
  

  
Abstract - In the paper the general approach to motion control 
systems in the sliding mode framework is discussed in details. It 
has been shown that, due to the fact that a motion control 
system with n d.o.f may be mathematically formulated in a 
unique way as a system composed on n 2 d.o.f systems, design of 
such a system may be formulated in a unique way as a 
requirement that the generalized coordinates must satisfy 
certain algebraic constrain. Such a formulation leads naturally 
to sliding mode methods to be applied where sliding mode 
manifolds are selected to coincide with desired constraints on 
the generalized coordinates. In addition to the above problem 
the design of full observer for IM based drive is discussed.  

I. INTRODUCTION 

The complexity and nonlinear dynamics of motion control 
systems along with high-performance operation require 
complex, often nonlinear control system design, to fully 
exploit system capabilities. Basic goals for motion control 
systems include trajectory tracking, velocity control and 
control of the force exerted by the system to the 
environment with torque or force as the control input. The 
torques or forces are on the other hand the outputs of 
actuators, often electrical motors, with their own complex 
nonlinear dynamics. In most approaches to motion control 
systems the dynamics of torque or force is neglected and 
controllers are designed assuming perfect tracking in the 
torque or force control loop, which is not case in many 
systems and such a design procedure may create some 
difficulties in systems with high dynamical demands. In 
this paper, main problems in motion control systems like 
position tracking; force (torque) control along with control 
and state estimation in induction electrical machines will 
be discussed in the sliding mode control framework. In the 
first part a generalized approach to sliding mode control in 
motion control systems will be presented with some 
illustrative examples. After that we will discuss the control 
of induction machine as one example of systems, which 
include fast dynamics of electromagnetic system and 
control of mechanical coordinates. At the end we will 
present latest results in sliding mode application for 
induction machine state and parameters estimation. 
 

II.  SMC IN MOTION CONTROL SYSTEMS 

For ‘fully actuated’ mechanical system (number of 
actuators equal to the number of the primary masses) 
 
 

mathematical model may be found from Euler-Lagrange 
formulation in the following form 
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where nℜ∈1q  stands for vector of generalized positions, 

1 2=q q&  stands for vector of generalized velocities  

( ) nxnℜ∈1qM  is generalized positive definite inertia 
matrix with bounded parameters hence 

( ) +− ≤≤ MM 1qM  , ( ) 1
21 ,, nxt ℜ∈qqN  represent vector 

of coupling forces including gravity and friction and is 
bounded by ( ) +≤ Nt,, 21 qqN , 1nxℜ∈τ  with 0τ≤τ is 

vector of generalized input forces and 1nx
ext ℜ∈G  with 

0gext ≤G  is vector of generalized external forces.  

00 ,,,, gNMM τ++−  are known scalars.  Note that many 
different norms may be employed but the most common 
one is 2-norm. Interested reader is referred to textbooks on 
robotics for a detailed treatment of derivations of equations 
(1). In system (1) vector ( )( )extt GqqN +,, 21 , which 
contains most of unknown parameters of the system, can 
be treated as a disturbance vector satisfying matching 
conditions [1]. Model (1) may be rewritten as n second 
order systems of the form  
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where the elements  of inertia matrix are bounded 
( ) +− ≤≤ ijijij mtmm , the elements of vector ( )t,, 21 qqN are 

bounded  ( ) +− ≤≤ iii ntnn and the elements  of the external 

force vector  are bounded by ( ) +− ≤≤ iextii gtgg 00  and the  

input generalized torques are bounded ( ) +− ≤≤ iii t 00 τττ . 

A. Control problem formulation 
 
Vectors of generalized positions and generalized velocities 
define configuration of a mechanical system. That allows 
motion control problems to be defined as a requirement to 
enforce certain dependence between generalized 
coordinates ( ) 121 ,, nxt 0qqσ = . In general that dependence 
may be expressed by a nonlinear function. Without any 
loss of generality, in this paper we will assume 
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( ) 121 ,, nxt 0qqσ =  as linear with respect to generalized 
vectors as depicted in (3) 
    ( ) ( ) ( ) 1

212121 ,,  ,,, nxttCt ℜ∈=−+= qqσ0fqqqqσ , 

    C>0. [ ]Tnσσσ ,....,, 21=σ                                              (3) 

where ( ) 1nxt ℜ∈f  is known continuous and bounded 
function of time ( ) 0ft ≤f  with continuous and bounded 
first time derivative. Requirement (3) is equivalent to 
enforcing sliding mode in manifold 

( ){ }0qqσqq == tSq ,, :, 2121 , elements of ( )t,, 21 qqσ  

being ( )tfqqcσ iiiii −+= 21 , i=1,2,..,n. If sliding mode is 
established in manifold (3) then equivalent control [2], 
being solution of ( ) 0fqqCσ =−+=

==
eqeq

t
ττττ
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determined as  
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and equations of motion (1) with sliding mode in manifold 
(3) are reduced to ( )2 1t= −q f Cq . Consequently, sliding 
mode control may be effectively applied in motion systems 
(1) to control problems that may be defined as depicted in 
(3). In robotics systems position tracking and force 
tracking are two basic control problems.  Selecting 
reference trajectory as ( )tref

1q , the position tracking 
problem can be specified as a requirement that sliding 
mode is enforced in manifold (5) 

( ) ( ) ( ){ }1 1 2 1 2 1 1 1 2, : , , , 0ref ref
qS t= = − + − = >q q σ q q C q q q q 0 C&       

( ) ( ) ( ){ } ( ) ( )refref
q tttS
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Assume that the contact force can be modeled as  
( ) ( )1 1 1 2e e= − + −F K q q q q&                                                     (6) 

where 1eq  is the generalized coordinate of the contact point 
of the robot tip with environment, >K 0  is spring 
coefficient matrix. The force control problem in which the 
contact force F should track its reference ( )ref tF can be 
specified as a requirement that sliding mode is enforced in 
the manifold (7) 
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Both, the trajectory tracking (5) and the force control (7) 
are mathematically defined is the same way as general 
motion control problem (3) thus both can be solved by 
enforcing sliding mode in selected manifolds. Moreover 
the combination of the two tasks is natural since it only 
requires change of the siding mode manifold.   

II. SELECTION OF CONTROL INPUT 

The design of control inputs for system (1), (2) with sliding 
mode in manifold (3) may follow a few different 
approaches. Here we will discuss some of the possibilities 
in order to demonstrate the richness of the sliding mode 
design approaches to motion control systems.  

1) Discontinuous control: First we will demonstrate a 
straight forward sliding mode approach by selecting 
discontinuous control input [3]. In this framework control 
is selected in the following form  

( ) ( ) niσsignτsign iii ,...,1  ,00 =−=⇒−= ττ στ            (8) 
The existence of sliding mode in manifold (3) can be 
proven by selecting, for each component iσ  of sliding 

mode function, Lyapunov function candidate as 2
2
1

iiv σ=  

(i=1,..,n). Time derivatives iiiv σσ && =  along the 
trajectories of the system  (2) with control (8) are under 
assumption that the derivative of functions ( )tfi  as well 
as the elements of inertia matrix, the elements ni 
(i=1,2,…,n) of vector ( )t,, 21 qqN  and the elements of the 
external force vector are bounded becomes 

0, >−≤ µσµ iiv& . Consequently the convergence to the 
intersection of the manifolds 0=iσ  is established. Each 
component of the control input undergoes discontinuity by 
taking values from the set { }ii 00 ,ττ− . Direct 
implementation of algorithm (8) may result in chattering 
[4] so it may not be suitable for direct application. An 
approach to reduce the effect of the discontinuous control 
is to implement (8) as ( )ii

est
eqi signτ σττ 0ˆ −=  where est

eqτ̂  is 

estimated control torque that may be calculated either from 
the system’s model using available measurement and 
estimated parameters or from disturbance estimation. 
Asymptotic observers may be used as a bypass for high 
frequency component [5,6] to eliminate chattering.  
  
2) Discrete-time sliding mode control: Opposite to 
continuous time SMC in discrete-time SMC motion in 
sliding mode manifold may occur if control is continuous 
[7,8,9]. The discrete-time implementation of the sliding 
mode control is essentially application of the equivalent 
control determined as a solution of 01 =

=+ eq
kk uukσ . Such 

implementation requires information on parameters, system 
states and external disturbances and may not be easy to 
apply in some motion control systems. Another approach is 
based on enforcing certain structure of the time derivative 
for selected Lyapunov function candidate. For system (1) 
asymptotic stability of the solution 

( ) ( ) 0fqqqqσ =−+= tCt 2121 ,,  can be assured if a 
control input is selected as such that Lyapunov function 
candidate 2/σσT

lv =  has time derivative 
,0, >−= DDσσ   v T

l&  [6] (for the simplicity in most of the 
cases { }iiddiag =D ). After short algebra one can obtain 

,0, >−=−= DDσσσσ   v TT
l &&  and ( )T + =σ σ Dσ 0&  which 

depends on control due to the presence of the term σ&  . 
Control can be selected to enforce ( )

0σ ≠
+ =σ Dσ 0& . By 

applying sample and hold process with sampling interval T, 
the discrete-time control that satisfy given requirements 
can be determined as  



  

( ) ( ) ( ) ( ) ( )11 1 1 , 0k k T T k k−  = − + + − − > τ τ D σ σ D   (9) 

Application of approximated control (9) to system (1), (3) 
leads to the  

( ) ( ) ( )( ) ( )1T Tk k k T k− = −σ σ σ I D σ                                   (10) 

If D is diagonal matrix, then for each of the components in 
(13), one can write ( ) ( ) ( )( )iiiii Tdkkk −=− 11 2σσσ  and dii 
may be selected so that ( ) 110 <−< iiTd , which ensures 
existence of quazi-sliding mode motion. This solution is 
similar with so-called β-equivalent control approach. 
 
3) Sliding mode observers: Sliding mode methods can be 
applied to design disturbance observer and sliding mode 
controller. The disturbance observer design may be applied 
for system (1) by constructing model (11) 

( )uτMq −= −1
2

ˆ&̂                                                       (11) 

where 2
ˆ ˆ,M q are estimates of inertia matrix and generalized 

velocity, u is model control input, which should be 
selected to enforce sliding mode in manifold 

2 2 2ˆ 0q = − =σ q q . Equivalent control for observer (17) in 

manifold 
2q =σ 0  can be calculated as 

( ) 1

2
ˆ

eq ext

−
= + + −u N G M M q&  - what represents total disturbance 

and parameter uncertainty in system (1). Following the 
same idea as in scalar case and selecting control input in 
(1) as ˆ

eq= +τ u Mv motion of the augmented system can be 

written as 21 qq =& , vq =2& . The equivalency with sliding 
mode control may be established in the same way as in the 
previous case. This leads to the simple realization of the 
acceleration controller that is very similar to the structure 
obtained in the disturbance rejection framework [10].  

III. TIMING-BELT SERVOI SYSTEM 

In the following section we will demonstrate application of 
the above results to a timing-belt driven servo system 
depicted in Fig. 1.  
 
 
 
 
 
 

 

 
Fig. 1 Timing-belt servo system 

 
Forces F1, F2 and F3 acting on the load ddepend on the 
stretch of the belt and its derivative, thus depend on both 
motor and load position. The variables and parameters are: 
θ 1 angular position of the pulley driven by the 
servomotor; θ 2 angular position of the un-driven side 
pulley; iKT T=  torque developed by the servomotor; 

),( ωθLT  friction torque at the servomotor side; BF  belt 

elasticity force; DF  belt internal friction force; G  gear 

ratio (if present in the system);  Gxm /2πθ=  and mv  
longitudinal position and velocity of the belt on the 
periphery of pulley 1;  x  and v  longitudinal position and 
velocity  of the load; LF  friction force at the load side; 
mmot  equivalent mass on the motor side; m equivalent mass 
on the load side; r radius of the pulleys. By combining 
dynamics of the servomotor and the dynamics of the load 
side one can develop a state space description of the 
overall system (12), with total belt force given by (13) with 
its elasticity force ( )xxF mB , of the equivalent spring 

defined in (14) and damping force ( )vvF mD , due to the 
belt internal friction defined (15): 
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( ) ( )vFxFF DBtBelt ,, ωθ += , riGKF Tmot /=                (13) 
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where C0 stands for elasticity coefficient of the gear and 
coupling  TK stands for motor torque constant, I stands for 
motor current; )(1 xK  stands for elasticity coefficient of 
the un-driven side of the belt )(2 xK  stands for elasticity 
coefficient of the driven side of the belt lL0  the total length 
of the belt on the load side x0 the length of the belt when 
x=0, )(xK D  stands for damping coefficient. In the above 
model the dynamics of the actuator with current (torque) 
controller is disregarded.  
 
Experimental verification is performed on timing-belt 
driven the linear drive DGEL25-1500-ZR-KF (FESTO) 
equipped by the electrical servomotor MTR-AC-70-3S-
AA. Experimental set-up consists of the original motor 
driver attached to the dSPACE DS1103 module hosted in 
the PC.  In all experiments sampling in controller loop is 
kept at Tl=1 millisecond. Position and velocity of motor are 
measured from an incremental encoder with 1024 ppr. 
Load position is measured by linear incremental encoder 
with resolution of 3*10-6 m per pulse. Selecting current 

( ) ( ) ( ) ( )( )( )1)1(1/ −−++−+= kkDTKkisatGKruki u
ref

Teq
ref σσ  

sliding mode motion is guarantied in manifold  
( ) ( )m

ref
mm

ref
mF vvxxC −+−=σ . The following parameters 

had been used  5102 −⋅=uK  450=FC  250=D . In Fig. 2 
transients for 1 cm motion with load of 26 kg. Experiments 
are showing very small overshoot and high positioning 

l1 l2 
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θ1,Jmθ2 , J2 
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accuracy. The pulsation of the motor position error is 
visible while the load position is not changing.  
 

 
Fig. 2. Transients in the motor position change for 1 cm with m=26 kg and 

acceleration 1m/s2 

IV. CONTROL OF INDUCTION MACHINE  

A.   Control of  Induction Machine 

Control of induction machine (IM) is still a challenging 
problem due to its nonlinear dynamics, limited possibility 
to measure or estimate necessary variables and presence of 
the switching converter with its own nonlinearity as a 
power modulator in control loop. The dynamics of IM 
consists of the mechanical motion (16), the dynamics of the 
stator electromagnetic system (17) and the dynamics of the 
rotor electromagnetic system (18).  
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where ω is the rotor angular velocity, T
αβ α βφ φ Φ =   , 

T i iαβ α β =  i and T u uαβ α β =  u are rotor flux, stator 

current and stator voltage vectors; τ is torque developed by 
IM  and TL is external load, Lm,Ls and Lr are mutual, stator 
and rotor inductances respectively. Model (16-18) is 
written in stationary frame of references ( )βα , . For power 
modulation in IM control system a switching power 
converter is employed with possibility to connect each 
stator winding of a machine either to + or – bar of a DC 

power source. The converter switches may take eight 
distinct configurations 8,...,2,1, =iSi  thus defining eight 

distinct values ( )iSu . Converter’s output voltages 

321 ,, uuu  are taking values from the discrete set { }0,0 V . 
With motor stator windings in star connection the 
relationship between machine phase voltages cba uuu ,, , 

stator voltage vectro Tu u uαβ α β =   and converter output 

voltages 321 ,, uuu  are given as in (19)  

123123 uTTu abc
abc
αβ

αβ =                                                 (19) 

where αβ
abcT  stands for transformation matrix from 

( ) ( )βα ,,, →cba frame of references; abc
123T  stands for 

transformation matrix from ( ) ( )cba ,,3,2,1 → frame of 
references. For mechanical motion control system design 
model (26-28) is usually rewritten in so-called field 
oriented frame of references (d,q) in which d-axis is 
collinear with, and q-axis is orthogonal to, vector of rotor 
flux. Matrix dq

αβT  describes transformation from ( )βα ,  to 

(d,q) frame of references and matrix abc
abc

dq
123TTT αβ

αβ  

describes transformation from converter output 
voltages 123u  to dqu voltages (20) 
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Design of IM motion control can be performed in two 
steps. In the first step components of the current vector 

[ ]qd
T
dq ii=i  should be selected to provide reference 

tracking in  the rotor flux control loop di , and  in 

mechanical motion loop qi . In the second step the voltages 

qd uu ,  should be determined to ensure reference current 

tracking and then from (30) converter voltages 123u  
should be selected. This procedure is the same as used for 
sliding mode control of systems in regular form [11]. The 
rotor flux dynamics is one of first order system with scalar 
control and reference tracking can be achieved if sliding 
mode is guarantied in { }0:, =−== d

ref
ddddd iS φφσφ . 

The mechanical motion is of the same form as system (2) 



  

and reference position tracking requires establishment of 
sliding mode motion in 

( ) ( ){ }0:,, ==−+−== q
refref

qqq ciS σθθθθσωθ &  [12]. 

Selection of discontinuous control is not suitable here due 
to the fact that thus determined components of the current 
vector will be set as references in the current control loop. 
One of possible solutions for enforcing quazi-sliding mode 
in manifolds Sd  and Sq is selection  of 

( ) ( ) ( ) ( ) ( )( )111 −−−+−= kkTdKkiki dddddd σσ  and 
( ) ( ) ( ) ( ) ( )( )111 −−−+−= kkTdKkiki qqqqqq σσ  which results in 

sliding mode motion ( ) ( ) 0=−+− d
ref
dd

ref
ddd φφφφ &&  and 

( ) ( )( ) ( ) 0=−+−++− θθθθθθ &&&&& refref
q

ref
q dccd  respectively. Thus 

determined values of the stator current shoul be treated as 
references  ( )kii d

ref
d =  and ( )kii q

ref
q =  respectively, 

sliding mode in the intersection of manifolds 
0==− did

ref
d ii σ  and 0==− qiq

ref
q ii σ  can be enforced 

by selecting ( )did signUu σ0=  and ( )qiq signUu σ0=   with 








> qeq
t

deq
t

uuU sup,supmax0 , thus guarantying that 

components qd ii ,  of   stator current track their references.  

 
As result of such a design procedure the stator voltage 
vector in the (d,q) frame of references is determined. Each 
of the control vector components is taking values from the 
set { }00 , UU +− . In order to complete control system 
design switching sequence of the converter switches 
defining outputs 321 ,, uuu  should be determined.  To 
determine which one of the eight configurations 

8,...,2,1, =iSi  should be applied one should map vector 

dqu  to vector ( )iSu . Matrix dq
123T  is 2x3 matrix, thus 

different algorithms for mapping dqu  to ( )iS123u  can be 

used offering a room for deriving different PWM strategies 
for the selection of the switching sequences. Indeed, many 
diiferent solutions can be found in litereture [6,13,14]. 
Above algorithms can be applied for three phase voltage 
source converters or for other types of three phase 
electrical machines without any change.  

B.  Induction Machine Flux and Velocity Observer 

Design of observer that will give good estimate of the rotor 
flux is key to motor control. In so-called sensorless drives 
estimation of rotor flux and rotor angular velocity is a key 
to successful design. In this section we explore the IM 
estimation issues in the framework of sliding mode control. 
In [14] - the first ideas on IM identification in sliding mode 
framework - rotor time constant η and angular velocity ω 
are treated as control in stator current model. That solution 
is further used in a closed loop torque control system [15].  
In general SMC based IM observers use stator current 
dynamics and selection of the additional control input in 
such a way that estimated current tracks real currents. A 

stator current observer may be generalized in the following 
form  
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where Vα and Vβ   are components of the observer’s control 
vector. Then estimation error dynamics becomes: 
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If components Vα and Vβ   of control vector are selected 
such that sliding mode exists in 0, 0i iα βε ε= =  then the 

following is true: 
( )
( )

, , , , ,

, , , , ,
eq

eq

V i E f i

V i E f i
α α β α α α

β β α β β β

βηφ βωφ γ φ ω η β γ
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= + − − =
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By selecting different structures of vector 
T E Eα β =  E equivalent control T

eq eq eqV Vα β =  V  will have 

different values. This offers a range of possibilities in 
determining ( ) ( ), , , , , , , , , , ,f i f iα βφ ω η β γ φ ω η β γ  as 

functions of selected variables (rotor flux, rotor angular 
velocity, currents) and some of the machine parameters. By 
proper selection of functions (26) one is able to determine 
at least two of the unknown variables or parameters or 
combination of variables and parameters of machine. This 
leads to variety of structures that may be derived from this 
approach. Selection of observer control vector 

T V Vα β =  V , to enforce sliding mode in 

0, 0i iα βε ε= = , may follow different procedures of 

sliding mode control. In the discontinuous control 
framework selection of ( )0 iV V signα αε= and 

( )0 iV V signβ βε=  with 






> βα ffV
tt

sup,supmax0
 then sliding 

mode in 0, 0α βε ε= =  is guarantied and observer 

outputs are equal to the motor currents. With such selection 
equivalent control ,eq eqV Vα β  can be determined using 

simple first order filters. Discrete-time design may be also 
used in determining the structure of the controller in the 
motor current tracking loop. After determining the 
equivalent control and knowing the structure of 

,f fα β from (26) one can determine two unknowns – being 

variables or parameters of machine. In [16,17] relation (26) 
was used to determine rotor flux vector assuming that 
parameters of the machine and the angular velocity are 
known. If T i iα βγ γ = − − E  rotor flux can be determined 

as 
1

1 eq

eq

V
V

α α

β β

φ η ω
φ ω ηβ

−    
=    −    

                                               (27) 

In the same works approach that allows for angular 
velocity estimation is described. The idea uses the fact that 
in addition to the stator circuit observer (24) a rotor flux 



  

observer may be derived by substituting 
eqVα α ββηφ βωφ= +  and eqVβ β αβηφ βωφ= −  into (18) to 

obtain 
ˆ 1

ˆ 1  

eq m

eq m

d V L i
dt

d
V L i

dt

α
α α

β
β β

φ η
β

φ
η

β

= − +

= − +

                                           (28) 

From (28) rotor flux can be estimated thus providing 
additional information that can be used to determine rotor 
angular velocity and rotor time constant from (29) 

1ˆ ˆ ˆ1
ˆ ˆ ˆ

eq

eq

V
V

α α

ββ

φ η ω
ω ηβφ

−    
=    −      

                                          (29) 

The estimated motor angular velocity and time constants 
can be found as  

2 2

ˆ ˆˆ 1
ˆ ˆˆ ˆ ˆ

eq

eq

V
V

α β α

ββ αα β

φ φη
ω φ φφ φ

    
=     

−   +   

                                  (30) 

Further improvement of the above approach is presented in 
[15]. An observer that allows estimation of rotor flux, 
angular velocity and rotor time constant is discussed. In 
this solution vector E in (24) is selected as 

;T
s si i R Lα βϑ ϑ ϑ σ = − − = E , and then the components of 

equivalent control in (26) are determined as 
eq mV L iα α β αβηφ βωφ β η= + − and 

eq mV L iβ β α ββηφ βωφ β η= − − . Under assumption that rate 
of change of angular velocity ω and the rate of change of 
rotor time constant η are small 0, 0ω η= =& &  one can 
design an observer of components of vector T

eqV in the 
following form 

ˆ ˆˆ ˆ
ˆ ; ˆˆ ˆˆ

L L eq
m

L L eq

L L i V L
L K

L i V LL

α α α α α α α

β β β β β ββ

ε εη ω
β η

ε εω η

   −          = − − − =            − −             

&

&

 (31) 

where adaptation of rotor time constant and speed is 
governed by (32)  

ˆˆ
,ˆˆ

eq m eq m eq

eq eq eq

V L i V L i V L
V V V L

α α β β α α

β α β β

β βη

ω

   + + − 
=     − −       

&

&
        (32) 

   
1

1 eq m

eq m

V L i
V L i

α α α

β β β

φ β ηη ω
φ β ηω ηβ

− +    
=     +−    

                       (33) 

Convergence is assured since derivative of Lyapunov 
function 2 2 2 21

2l L Lv α β ω ηε ε ε ε = + + +   where ˆωε ω ω= −  and 

ˆηε η η= −  can be expressed as 2 2 0l L Lv k α βε ε = − + ≤  . This 

solution shows applicability of SMC approach for design 
of nonlinear observers, it represents very good background 
for the sensorless drive design. Limitation due to the 
assumption that angular velocity is slow changing variable 
seems acceptable in most of the operational modes of the 
drive. Presented solution for observer seems the most 
complete until now. Further work should be directed 
towards elimination of the assumption of constant angular 
speed what could be done only if mechanical motion and 
load torque of the drive are estimated.  

V. CONCLUSIONS  

In this papaer the sliding mode design methods and their 
applications motion control systems are discussed. In this 
framework the dynamics of the subsystem that generate 
generalised force is neglected and the force control system 
is assumed ideal in a sense that it perfectly tracks reference 
value. The realisation of the control input in continuous 
time and discrete-time framework is discussed. IM 
induction machine motion control and state estimation is 
discussed with an aim to show validity of the SMC 
approach in the cases when dynamics of the torque/force 
generation is taken into account. It was shown that the 
same motion dynamics as attained in previous case could 
be achieved here too. The design of the IM rotor flux and 
velocity observer is discussed in last part of the chapter. 
The usefulness of the SMC approach is demonstrated in 
this case too. 
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