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| Abstract—In this paper a discrete-time Sliding-Mode
(SM) based controller for high accuracy position
control is investigated. The controller is designed for a
general SISO system with nonlinearity and external
disturbance. It will be shown that application of the
proposed controller forces the state trajectory to be
within an O(T¢?). The proposed controller is applied to
a stage driven by a piezo drive that is known to suffer
from nonlinearity. As a separate idea to enhance the
accuracy of the closed loop system a combination of
disturbance rejection method and the SMC controller
is explored and its effectiveness is experimentally
demonstrated. Closed-loop experiments are presented
using PID controller with and without disturbance
compensation and Sliding-Mode Controller with and
without disturbance compensation for the purpose of
comparison.

L. INTRODUCTION

Sliding mode controllers have proven to be very powerful
algorithms in the face of systems with plant parameter
variations, unmodeled dynamics and external
disturbances. However, design of classical sliding mode
controllers requires knowledge of plant dynamics. This is
not favorable for cases where partial plant dynamics are
known. Hence, it is necessary to derive a controller that
can satisfy above mentioned properties while requiring
partial knowledge of plant parameters in its design. For
the cases in discrete-time sliding mode control switching
control is not possible due to the switching frequency
being limited by the sampling rate of the controller.
Hence, the control must be continuous unlike the case for
continuous-time applications where the control is
discontinuous in nature. In the work of, [1], the derived
sliding mode controller was proven to force the states to
be in O(T,%) boundary around the desired sliding surface.
Hence, the proposed controller must be capable of
showing the same characteristics. Finally, experiments
will be conducted on piezo actuator driven stage.

Piezoelectric actuators have shown a great potential in
applications that require sub-micrometer down to
nanometer motion. The advantages that piezoelectric
actuators offer are the absence of friction and stiction
characteristics that exist in other actuators. Thus,
piezoelectric actuators are ideal for very high-precision

motion applications. The main characteristics of
piezoelectric actuators are: extremely high resolution in
the nanometer range, high bandwidth up to several kilo
hertz range, a large force up to few tons, and very short
travel in the sub-millimeter range. Application areas of
piezoelectric  actuators include: micromanipulation,
micro-assembly, add-ons for high precision cutting
machinery and as secondary actuators in macro/micro
motion systems such as dual-stage hard-disk drives. In all
of these applications the accuracy of positioning is very
important and in many cases the closed loop control is the
only answer. Despite of this there are many attempts to
drive piezo stacks as an open loop system with fine
compensation of the hysteresis nonlinearity in one or
another way. With development of accurate position
transducers the possibility to use robust feedback based
nonlinear control methods is becoming attractive
alternative to the model based compensation.

As a final extension of the work, a disturbance observer
based on the lumped parameter model of the piezo-stage
proposed in, [2], will be experimentally shown to improve
the overall performance of the closed-loop system

II.  CONTROLLER DESIGN AND ANALYSIS

A. Controller Design
Consider the general system defined below

X = f(x)+ Bu (1)

Here, it is assumed that f'and B are smooth, continuous
and bounded. The aim is to drive the states of the system
into the set S defined by

S:{x:G(x’—x):G(x,xr)=O} ?2)

Here G is a positive constant, x is the state vector, x, is
the reference vector and it will be assumed to be smooth

and continuous, and o(x,x")is the function defining the
sliding mode manifold.



The derivation of the control law starts with the selection
of the Lyapunov function, V' (o), and an appropriate form

of the derivative of the Lyapunov function, V(o).

Lyapunov function selection such that it is positive
definite

2

V(o) = "7 3)

Hence the derivative of the Lyapunov function is
V(o) =00 4

In order to guaranty the stability of solutiono(x,x") =0,
the derivative of the Lyapunov function is selected to be

V(o) =-Do’ Q)
Here D is a positive constant. Hence, if control can be

determined from (4) and (5), the stability of the solution
(5) will be guaranteed since V(o)>0, V(0)=0 and

V(o-) <0, V(O) =0. By combining (4) and (5) the
following result is obtained

ol6+Dos)=0 (6)
A solution for (6) is as follows
6+Do=0 @)
The derivative of the sliding function is as follows
6 =Gl&" —i)=Gi" - Gx ®)
From (8) and using (1)

6 =Gi" — Gf — GBu(t) = GBlu,, —u(t))
& -G

GBu,

)

If (9) is inserted in (7) and the result is solved for the
control

u(t)=u,, +(GB) " Do (10)

It can be seen from (9) that u,, is difficult to calculate.
Using the fact that u,, is a continuous function since it is
a function of x" and f that are assumed smooth and
continuous, (9) can be written in discrete-time form after
applying Euler’s approximation,

A= L) _ Gl 1) -uk7) (1)

Here T, is the sampling time andke Z*. It is also

necessary to write (10) in discrete-time form just as it was
done before

u(kT,) = u,, (kT,) +(GB) ™" Do(kT,) (12)

If (11) is solved for the equivalent control, the following
is obtained

o((k + 1)T}) - o-(kTS)J a3

oy (KT,) = u(kT,) + (GB)“[
Since the system is causal, and control cannot be
dependent on a future value of o, the only way to estimate
the current value of the equivalent control is by
approximating by a single-step backward value computed
from (14) as follows,

N

A 1| O —Oy_
Ueq =Ueqy = U1 (GB) (%) (14)

Here u

e, (orﬁeq(kTs)) is the estimate of the current

value of the equivalent control. If (14) is inserted in (12)
_ oy —O
uy =uyy +(GB) 1(Dcrk +%J (15)

It easily seen that the above control law is derived from
discrete-time approximations based on the continuous-
time equations. Hence, it must be shown that the above
control satisfies the original conditions based on which it
was designed. These conditions are the Lyapunov
condition and existence of Sliding Mode.

B. Closed-Loop Behavior with the Approximated
Control

As a consequence of the approximations that were made
in the derivation of the discrete-time control law some
deviations in the sliding surface from the desired sliding
manifold may exist. This deviation of the sliding surface
from the desired manifold at each sampling instant will
be analyzed. Analysis of the inter-sampling behavior of
the sliding surface will also be analyzed. Considering
(1), the derivative of the sliding surface is given by

() = Gl&" - %)= G&" - Gf - GBu(r) (16)
The discrete-time equivalent of the sliding manifold can

be obtained by taking the integral on both sides of (16)
from kT, to (k+ 1T,



(k+1)T
| (G - 67 - GBu() Ju
kT,

K

Oksl — O =

(17

Applying a sample and hold to the control input between
consecutive samples u(t) = u; for kT, <t < (k+1)T,

(k+D)T;
[l ~Grhu-1.68u,
kT,

K

Oksl — 0 =

(18)

Using the assumptions that x"and f are smooth and

bounded, the integrations in (18) can be approximated by
using Euler’s integration

oy 2

01 =0, + TGl - /i )-T.GBu +OT2)  (19)

Here O(T)%) is the error introduced due to Euler’s

integration, [3]. If the control defined by (15) is
introduced into (19)

Oy =0y +TSG(5‘1’; _fk)

(20)
~T,GBu;_; ~T,Do; — oy + 04, +O(T,)
After some simplifications (20) is reduced to
Ol =TSG(5C; _fk)_TsGBuk—l 1)

~T,Doy + 0y, +O(T,”)

If T, vG()'c,:_l — fk_l) is added and subtracted from the r.h.s
of (21), the following is obtained

Ofy1 = T?G(x]: _fk)_TsG(xIZ—I _fk—l)_ I Doy

LG~ fi ) TLGBu v oy + O (D)
O 7O—k71+O(T.v2)
After some simplifications, (22) becomes
01 =04 ~T,Doy +T,G(A, - A% Jr o) (23)

Here Ax; =x; —x;_andAf, = f;, — f4_;- Note that if
D =1/T,, then the rhs of (23) is of order O(T)),

keeping in mind that x" and f are smooth and continuous.
Hence,

O = OT,) (24)

Hence, it is shown that the maximum deviation from the
sliding surface at each sampling instant is of order O(T}?).

Next, it will be shown that the inter-sampling deviation of
the sliding surface from the desired manifold is also of
order O(T,?).

Consider the inter-sampling instant of ¢ = kT, + ¢ where
0<7<T,.If(16) is integrated on both sides from k7 to
kT, +7

kT +7
o(kT, + 7)o = J'(Gx — Gf - GBu(0) it
i,

(25

Applying the sample and hold to the control and Euler’s
integration to the remaining integral gives

o(kT, +7) = 0 +7G(5] — f; )~ 7GBuy +0(z>)  (26)
If the control defined by (15) is introduced into (26)
o(kT, +7) = o +7G|¥f — f; )~ 7GBuy._,
(27)

— oy _Ti(o-k —04)+0(?)

N

If TG()'C;,I -/ k,l) is added and subtracted from the r.h.s
of (21) and D =1/T, , the following is obtained

o(kT, +7) =0, +T1G(TS (a7 - o ))—Tiak Loy

s s s

+TLG(7}(5C/?4 _fk—l)_ TsBuk—l)JrTLO-k—l +0(c?)

s

(28)

2 s
0 =04 +O(T;7)

Further simplifications lead to

oUT, +7)=0 ~ =0, + =Gl (a5 - a7+ 0% (29)

s s

If x" and f are smooth and continuous then

o(kT, + 1) =0, —Tiok +0(?)
s

(30

Note that ifo;, = O(Tsz) as was shown previously then

the maximum intersampling value of the sliding function
is O(T,?). Hence,

o(kT, +7)=O(T,?) €2))



C. Lyapunov Stability Analysis of the Closed-Loop
System

In this section it will be shown that with discrete-time
control defined by (15) it is possible to satisfy the
Lyapunov conditions (4) and (5) in discrete-time.

Starting with the definition of the Lyapunov function in
discrete-time

Vi =oi (32)

The difference of two consecutive values of the
Lyapunov function in discrete-time can be given by

Vi =V = 0'/§+1 - 0'13 (33)

Here it is required that V,,, -V, <Oforo;, #0.

However, it will be shown that V, , -V, <0 for

|O'k| > O(T?) . The condition ¥, —¥, <0 means that

Opy —0op <0 (34)
If (24) is inserted into (34),
Via =V =0T -0} (35)

Note that if |o|> O(T)) thenV,,, -V, <0. Thus, (35)

shows that gy is always converging towards a boundary of
O(T,;?) around the desired sliding-manifold and (31)
shows that once oy reaches O(7,%) boundary it will tend to
stay in that boundary.

III. IMPLEMENTATION ON A PIEZO-STAGE

In this work a piezo-stage that consists of a piezo-drive
integrated with a sophisticated flexure structure for
motion amplification is used. The flexure structure is
wire-EDM-cut and is designed to have zero stiction and
friction. Figure 1 shows the piezo-drive integrated flexure
structure. In addition to the absence of internal friction,
flexure stages exhibit high stiffness and high load
capacity. Flexure stages are also insensitive to shock and
vibration. However, since the piezo-drive exhibits non-
linear hysteresis behavior, the overall system will also
exhibit the same behavior.

The dynamics of the piezo-stage can be represented by
the following second-order differential equation coupled
with hysteresis in the presence of external forces

My ¥ +cyy+kyy=Tu@)—h(y,u)-F,,  (36)

Here m.; denotes the effective mass of the stage, y
denotes the displacement of the stage, c.; denotes the
effective damping of the stage, k., denotes the effective
stiffness of the stage, T denotes the electromechanical
transformation ratio, u# denotes the input voltage and
h(y,u) denotes the non-linear hysteresis that has been
found to be a function of y and u, [1], and F,, is the
external force acting on the stage.

The structure of model (36) is showing that, from the
mechanical motion the hysteresis may be perceived as a
disturbance force that satisfy matching conditions. This
means that the sliding mode based control should be able
to reject the influence of the hysteresis nonlinearity on the
mechanical motion. At the same time it is obvious that
the lumped disturbance consisting of the external force
acting on the system and the hysteresis can be estimated,
thus allowing the application of the disturbance rejection
method in the overall system design.

Figure 1. Fig. 1. Structure of a flexure piezo-stage

To facilitate the writing of the control law, (36)
is written into the state-space form

X =y=1x,
k. . F,.
xzzj}:—ixl—cci%%— T u— T h(y,u) ——=- (39)
My My Moy Mefy Moy
From here it can be seen that the input matrix is
T
B=lo -~ (40)
Mgy
The matrix G for this case will be selected to be
G={1 1} (41

Here 4 is a positive constant. Hence, the controller will be
in the following form

My O — Ol
u, =u,  +——| Do, + —— 42
k k-1 T k T, (42)

The results that it will be shown in this section are for the
case of SMC and for comparison purposes PID results



will also be shown. Figures 2 and 3 depict the tracking of
the piezo-stage for a 0.25Hz sinusoidal reference.

IV. DISTURBANCE OBSERVER

A. Design and Analysis of the Disturbance Observer
The structure of the observer is based on (36) under the
assumption that all the plant parameter uncertainties,
nonlinearities and external disturbances can be
represented as a lumped disturbance. As it is obvious, y is
the displacement of the plant and is measurable.
Likewise, u(#) is the input to the plant and is also
measurable. Hence, the nominal structure of the plant is
defined as follows

myy+cyy+kyy=Tyu(t)-F, @3)
F; =Tyh+AT (v, + v, )+ Amy + Acy + Aky

Here my, cy, ky and Ty are the nominal plant parameters
while Am, Ac, Ak and AT are the uncertainties of the
plant parameters. Since y and u(f) are measured the
proposed observer is of the following form

myy+cyy+kyd=Tyu—Tyu, (44)

Here y is the estimated position u is the plant control
input and u. is the observer control input. If y can be
forced to track y then obviously F, = T u. . The observer

controller that is used is in the SMC framework.
Selecting the following sliding manifold

Oobs = Aabs(y_j})_k(j/_)’}) (45)
here A, is a positive constant. If o, is forced to zero
then y is forced to track y. The controller used is

Mo D . Oobs, — O
obso-nbsk T

s

obs .,

U, =u,  +

(46)

The frequency response of the disturbance observer
output with respect to the disturbance is depicted in the
Fig. 4. The response shown is for the case when the
sampling time is 100us and the controller parameters
bEing Dohs = ﬂ’obs = 1/T9 :
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Figure 2. Fig. 2. Sinusoidal reference tracking with SMC
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Figure 3. Fig. 3. Sinusoidal reference tracking with PID controller

04

02r

0

o2k

04k

0Bk

T“uand, Magnitude (dB)

08k

Phase (deg)
o
L

a5k L L . .
i1 10 10! 10 10 10
Frequency (rad/sec)

Figure 4. Fig. 4. Magnitude and Phase Plots of the Observer Response



B. Closed-Loop Experiments with Disturbance
Compensation

The disturbance observer shown above was implemented
with closed-loop control. The observer implementation is
depicted in the Fig. 5. The experiments show a notable
improvement in tracking for the cases of Sliding mode
controller and PID controller.
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Figure 6. Fig. 6. Sinusoidal reference tracking with the SMC and
disturbance compensation
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Figure 7. Fig. 7. Sinusoidal reference tracking with PID and
disturbance compensation

V. CONCLUSION

In this paper the robustness of a designed discrete-time
Sliding mode controller was shown. It was also shown
that the controller can push the states of the system to an
O(T,®) boundary around the desired sliding manifold.
Experiments were also conducted to show the
effectiveness of the controller. As an extension, it was
shown that the inclusion of disturbance compensation via
disturbance observer can improve the overall closed-loop
system.
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