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Abstract—In this paper a discrete-time Sliding-Mode 
(SM) based controller for high accuracy position 
control is investigated. The controller is designed for a 
general SISO system with nonlinearity and external 
disturbance. It will be shown that application of the 
proposed controller forces the state trajectory to be 
within an O(Ts

2). The proposed controller is applied to 
a stage driven by a piezo drive that is known to suffer 
from nonlinearity. As a separate idea to enhance the 
accuracy of the closed loop system a combination of 
disturbance rejection method and the SMC controller 
is explored and its effectiveness is experimentally 
demonstrated. Closed-loop experiments are presented 
using PID controller with and without disturbance 
compensation and Sliding-Mode Controller with and 
without disturbance compensation for the purpose of 
comparison. 

I. INTRODUCTION 
Sliding mode controllers have proven to be very powerful 
algorithms in the face of systems with plant parameter 
variations, unmodeled dynamics and external 
disturbances. However, design of classical sliding mode 
controllers requires knowledge of plant dynamics. This is 
not favorable for cases where partial plant dynamics are 
known. Hence, it is necessary to derive a controller that 
can satisfy above mentioned properties while requiring 
partial knowledge of plant parameters in its design. For 
the cases in discrete-time sliding mode control switching 
control is not possible due to the switching frequency 
being limited by the sampling rate of the controller. 
Hence, the control must be continuous unlike the case for 
continuous-time applications where the control is 
discontinuous in nature. In the work of, [1], the derived 
sliding mode controller was proven to force the states to 
be in O(Ts

2) boundary around the desired sliding surface. 
Hence, the proposed controller must be capable of 
showing the same characteristics. Finally, experiments 
will be conducted on piezo actuator driven stage. 
 
Piezoelectric actuators have shown a great potential in 
applications that require sub-micrometer down to 
nanometer motion. The advantages that piezoelectric 
actuators offer are the absence of friction and stiction 
characteristics that exist in other actuators. Thus, 
piezoelectric actuators are ideal for very high-precision 

motion applications. The main characteristics of 
piezoelectric actuators are: extremely high resolution in 
the nanometer range, high bandwidth up to several kilo 
hertz range, a large force up to few tons, and very short 
travel in the sub-millimeter range. Application areas of 
piezoelectric actuators include: micromanipulation, 
micro-assembly, add-ons for high precision cutting 
machinery and as secondary actuators in macro/micro 
motion systems such as dual-stage hard-disk drives. In all 
of these applications the accuracy of positioning is very 
important and in many cases the closed loop control is the 
only answer. Despite of this there are many attempts to 
drive piezo stacks as an open loop system with fine 
compensation of the hysteresis nonlinearity in one or 
another way. With development of accurate position 
transducers the possibility to use robust feedback based 
nonlinear control methods is becoming attractive 
alternative to the model based compensation.  
 

As a final extension of the work, a disturbance observer 
based on the lumped parameter model of the piezo-stage 
proposed in, [2], will be experimentally shown to improve 
the overall performance of the closed-loop system 

II. CONTROLLER DESIGN AND ANALYSIS 

A. Controller Design 
Consider the general system defined below  

 
Buxfx += )(&  (1) 
 

Here, it is assumed that f and B are smooth, continuous 
and bounded. The aim is to drive the states of the system 
into the set S defined by 
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Here G is a positive constant, x is the state vector, xr is 
the reference vector and it will be assumed to be smooth 
and continuous, and ),( rxxσ is the function defining the 
sliding mode manifold.  
 



The derivation of the control law starts with the selection 
of the Lyapunov function, )(σV , and an appropriate form 

of the derivative of the Lyapunov function, )(σV& . 
 
Lyapunov function selection such that it is positive 
definite 
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Hence the derivative of the Lyapunov function is 
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In order to guaranty the stability of solution 0),( =rxxσ , 
the derivative of the Lyapunov function is selected to be 
 

2)( σσ DV −=&  (5) 
 
Here D is a positive constant. Hence, if control can be 
determined from (4) and (5), the stability of the solution 
(5) will be guaranteed since 0)( >σV , 0)0( =V  and 

( ) 0<σV& , ( ) 00 =V& . By combining (4) and (5) the 
following result is obtained 
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A solution for (6) is as follows 
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The derivative of the sliding function is as follows 
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From (8) and using (1) 
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If (9) is inserted in (7) and the result is solved for the 
control 
 

( ) σDGButu eq
1)( −+=  (10) 

 
It can be seen from (9) that ueq is difficult to calculate. 
Using the fact that ueq is a continuous function since it is 
a function of xr and f that are assumed smooth and 
continuous, (9) can be written in discrete-time form after 
applying Euler’s approximation, 
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Here Ts is the sampling time and +∈ Zk . It is also 
necessary to write (10) in discrete-time form just as it was 
done before 
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If (11) is solved for the equivalent control, the following 
is obtained 
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Since the system is causal, and control cannot be 
dependent on a future value of σ, the only way to estimate 
the current value of the equivalent control is by 
approximating by a single-step backward value computed 
from (14) as follows, 
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Here 

keqû (or )(ˆ seq kTu ) is the estimate of the current 

value of the equivalent control. If (14) is inserted in (12) 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
++= −−

−
s

kk
kkk T

DGBuu 11
1

σσ
σ  (15) 

 
It easily seen that the above control law is derived from 
discrete-time approximations based on the continuous-
time equations. Hence, it must be shown that the above 
control satisfies the original conditions based on which it 
was designed. These conditions are the Lyapunov 
condition and existence of Sliding Mode.  

B. Closed-Loop Behavior with the Approximated 
Control 

As a consequence of the approximations that were made 
in the derivation of the discrete-time control law some 
deviations in the sliding surface from the desired sliding 
manifold may exist. This deviation of the sliding surface 
from the desired manifold at each sampling instant will 
be analyzed. Analysis of the inter-sampling behavior of 
the sliding surface will also be analyzed.  Considering 
(1), the derivative of the sliding surface is given by 
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The discrete-time equivalent of the sliding manifold can 
be obtained by taking the integral on both sides of (16) 
from kTs to sTk )1( +  
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Applying a sample and hold to the control input between 
consecutive samples kutu =)( for ss TktkT )1( +<≤  
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Using the assumptions that rx& and f are smooth and 
bounded, the integrations in (18) can be approximated by 
using Euler’s integration  
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Here O(Ts

2) is the error introduced due to Euler’s 
integration, [3]. If the control defined by (15) is 
introduced into (19) 
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After some simplifications (20) is reduced to 
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If ( )11 −− − k

r
ks fxGT &  is added and subtracted from the r.h.s 

of (21), the following is obtained  
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After some simplifications, (22) becomes 
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Here r

k
r
k

r
k xxx 1−−=∆ &&& and 1−−=∆ kkk fff . Note that if 

sTD 1= , then the r.h.s of (23) is of order O(Ts
2), 

keeping in mind that rx& and f are smooth and continuous. 
Hence, 
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Hence, it is shown that the maximum deviation from the 
sliding surface at each sampling instant is of order O(Ts

2). 
 
Next, it will be shown that the inter-sampling deviation of 
the sliding surface from the desired manifold is also of 
order O(Ts

2).  
 
Consider the inter-sampling instant of τ+= skTt  where 

sT≤≤ τ0 . If (16) is integrated on both sides from kTs to 
τ+skT  
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Applying the sample and hold to the control and Euler’s 
integration to the remaining integral gives 
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If the control defined by (15) is introduced into (26) 
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If ( )11 −− − k

r
k fxG &τ  is added and subtracted from the r.h.s 

of (21) and sTD 1= , the following is obtained  
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Further simplifications lead to 
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If rx& and f are smooth and continuous then  
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Note that if )( 2

sk TO=σ as was shown previously then 
the maximum intersampling value of the sliding function 
is O(Ts

2). Hence, 
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C. Lyapunov Stability Analysis of the Closed-Loop 
System 

 
In this section it will be shown that with discrete-time 
control defined by (15) it is possible to satisfy the 
Lyapunov conditions (4) and (5) in discrete-time.  
 
Starting with the definition of the Lyapunov function in 
discrete-time 
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The difference of two consecutive values of the 
Lyapunov function in discrete-time can be given by 
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Here it is required that 01 <−+ kk VV for 0≠kσ . 
However, it will be shown that 01 <−+ kk VV  for 

)( 2
sk TO>σ . The condition 01 <−+ kk VV  means that 
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If (24) is inserted into (34), 
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Note that if )( 2

sk TO>σ then 01 <−+ kk VV . Thus, (35) 
shows that σk is always converging towards a boundary of 
O(Ts

2) around the desired sliding-manifold and (31) 
shows that once σk reaches O(Ts

2) boundary it will tend to 
stay in that boundary.  
 

III. IMPLEMENTATION ON A PIEZO-STAGE 
In this work a piezo-stage that consists of a piezo-drive 
integrated with a sophisticated flexure structure for 
motion amplification is used. The flexure structure is 
wire-EDM-cut and is designed to have zero stiction and 
friction. Figure 1 shows the piezo-drive integrated flexure 
structure. In addition to the absence of internal friction, 
flexure stages exhibit high stiffness and high load 
capacity. Flexure stages are also insensitive to shock and 
vibration. However, since the piezo-drive exhibits non-
linear hysteresis behavior, the overall system will also 
exhibit the same behavior. 
 
The dynamics of the piezo-stage can be represented by 
the following second-order differential equation coupled 
with hysteresis in the presence of external forces 
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Here meff denotes the effective mass of the stage, y 
denotes the displacement of the stage, ceff denotes the 
effective damping of the stage, keff denotes the effective 
stiffness of the stage, T denotes the electromechanical 
transformation ratio, u denotes the input voltage and 
h(y,u) denotes the non-linear hysteresis that has been 
found to be a function of y and u, [1], and Fext is the 
external force acting on the stage.   
 
The structure of model (36) is showing that, from the 
mechanical motion the hysteresis may be perceived as a 
disturbance force that satisfy matching conditions. This 
means that the sliding mode based control should be able 
to reject the influence of the hysteresis nonlinearity on the 
mechanical motion. At the same time it is obvious that 
the lumped disturbance consisting of the external force 
acting on the system and the hysteresis can be estimated, 
thus allowing the application of the disturbance rejection 
method in the overall system design. 

 
Figure 1.  Fig. 1. Structure of a flexure piezo-stage 

 
To facilitate the writing of the control law, (36) 

is written into the state-space form 
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From here it can be seen that the input matrix is 
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The matrix G for this case will be selected to be 
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Here λ is a positive constant. Hence, the controller will be 
in the following form 
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The results that it will be shown in this section are for the 
case of SMC and for comparison purposes PID results 

Piezo-drive 

y 



will also be shown. Figures 2 and 3 depict the tracking of 
the piezo-stage for a 0.25Hz sinusoidal reference. 

IV. DISTURBANCE OBSERVER 

A. Design and Analysis of the Disturbance Observer 
The structure of the observer is based on (36) under the 
assumption that all the plant parameter uncertainties, 
nonlinearities and external disturbances can be 
represented as a lumped disturbance. As it is obvious, y is 
the displacement of the plant and is measurable. 
Likewise, u(t) is the input to the plant and is also 
measurable. Hence, the nominal structure of the plant is 
defined as follows 
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Here mN, cN, kN and TN are the nominal plant parameters 
while ∆m, ∆c, ∆k and ∆T are the uncertainties of the 
plant parameters. Since y and u(t) are measured the 
proposed observer is of the following form 
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Here ŷ  is the estimated position u is the plant control 
input and uc is the observer control input. If ŷ can be 
forced to track y then obviously cNd uTF = . The observer 
controller that is used is in the SMC framework. 
Selecting the following sliding manifold 
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here λobs is a positive constant. If σobs is forced to zero 
then ŷ  is forced to track y. The controller used is 
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The frequency response of the disturbance observer 
output with respect to the disturbance is depicted in the 
Fig. 4. The response shown is for the case when the 
sampling time is 100µs and the controller parameters 
being sobsobs TD 1== λ . 

 
Figure 2.  Fig. 2. Sinusoidal reference tracking with SMC 

 

 
Figure 3.  Fig. 3. Sinusoidal reference tracking with PID controller 

 
Figure 4.  Fig. 4. Magnitude and Phase Plots of the Observer Response 



B. Closed-Loop Experiments with Disturbance 
Compensation 

The disturbance observer shown above was implemented 
with closed-loop control. The observer implementation is 
depicted in the Fig. 5. The experiments show a notable 
improvement in tracking for the cases of Sliding mode 
controller and PID controller.  

 
Figure 5.  Fig. 5. Closed-Loop control with disturbance compensation 

 

 
Figure 6.  Fig. 6. Sinusoidal reference tracking with the SMC and 

disturbance compensation 

 
Figure 7.  Fig. 7. Sinusoidal reference tracking with PID and 

disturbance compensation 

V. CONCLUSION 
In this paper the robustness of a designed discrete-time 
Sliding mode controller was shown. It was also shown 
that the controller can push the states of the system to an 
O(Ts

2) boundary around the desired sliding manifold. 
Experiments were also conducted to show the 
effectiveness of the controller. As an extension, it was 
shown that the inclusion of disturbance compensation via 
disturbance observer can improve the overall closed-loop 
system. 
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ŷ

y 

e 

u + 

+ 

_ 
+ 

SM 
Controller 

Piezoelectric 
Actuator 

Linear Plant 
Model 

Control 
yref 


