (Xw, Y w, Zw) of a point in

space and 2D coordinates (u, v) of its projection on the image plane can be written

by employing a 3× 4 projection matrix P ,



xi

yi

wi


 = P




Xw
i

Y w
i

Zw
i


 (4.19)

with

ui =
xi

wi

=
p11X

w
i + p12Y

w
i + p13Z

w
i + p14

p31Xw
i + p32Y w

i + p33Zw
i + p34

vi =
yi

wi

=
p21X

w
i + p22Y

w
i + p23Z

w
i + p24

p31Xw
i + p32Y w

i + p33Zw
i + p34

(4.20)

Note that i denotes the ith point in space and its projection in pixels.

Since the optical and mechanical components of micromanipulation workstations

are designed and machined very precisely, it is assumed that top surface of the sample

stage is perpendicular to the optical axis of the CCD camera. Moreover, the depth
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of an object which is placed under a microscope is usually much smaller than the

mean distance (Z) along the optical axis. Thus (4.20) is rewritten as

ui ≈ p11X
w
i + p12Y

w
i + p14

Z

vi ≈ p21X
w
i + p22Y

w
i + p24

Z
(4.21)

Note that Zw = 0 is assumed. Transforming (4.21) into a linear system gives


 ui

vi


 = P




Xw

Y w

1


 (4.22)

where P ∈ <2×3.

Eq. (4.22) can be recasted linearly in terms of the entries of P matrix as follows:

y = ϕT θ (4.23)

where y =


 ui

vi


, ϕ =


 Xw

i Y w
i 1 0 0 0

0 0 0 Xw
i Y w

i 1




T

and

θ =
(

p11 p12 p13 p21 p22 p23

)T

In order to solve for the parameter vector θ, ϕ matrix has to be nonsingular.

Thus, one can assign at least three points with known world and image coordinates

to provide a nonsingular ϕ matrix. However, computing the coordinates of multiple

points in a single frame with only one encoder output requires a precise CAD and

the orientation of the end effector which is being tracked during the calibration.

On the other hand, assuming the transformation parameters are constant for three

consecutive frames, the regressor matrix ϕ can become a square matrix. Augmenting

ϕ matrix with two previous measurements gives

40






uk

vk

uk−1

vk−1

uk−2

vk−2




︸ ︷︷ ︸
y

=




Xw
k Y w

k 1 0 0 0

0 0 0 Xw
k Y w

k 1

Xw
k−1 Y w

k−1 1 0 0 0

0 0 0 Xw
k−1 Y w

k−1 1

Xw
k−2 Y w

k−2 1 0 0 0

0 0 0 Xw
k−2 Y w

k−2 1




︸ ︷︷ ︸
ϕT




p11

p12

p13

p21

p22

p23




︸ ︷︷ ︸
θ

(4.24)

where the redefined y ∈ <6 and ϕ ∈ <6×6.

Suppose that the observed data actually have been generated by (4.24), we can

define our predictor as,

ŷ(t|θ) = ϕ(t)T θ̂(t) (4.25)

With (4.25) the prediction error becomes

ε(t, θ) = ϕ(t)T θ(t)− ϕ(t)T θ̂(t) (4.26)

and the criterion function resulting from (4.5) with L(q) = 1 is

VN(θ, ZN) =
1

N

N∑
t=1

`(θ, t) (4.27)

Since there is no guarantee that the added points to ϕ carry sufficient information

in practice, the problem of minimizing VN may be ill-conditioned in the sense that

ϕ matrix may not be full rank. Thus, VN can be modified by adding a cost on the

squared distance between θ and θ0 which is a fixed point in the parameter space.

WN(θ, ZN) = VN + δ|θ − θ0|2 =
1

N

N∑
t=1

`(ε(θ, t)) + δ ‖ θ − θ0 ‖2 (4.28)

Moreover, it may happen that measurements at different time instants are consid-

ered to be of varying reliability. The reason may be that the degree of noise corrup-

tion changes or that certain measurements are less representative for the system’s

properties. In such cases, the norm ` be time varying:

WN(θ, ZN) =
1

N

N∑
t=1

`(ε(θ, t), θ, t) + δ ‖ θ − θ0 ‖2 (4.29)

Using a weighting function β(N, t), the different measurements could be assigned

different weights. The new WN can be redefined with `(ε) = 1
2
β(N, t)ε2 as

WN(θ, ZN) =
1

N

N∑
t=1

1

2
β(N, t)([y(t)− ϕT (t)θ]2 + δ ‖ θ − θ0 ‖2) (4.30)
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The estimate that minimizes the criterion in (4.30) is

θ̌t = arg min
N∑

t=1

1

2
β(N, t)([y(t)− ϕT (t)θ]2 + δ ‖ θ − θ0 ‖2) (4.31)

This is given by

θ̌t = R
−1

(t)f(t) (4.32)

R(t) =
t∑

k=1

β(t, k)[ϕ(k)ϕT (k) + δI] (4.33)

f(t) =
t∑

k=1

β(t, k)[ϕ(k)y(k) + δθ0] (4.34)

It is also important to have the parameters of the system available online, while

the system is in operation. Let the weighting sequence has the following property

β(t, k) = λ(t)β(t− 1, k) 0 ≤ k ≤ t− 1

β(t, t) = 1
(4.35)

(4.32)-(4.34) are rewritten as a recursive algorithm

θ̂t = θ̂t−1 + R
−1

(t)f(t) (4.36)

R(t) = λ(t)R(t− 1) + ϕ(t)ϕT (t) + δI (4.37)

f(t) = λ(t)f(t− 1) + ϕ(t)y(t) + δθ0 (4.38)

4.3.2 Computing Optical System Parameters

Having recovered the projection matrix P from the estimate θ, the entries of the

projection matrix can now be related to the intrinsic and extrinsic optical system

parameters by using (4.9) and (4.10),

P =


 Mxr11 Mxr12 MxTx

Myr21 Myr22 MyTy


 (4.39)

Since the image center (ox, oy) is assumed to be known, it is not explicitly shown in

(4.39). Assuming that the aspect ratio (α = sy/sx) is unity, r11, r12, r21, r22 can be

obtained up to a scale. Using the equations (4.13)-(4.15), magnification, the three

rotation angles, Tx, Ty can be computed.
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4.4 Force Estimation

4.4.1 Background

In dexterous micromanipulation tasks, the ability of monitoring, positioning and

transforming the object is usually required. Although, some successful experiments

with only monitoring and positioning objects were reported in [5], [10], [24], [25],

more complex manipulation scenarios demand an additional force information to

provide high dexterity. Force sensing is specifically important for biomanipulation

tasks, since the cells and tissues involved are often fragile and easily damaged. Thus

pure positioning control cannot usually guarantee a successful operation without

damaging the object in a biomanipulation task. On the other hand, some applica-

tions in particularly aim to obtain force information to understand the forces be-

tween the manipulator and object. In these applications, quantitative force measure-

ments are employed to understand the material property information and to charac-

terize the objects. Especially, measuring force on a cell and/or tissue membrane are

important for understanding relationship between mechanical forces and structural

deformations which hold potential for studies on zona hardening, polyspermy and

implantation failures in mammals.

Force measurement in microscale is usually done by measuring the change in cer-

tain properties of the sensing element such as strain gauge, piezoelectric, capacitive

sensors or using laser-based optical techniques such as atomic force microscope [20].

Furthermore, some works [21] and [47] propose vision-based force measurement as

an alternative method which has the advantage of using the already existing micro-

scope optics and cameras in a micromanipulation workstation. In [21], Kaneko et al.

reports an intraocular pressure estimation method by using the obtained cornea de-

formation from image and the nonlinear cornea model. In [47], the author presents

a method to visually measure the force distribution applied to a linearly elastic ob-

ject using the contour data in an image. On the other hand, some works employ

both a force sensor and vision algorithms to understand the mechanical properties

of microobjects. In [11], a two-axis cellular force sensor and structural deformations

on both mouse oocytes and embryos obtained from a microscope are used describe

the mechanical properties of the mouse zona pellucida based on a biomembrane me-
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chanical model. Same biomembrane model is utilized to understand the evolution

of the chorion for the different developmental stages of zebrafish in [13]. The point

load biomembrane model in [11] and [13] assumes that the cell starts with a planar

circular area with zero residual stress and deformed in a symmetric way along the

micropipette, however, all the cellular structures are not symmetrical. Moreover,

the dynamical effects are not considered during a micromanipulation task in this

model.

4.4.2 Estimation Model

We propose a new approach to estimate the mechanical properties of cellular struc-

tures which uses vision and force information. In this method, not only the static

but also dynamic effects are considered using a nonlinear mass-spring-damper model.

Thus, the computed parameters can be utilized to estimate the imposed force on

a biomembrane and provide the adequate information to control the position, ve-

locity and acceleration of the probe without damaging the cell or tissue during a

micromanipulation task.

The one dimensional mass-spring-damper model with a hardening spring, illus-

trated in Fig. 4.3 is given as,

F = mẍ + bẋ + k1x + k2x
3 (4.40)

where F is the applied force, m, b, k1 and k2 are the mass, damping, first and second

spring coefficients of the object which is being manipulated.

F

x
k

1
, k

2

b

Figure 4.3: Nonlinear Mass-Spring-Damper Model

Assuming that the applied force, acceleration, velocity and position of the object

are known, (4.40) can be rewritten linearly in terms of the unknown m, b, k1 and

k2 parameters as follows,
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F =
(

ẍ ẋ x x3

)

︸ ︷︷ ︸
ϕT




m

b

k1

k2




︸ ︷︷ ︸
θ

(4.41)

Since measuring the force for multiple points in each iteration with a single force

sensor output is not possible, assuming that the unknown parameters are constant

for at least four time steps, ϕ can be expanded to a square or overdetermined matrix

by concatenating force and deformation measurements from these time steps,




Fn

Fn−1

Fn−2

Fn−3




=




ϕT
n

ϕT
n−1

ϕT
n−2

ϕT
n−3




︸ ︷︷ ︸
ϕT




m

b

k1

k2




︸ ︷︷ ︸
θ

(4.42)

where n is the nth time step, ϕi =
(

ẍi ẋi xi x3
i

)T

and the redefined ϕ ∈ <4×4.

Although θ vector can be solved with the standard least squares, ϕ may be

ill-conditioned or yielding many solutions. In order to compute θ with desirable

properties, the cost function is given with a regularization term,

ε =‖ F − ϕT θ ‖2 +δ ‖ θ − θ0 ‖2 (4.43)

where δ is a positive scalar. Adding the regularization term δ ‖ θ − θ0 ‖2 to the

linear regression improves the robustness of the algorithm. Since the force and the

spatial measurements are often distorted by noise, the regularization may enhance

the condition number of ϕ matrix. Assuming θ0 is the origin, an explicit solution,

denoted by θ̌, is given as,

θ̌ = (ϕϕT + δI)−1ϕF (4.44)

where I ∈ <4×4 is the identity matrix.
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Chapter 5

Experimental Results and Discussion

In this chapter, the experimental results of the previously explained micromanip-

ulation and parameter estimation methods are presented. In the first part, the

micromanipulation experiments which employ vision and force feedback are demon-

strated. In the second part, offline and online optical system calibration, and force

estimation results are given and discussed.

5.1 Micromanipulation Using Vision and Force

Before the microobject manipulation experiments are shown, the experimental re-

sults using only vision feedback without touching any microobjects are shown to

validate that visual servoing ensures the required accuracy and precision for the

manipulation tasks.

5.1.1 Visual Servoing Experiments

In order to evaluate the performances of the presented visual servoing algorithm

with the optimal control synthesis which penalizes the error and the control signal,

regulation and path following experimental results are given. In the experiments,

the center of the microgripper opening is tracked with subpixel accuracy at 30 Hz.

Micropositioning and trajectory following tasks are performed at 1X and 4X zoom

levels. An illustrative figure is depicted in Fig. 5.1. For the optimal control design,

Q and L matrices in (3.7) were chosen as diagonal matrices with diagonal entries

(0.9,0.9) and (0.025, 0.05) respectively. Micropositioning visual servoing results are

plotted in Figs. 5.2-5.3, and the trajectory following results for circular, square and

sinusoidal trajectories are depicted in Figs. 5.4-5.6.
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Figure 5.1: Circular Path Following Task at 1X
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Figure 5.2: Step responses and control signals at 1X
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Figure 5.3: Step responses and control signals at 4X

For the micropositioning task, regulation performances at 1X and 4X for a step

input of 50 pixels along the x and y axis of the objective frame in terms of settling

time (ts), accuracy and precision are tabulated in Table 5.1. For the trajectory

following task, tracking performances for different trajectories (square, circular and
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Figure 5.4: Circular trajectory and tracking error at 1X
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Figure 5.5: Square trajectory and tracking error at 1X
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Figure 5.6: Square trajectory and tracking error at 1X

sinusoidal) are presented in Table 5.2.

The presented visual servoing guarantees convergence to the desired targets with
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Table 5.1: Micropositioning Accuracy and Precision

Step ts Acc. Prec.

(pixels) (sec) (µm) (µm)

1x 50 0.80 9.86 2.71

4x 50 0.45 1.35 0.57

Table 5.2: Trajectory Tracking Accuracy and Precision

Square Circular Sinusoidal

Acc. Prec. Acc. Prec. Acc. Prec.

(µm) (µm) (µm) (µm) (µm) (µm)

1x 5.93 2.28 7.72 1.40 4.79 2.37

4x 1.47 1.19 1.57 0.95 1.12 1.31

sub-micron error and satisfactory settling time. Moreover, the tracking performance

also meets the requirements for a typical micromanipulation task which tolerates a

few micron errors. Thus, it is shown that the presented method is proved to be

practical for the assigned micromanipulation tasks in the following sections.

5.1.2 Micromanipulation Experiments

In order to validate the proposed the collision-free micromanipulation method,

polystyrene balls are pushed on the sample stage to the desired locations. Be-

fore the experiments, the polystyrene balls on the glass surface are scattered by

evaporating the water in the prepared diluted polystyrene-water solution. Distilled

water is preferred in the solution to prevent the contamination of unwanted sub-

stances on the substrate surface. In the experiments, a tipless AFM probe is chosen

to push the individual microballs. After the user determines the target locations,

automatic micromanipulation algorithm starts. In the following experiment, the

operator chooses a pattern in which the centers of three microspheres are on a same

straight line.

In the first step, the probe moves to the computed position in the z direction to

push the microsphere from a convenient contact point, shown in Fig. 5.7. In the
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(a) (b)

Figure 5.7: Visual Servoing in the x-z Plane

following steps, the microballs are pushed to the targets in the generated pattern

using the explained motion planning method in Section 3.3.1. A summary of the

experiment that illustrates the steps of the automatic micromanipulation task is

given in Fig. 5.8.

   Target
Locations

Microspheres

Probe
   Tip

Figure 5.8: Automatic Micromanipulation of Microspheres

In the experiments, the 70 micron diameter microspheres can be transported to

the desired locations with the accuracy of one pixel which is the tolerance defined by

the user. The accuracy of the pushing experiments can be improved to 0.7 micron,
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which is the resolution of the optical microscope, using the presented subpixel detec-

tion algorithms. Therefore a micromanipulation experiment in the microassembly

workstation with the designed mechanical and software components is successfully

demonstrated.

5.2 Parameter Estimation

5.2.1 Optical System Calibration Results

The presented calibration algorithm is implemented to calibrate the top view at

0.75X and 3X zoom levels and the side view. Three types of calibration patterns -

square, circular and virtual - are employed to establish the correspondence between

the world and image coordinates. These correspondences are used to obtain the ex-

trinsic and intrinsic parameters of the optical system. While the intrinsic parameters

which are computed using each pattern are useful, the extrinsic parameters which

are obtained only from the virtual pattern can be used in the micromanipulation

tasks. Because the visual servoing experiments require the rotation and translation

between the optical system and the end effectors. Thus, the configurations of the

static calibration patterns are not needed for any practical use. The calibration

results for the square and circular patterns, and virtual patterns at 0.75X and 3X

are given in Tables 5.3 and 5.4 respectively.

Square Circular

0.75X 3X 0.75X 3X

M 0.8995 3.5904 0.9017 3.5833

κ1 (µm−2) 9.5181e-11 1.5e-11 4.2764e-9 -1.3278e-10

α (deg) 90.3695 90.5829 2.4364 -0.0304

β (deg) -0.9639 -0.9203 2.9000 1.3852

γ (deg) -176.3423 176.7221 4.2983 -2.5779

Tx (µm) -1531.2 -378.1069 -546.4123 -289.0384

Ty (µm) -1145.9 -269.3238 198.6936 -115.7292

Table 5.3: Computed Calibration Parameters using Square and Circular Patterns

for Top View
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Gripper Probe Sample Stage

0.75X 3X 0.75X 3X 0.75X 3X

M 0.9071 3.6183 0.9219 3.6190 0.8982 3.5955

κ1 (µm−2) -3.7467e-9 -2.4550e-10 -3.2170e-11 -8.5130e-10 -9.4570e-11 1.9233e-9

α (deg) 0.0587 -1.9556 -0.7232 -0.6913 -0.3484 -0.7259

β (deg) 10.0806 7.9851 12.8347 5.2715 1.6289 1.7085

γ (deg) -5.8712 -14.0889 2.0572 4.4215 -6.6549 -8.0929

Tx (µm) -825.3126 -503.7519 -1362.6 -1333.9 -1362.6 -552.6890

Ty (µm) -656.1795 -841.4709 -746.5861 -813.5869 -1041.1 -240.8963

Table 5.4: Computed Calibration Parameters using Virtual Patterns for Top View

The results of the generated virtual patterns by the gripper and probe for the

side view calibration is also depicted in Table 5.5.

Gripper Probe

M 1.9012 1.9053

κ1 (µm−2) -3.2655e-9 5.1398e-010

α (deg) 0.1013 0.9528

β (deg) -11.9959 -12.9723

γ (deg) -88.1820 -90.9111

Tx (µm) -705.2433 -536.5940

Ty (µm) -590.1471 -427.9290

Table 5.5: Computed Calibration Parameters using Virtual Patterns for Side View

To judge the performance of the presented calibration algorithm using the given

results, an error function is defined as

ε =
ΣN [(ui − ũi)

2 + (vi − ṽi)
2]1/2

N
(5.1)

where N are the total number of points, (ui, vi) are image coordinates of ith point

and (ũi,ṽi) are the reprojected world coordinates for the computed rotation and

translation in pixels. The error can also be converted to metric values by using the

cell sizes and the computed magnification.
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The computed reprojection errors for the static and virtual patterns are depicted

in Tables 5.6 and 5.2.1 respectively. In the experiments the circle grids give more

Square Circular

0.75X 3X 0.75X 3X

Mean Error (µm) 1.0471 0.2920 0.8644 0.0552

Std Error (µm) 0.5099 0.1473 0.5106 0.0285

Maximum Error (µm) 3.5460 0.6586 1.7038 0.0992

Table 5.6: Reprojection Errors of Circular and Square Patterns for Top View

accurate calibration results than the circular ones. The result can be explained with

the fact that the image might be blurred by a point spread function (PSF) and the

features might not be extracted very accurately due to imperfect illumination, lens

aberration, systematic and random sensor errors. Flusser et al. [48] claim that most

of the PSF are circularly symmetric and circular shapes are invariant to this type

of PSF. In Table 5.2.1, the reprojection errors for the generated virtual patterns for

Gripper Probe Sample Stage

0.75X 3X 0.75X 3X 0.75X 3X

Mean Error (µm) 2.5823 1.4185 1.5506 0.6735 1.4185 0.7344

Std Error (µm) 0.9937 0.7395 0.5424 0.3745 0.7395 0.3923

Max Error (µm) 4.6908 3.1540 2.9244 1.8468 3.1540 1.7438

Table 5.7: Reprojection Errors of Virtual Patterns for Top View

the side view are given.

Gripper Probe

Mean Error (µm) 1.6998 0.7931

Std Error (µm) 0.8955 0.3078

Max Error (µm) 4.2666 1.4640

Table 5.8: Reprojection Errors of Virtual Patterns for Side View

It is observed that the static patterns give more accurate results due to the
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fact that the image features for the static ones can be computed in a more robust

manner. Since the end effectors are inclined to reach the workspace effectively, the

detection algorithms may lead to inaccurate results when the probe is approaching

to the limits of the field of view. However, the calibration results for the virtual

patterns are still acceptable, since the reprojection errors are relatively small at low

magnification values. It can be inferred that it is possible to end up with smaller

reprojection errors under higher magnifications.

It is also observed from the tables that the computed radial distortion coefficients

are very small. This proves that the microscope lenses are machined very precisely.

Moreover, α and β angles have non-zero values which can be resulted from the

imprecise manufactured mechanical components of the setup. These angles have to

be considered during the manipulation tasks to have accurate results.

5.2.2 Online Calibration Results

To show the validity of the online calibration algorithm, it is implemented in the

microassembly workstation. A square pattern on the sample stage is moved along a

circular path in the x-y plane and one of its corner is tracked in subpixel accuracy at

30 Hz. Along the designed trajectory, the magnification is changed from 0.9X to 1.2X

at the 50th iteration. Pixel coordinates of the image feature along the encoder output

of the sample stage are used to test the online parameter estimation algorithm.

The trajectory which is followed by the corner in the image and world coordinates

are depicted in Fig. 5.9. Using the obtained trajectory information in the online
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Figure 5.9: The Trajectory of the Corner in (a) Image and (b) World Coordinates

parameter estimation algorithm, the entries of the projection matrix are computed,
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shown in Fig. 5.10. The evolution of the prediction error in (4.26) is computed
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Figure 5.10: Estimated Entries of the Projection Matrix

using the estimated projection matrix and plotted in Fig. 5.11. It is shown that the
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Figure 5.11: (a) Prediction Error (b) Zoomed Prediction Error

prediction error decays to 0.1 pixels after the magnification change. Once we have

the projection matrix, we can obtain the optical system parameters using the method

presented in Section 4.2. The computed magnification during the experiment is

depicted in Fig. 5.12. It is observed that the proposed method converges to the

new magnification value in 8 steps or 0.26 sec. In order to have shorter convergence

time, the forgetting factor β is automatically increased to eliminate the effect of the

past data, once the magnification motor turns. The convergence time could also be

improved by increasing the speed of the magnification motor and thus providing a

step response.

Note that there exist small variations in the computed magnification. Since the

camera and the manipulator frames are not perfectly aligned, the Z coordinate of

55



0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

# of iterations

M
ag

ni
fic

at
io

n

20 40 60 80 100

0.5

1

1.5

2

2.5

3

# of iterations

M
ag

ni
fic

at
io

n

(a) (b)

Figure 5.12: (a) Overall Magnification Plot (b) Zoomed Magnification Plot

the moving center in the objective frame may alter in a small range without getting

blurred. Therefore, the calibration parameters can be modified during the motion.

Finally, it has been demonstrated that the proposed online calibration algorithm

could adapt itself to the different operating modes through a recursive least square

method. The presented method can be used in visually guided micromanipulation

tasks to improve the accuracy of the vision based control structure. It can also be

used in the applications which require the metric coordinates of the objects under

an optical microscope without a priori information about the calibration parameters

of the system.

5.2.3 Force Estimation Results

In order to evaluate the performance of the force estimation model, zebrafish em-

bryos are chosen to be experimented. Due to its easily accessible eggs, high fertility,

external fertilization and translucent embryos, zebrafish is preferred. In spite of their

relatively large size (1.4 mm), zebrafish embryos have a delicate structure and small

forces may create significant deformations on their membranes which is desirable for

testing the proposed model. After the freshly harvested eggs are put on the sample

stage in a petridish, a microgripper is employed to immobilize the embryo during

the compression. Before the force sensing probe applies a uniaxial load compressing

the biomembrane, the probe is aligned with the embryo in a way that the tangential

forces are eliminated. An illustrative scene is shown in Fig. 5.13.

The experiments are conducted in room temperature (22-24oC). The force and
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Figure 5.13: Zebrafish Embryos with Holding Gripper and Force Sensing Probe

deformation measurements are obtained at 30 Hz during the force loading. The

probe moves to the center of the egg at 5 µm/s before the force reaches to the

maximum of force sensing range and then returns to its initial position at the same

velocity. Note that the acceleration of the contact point is zero except the direction

changes. The force information is obtained from the capacitive force sensor embed-

ded in the probe. The deformation and velocity of the contact point are calculated

by the Lucas-Kanade optical flow estimation method [49] with subpixel accuracy.

The resulting force for the trapezoid displacement is illustrated in Fig. 5.14.
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Figure 5.14: (a) Deformation (b) Force

Having measured the force during the experiment, the explicit solution for the

model (4.44) gives the parameters as k̂1 = 4.5161, k̂2 = 0.0001, b̂ = 27.7200. The

reconstructed force with the estimated parameters is shown in Fig. 5.15.
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Figure 5.15: Measured and Reconstructed Force I

Although this estimation results in 3.89 percent error, modeling the second part

of the force (after the velocity is negative) with the spring-mass-damper parameters

may be inaccurate from a robotics point of view. Neglecting the damping effects

in the second part, the unknown parameters can be estimated by fitting only the

second part of force data to a mass-spring model. The damping coefficient can be

obtained by relating the error with the velocity in the first part. The estimation

yields the parameters, k̂1 = 2.9577, k̂2 = 0.0001, b̂ = 51.3317 with a 5.22 percent

error. The resulting estimated force is illustrated in Fig. 5.16.
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Figure 5.16: Measured and Reconstructed Force II

We can also fit the first part of the measured force into the model, estimate the

three parameters and reconstruct the force by using three parameters for the first
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part and assuming b = 0 for the second part. The error between the measured and

estimated force is 10.72 percent of the measured one. The estimated parameters are

k̂1 = 5.8137, k̂2 = 4.33e− 5, b̂ = 7.9539. The estimated force is shown in Fig. 5.17.
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Figure 5.17: Measured and Reconstructed Force III

However, this method results in poor estimation result in the second part. This

result may be explained with the observation that the membrane of the embryo is

not recovering to its original position at the end of the manipulation. 25 micron

offset is observed between the position of the contact point in the first and the last

frame. The reason for that offset can be the fact that the holding gripper may be

penetrated into the embryo, while the probe is pushing the embryo. This offset can

be eliminated by modifying the displacement (x(t))

x∗(t) = x(t)− 25(1− e−αt) (5.2)

which means that the offset is gradually becomes 25 microns. The resulting esti-

mated force with the eliminated displacement (x∗(t)) is plotted in Fig. 5.18. The er-

ror becomes 3.6 percent of the measured force with the parameters k̂1 = 5.8781, k̂2 =

3.8346e− 5, b̂ = 1.1834.
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Figure 5.18: Measured and Reconstructed Force IV
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Chapter 6

Conclusion

In this thesis it has been demonstrated that fully automated dexterous microma-

nipulations can be done at the precision of micron level using vision and force data.

In order to effectively compensate the errors due to the uncertainties about the po-

sition, behavior and shape of the microobjects to be manipulated; the robust vision

control structure is proposed and implemented. To realize the closed loop structure,

real-time object and end-effector detection, optical system calibration, autofocus-

ing, visual controller, force sensing and motion planner modules are developed. The

details of the designed algorithms are presented in the third chapter.

Moreover, novel estimators are developed to identify the system and to charac-

terize the mechanical properties of the biological structures through a synthesis of

concepts from the computer vision, estimation and control theory. The computed

mechanical parameters are utilized to estimate the imposed force on a biomembrane

and to provide the adequate information to control the position, velocity and accel-

eration of the probe without damaging the cell or tissue during an injection task.

The design of the observer is explained in the fourth chapter and the experimental

results are shown in the fifth chapter.

With the work which is presented in this thesis, the theoretical and practical

knowledge on micromanipulation at Sabanci University have been significantly en-

hanced. The previously presented the semi-automatic tasks [50], which uses dynamic

look and move structure vision based control, have been improved by introduction

of the full automated micromanipulation tasks which employ robust visual servoing

schemes and the force feedback.

Based on the acquired research experience during this work, an insight was gained
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on how to advance the present work in the microassembly workstation. Since the

setup has the total of four degrees of freedom -linear motion along x, y, z axes

and rotational motion around z axis-, it is not possible to execute the rotation

around x and y axes. In order to manipulate more complex geometries in 3D,

lacking rotational movement capabilities should be added to the manipulators. A

further development can be done by the integration of motorized vision sensors to

eliminate the disadvantages of small depth of field. Introducing new moving vision

sensors may maximize the resolvability by ensuring focused and nonoccluded views

in micromanipulation tasks.
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Appendix A

Derivation of the Interaction Matrix

Let (Xo, Y o, Zo) denote the objective frame coordinates of an observed feature point

P . Locating the image coordinate frame at the center of the CCD array and as-

suming weak perspective projection, the undistorted image coordinates (u′, v′) in

objective frame are given as

u′ ≈ MX, v′ ≈ MY, (A.0.1)

where M = f
Tz

is the total magnification of the optical system.

Neglecting the lens radial distortion parameter (κ1), the distorted image coordi-

nates (u, v) in pixels can be written as

u ≈ u′ =
M

sx

Xo, v ≈ v′ =
M

sy

Y o (A.0.2)

where sx and sy are the effective pixel sizes.

Differentiation of (A.0.2) with respect to time implies

u̇ =
M

sx

Ẋo, v̇ =
M

sy

Ẏ o (A.0.3)

Assume that the point P is rigidly attached to the end effector of the manipulator

and moves with an angular velocity Ω = (ωx, ωy, ωz) and a translational velocity

V = (Vx, Vy, Vz). The motion in the objective frame is given by




Ẋo

Ẏ o

Żo


 =




Vx

Vy

Vz


 +




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0







Xo

Y o

Zo


 (A.0.4)
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Substituting (A.0.4) into (A.0.3) and using (A.0.2) implies


 u̇

v̇


 =




M
sx

0 0 0 M
sx

Zo − sy

sx
v

0 M
sy

0 −M
sy

Zo 0 sx

sy
u




︸ ︷︷ ︸
, Ls




Vx

Vy

Vz

ωx

ωy

ωz




(A.0.5)

where Ls is the interaction matrix for a point feature.
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