
  

  
Abstract— In this paper the robust motion control systems in 

the sliding mode framework are discussed. Due to the fact that a 
motion control system with n d.o.f may be mathematically 
formulated in a unique way as a system composed of n second 
order systems, design of such a system may be formulated in a 
unique way as a requirement that the generalized coordinates 
must satisfy certain algebraic constraint. Such a formulation 
leads naturally to sliding mode framework to be applied. In this 
approach constraint manifolds are selected to coincide with 
desired constraints on the generalized coordinates. It has been 
shown that the CMC can be interpreted as a realization of the 
acceleration controller thus possessing all robust properties of 
the acceleration controller framework. The possibility to treat 
both unconstrained motion (the motion without contact with 
environment) and constrained motion in the same way is shown.  

I. INTRODUCTION 

The most salient feature of the Sliding Mode Control 
(SMC) is the possibility to constrain the system motion in 
selected manifold in the state space. Such motion results in 
a system performance that includes disturbance rejection 
and insensitivity to parameter variations [1]. The 
development of VSS has gone through oscillations with 
both very enthusiastic claims and the skepticism regarding 
the achieved results. In some cases researchers contributed 
to the confusion, especially in the case of so-called 
chattering phenomena, through incomplete analysis and 
design fixes, what provoked many analytical methods to be 
proposed to deal with chattering phenomenon [2,3,4,5]    

The complexity and nonlinear dynamics of motion 
control systems along with high-performance operation 
require complex, often nonlinear control system design, to 
fully exploit system capabilities. Basic goal for motion 
control systems is to achieve smooth stable motion in the 
presence of unstructured environment with which plant in 
motion (robotic manipulator) can be in contact. The joint 
torques are treated as the control inputs. The torques or 
forces are on the other hand the outputs of actuators - often 
electrical machines, with their own complex nonlinear 
dynamics. In this paper we will demonstrate a generalized 
framework for sliding mode approach in motion control 
systems. It will be shown that sliding mode represents a 
method for acceleration control implementation and thus 
offers all advantages of the acceleration control framework 
like robustness to the parameters changes and the external 

 
 

disturbances. In order to illustrate the state observer design 
in the sliding mode framework we will discuss the sliding 
mode application for PZT actuator nolinearity and external 
force estimation. 

II. SLIDING MODES IN MOTION CONTROL 
SYSTEMS 

So-called sliding mode motion is represented by the state 
trajectories being forced to stay in the selected state space 
manifold (sliding mode manifold) with finite time 
convergence to sliding mode manifold. In the continuous 
time the control that may guaranty above properties 
happens to be discontinuous with high frequency 
switching, while in the discrete-time the control that 
guaranty the motion in sliding mode manifold may be 
continuous [6-11].  

A. Mathematical Formulation of the Control Problem 

For ‘fully actuated’ mechanical system (number of 
actuators equal to the number of the primary masses) 
mathematical model may be found from Euler-Lagrange 
formulation in the following form 

 ( )
ext

T
acotex

extt

FJτ

ττqqNqqM
qq

=

−=+
=

,,)( 2121

21

&

&

              (1) 

where nℜ∈1q  stands for vector of generalized positions, 

1 2=q q&  stands for vector of generalized velocities 

( ) nxnℜ∈1qM  is generalized positive definite inertia 
matrix with bounded parameters hence 

( ) +− ≤≤ MM 1qM , ( ) 1
21 ,, nxt ℜ∈qqN  represent vector 

of coupling forces including gravity and friction and is 
bounded by ( ) +≤ Nt,, 21 qqN , 1nxℜ∈τ  with 0τ≤τ is 

vector of generalized input forces and 1nx
ext ℜ∈τ  with 

0gext ≤τ  is vector of generalized torques due to the 

presence of the external forces 1nx
ext ℜ∈F .  

00 ,,,, gNMM τ++−  are known scalars.  In system (1) 

vectors 1nx
ext ℜ∈τ  and ( ) 1

21 ,, nxt ℜ∈qqN  satisfy 

matching conditions [9], T
acoJ  is Jacobian matrix.  

Model (1) can be rewritten as n second order systems 

Robust Motion Control - SMC Point of View  

Asif  Šabanović  
Sabanci University 

Faculty of Engineering and Natural Sciences 
Istanbul, 34956 Turkey 

Phone: +90 216 483 9502 Fax +90.216.483 9550  E-mail: asif@sabanciuniv.edu 
 



  

21 ii qq =& , niqmτnqm
n

ijj
jijextiiiiii ,...,1    ,

,1
22 =−−=+ ∑

≠=
&& τ   

where the elements of inertia matrix are bounded 
( ) +− ≤≤ ijijij mtmm , the elements of vector ( )t,, 21 qqN are 

bounded ( ) +− ≤≤ iii ntnn , the elements of the external 

torque vector are bounded by ( ) +− ≤≤ iextii gtg 00 τ  and the 

input generalized torques are bounded ( ) +− ≤≤ iii t 00 τττ . 
The structure is simple each of the systems can be viewed 
as a second order system with generalized torque as input 

and ,
,1

2∑
≠=

∆−−−=
n

ijj
iiijijii qmqmnd &&&  as disturbance which 

satisfies matching conditions and external forces being 
result of the system contact with environment.  

In the following sections we will discuss the motion 
control design assuming the generalized torque as a control 
input i.e. the motion dynamics (1). 

B. Control Problem Formulation 

Vector of generalized positions and generalized 
velocities defines configuration of a mechanical system 
[12-13]. The motion control tasks such as position 
tracking, force control and impedance control can be 
presented as requirements to maintain certain specified 
configuration of the mechanical system expressed in the 
form vector equations ( ) 121 ,, nxt 0qqσ =  as depicted in (2) 
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where ( ) 1nxt ℜ∈f , is known bounded continuous function 
with bounded elements and their first order time 
derivatives. In the sliding mode framework requirement (2) 
is equivalent to enforcing sliding mode in manifold  
 

( ){ }0fqCqqq =−+= tSq 2121  :, ,        (3) 

 
Matrix C is generally selected as diagonal so elements of 

vector function 1nx0σ =  are ( )tfqqcσ iiiii −+= 21 , 
i=1,2,..,n. If sliding mode is enforced in manifold (3) then 
equivalent control, being solution of 

( ) 0fqqCσ =−+=
==

eqeq
t

ττττ
&&&& 21 , is determined as 

( )( ) exteq t τ++−= NCqfMτ 2
&  and the equations of motion 

for system (1) with sliding mode in manifold (3) can be 
derived in the form  
 

  ( )( ) ( )( )12212  , qCfqqMqCfMqM &&&&&&& −==−= tt desdes     (4) 
 
Which, after some manipulations may be written as  
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From (5) it follows that in the sliding mode on manifold (3) 
the motion of the general fully actuated motion control 
system (1) depends only on the selection of the manifold 
(matrix C) and the desired configuration of the system 

( ) 1nxt ℜ∈f . The motion in sliding mode is robust against 
the plant parameter changes and the generalized 
disturbance vector expressed as ( ) extt τqqNd += ,, 21 .  
The structure of the sliding mode control system is 
depicted in Fig. 1. 
 
 
 
 
 
 
 

Fig. 1 The structure of the SMC motion control system 
 

The sliding mode control (4) realizes the acceleration 
controller [12] with desired acceleration being 

( )( )1Cqf −tdt
d . This indicates that results attained in 

acceleration control framework may be realized in sliding 
mode framework as well.  

In the sliding mode framework desired configuration of 
the system can be realized while all advantages of the 
acceleration control framework can be retained. The fact 
that the closed loop system motion (5) is the same as the 
equation of sliding mode manifold is due to the specifics of 
the system’s dynamics (1). 

 
1) Position tracking in robotic systems - By selecting 
reference trajectory as ( )tref

1q , the position tracking 
problem can be specified as a requirement that sliding 
mode be enforced in manifold (6) 
 

( ) ( ){ } ( ) ( )refref
q ttS
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Equation (6) can be interpreted as a requirement that the 

control error and its derivative are linearly dependent or 
( ) ( ) ( ) ( ) ( ) 0qσqσqqσqqqqC =−=−=−+− 111211 2

refrefrefref .   

 
2) Force control in robotic systems The spring-damper 
model of the reaction force (7) is widely accepted in 
motion control systems  
 

( ) ( )1 1 1 2ep e ed e= − + −F K q q K q q&         (7) 
 
where 1eq  is the generalized coordinate of the contact point 
of the robot tip with environment, >K 0  is spring 
coefficient matrix. The force control problem in which the 
contact force F should track its reference ( )ref tF can be 
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specified as a requirement that sliding mode is enforced in 
the manifold (8) 
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3) The mechanical impedance control The mechanical 
impedance control can be formulated in a similar way.  
 

( ){ }0qMqBqKFqq e1e1e =+++= 121 :,, &&&tS f               (9) 

 
where eee MBK ,,  are desired stiffness, damping and mass 
matrices. In many cases mass is selected very small or zero 
thus reducing the impedance control to the force control 
problem.  

The trajectory tracking (6), the force control (8) and 
mechanical impedance control (9) are mathematically 
defined is the same way thus all can be solved in the 
framework of sliding mode control systems by enforcing 
sliding mode in selected manifolds. Moreover the 
combination of the tasks seems natural so the questions of 
the unified control strategy in the sliding mode framework 
seem natural to look in. Before discussing the unified 
approach to the above control problems let us first look at 
the control vector selection.    

C. Selection of control input 

The design of control inputs for system (1), (12) with 
sliding mode in manifold (3) may follow a few different 
approaches.  All the approaches have common requirement 
to derive the control input such that the stability of the 
solution ( ) 121 ,, nxt 0qqσ = is assured. This could be 
guarantied if Lyapunov stability conditions are satisfied. 
The Lyapunov function may be selected as σσTv 2

1=  with 

first time derivative being σσ && Tv = .  To ensure stability the 
Lyapunov function derivative may be required to have 
specific form so to ensure that ( ) 0<−== σΨσσσ TTv && . 

Then one can derive ( )( ) 0=+ σΨσσ &T  and consequently 
control should be selected to satisfy 

( ) ( )σMΨττσΨσ −=⇒=+ eq0& . Obviously control will 

depend on the selection of the function ( )σΨ . In the 
literature this function is most often selected as 

( ) ( )σσΨ sign=  and the resulting control is discontinuous 
as ( ) ( ) niσsignτsign iii ,...,1  ,00 =−=⇒−= ττ στ  [15]. Each 
component of the control input undergoes discontinuity by 
taking values from the set { }ii 00 ,ττ− . Direct 
implementation of this algorithm may result in chattering 
An approach to reduce the effect of the discontinuous 

control is to implement it as ( )ii
est
eqi signτ σττ 0ˆ −=  

where est
eqτ̂  is estimated torque that may be calculated 

either from the system’s model using available 
measurement and estimated parameters or from disturbance 
estimation. Asymptotic observers may be used as a bypass 
for high frequency component [10,11] and to eliminate 
chattering. With all of these modification the sliding mode 
control with discontinuity is hardly and acceptable solution 
due to the chattering problem and actuators dynamic.  
  
1) Discrete-time sliding mode control For system (1) 
sliding mode in sliding mode manifold (3) can be enforced 
selecting control in the form  
 

0, >−= DMDσττ eq               (10) 

where eqτ  is solution of the algebraic equation 

( ) 0== eqττσ& . With control (10) the Lyapunov function 

σσTv 2
1=  has time derivative 0, >−== DDσσσσ   v TT

l &&  

and condition 0Dσσ =+&  ensures the asymptotic 
stability of the solution 0σ = . Control (10) is continuous 
but it still requires information on systems parameters and 
external disturbances for calculation of eqτ .  

By applying sample and hold process with sampling 
interval T, the discrete-time realization of control (10) can 
be approximated as depicted in (11)  
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Implementation of algorithm (11) requires information 

on distance from sliding mode manifold and inertia matrix. 
Application of control (11) to system (1), (3) leads to the  
 

( ) ( ) ( )( ) ( )1T Tk k k T k− = −σ σ σ I D σ       (12) 

 
If D is diagonal matrix for each of the components in 

(12), one can write ( ) ( ) ( )( )iiiii Tdkkk −=− 11 2σσσ  and dii 
may be selected so that ( ) 110 <−< iiTd , which ensures 
existence of quazi-sliding mode motion.   
 
2) The robustness in SMC motion control systems From (5) 
follows that the ideal sliding mode motion of system (1) in 
manifold (3) does not depend on the systems disturbance 
nor on the systems parameters and is fully defined by the 
design parameter C. To realize such a motion the 
equivalent control should be determined and that poses a 
problem since all parameters of the system and the 
disturbance are necessary to determine equivalent control. 
Application of control (10) for the trajectory tracking leads 
to the sliding mode equations of motion being defined as 

0Dσσ =+&  or  
 

( ) ( )( ) ( ) 0qqCDqqDCqq =−+−++− refrefref &&&&&&         (13) 
 



  

what represents second order system transient determined 
by the design parameters C and D.  This show that the 
robustness of the system is preserved but the transient is 
now of the second order.  

Using approximated control (11) one can find that  
 

( ) ( ) ( ) ( )( )1dis disk k k k T+ = − −σ Dσ τ τ&           (14)  

 
what shows that the motion of the system will have an 
error of the o(T) order, which can be made small enough 
by selecting sampling interval. The above robustness 
properties are valid for trajectory tracking, force control 
and impedance control problems.  

III. THE GENERALIZATION OF SMC IN MOTION 
CONTROL 

The sliding mode manifolds for position tracking, force 
control and impedance control are defined in a similar 
ways but still they have considerable differences so that 
some sort of the hybrid control scheme should be used in 
order to achieve smooth motion of the system in the 
presence of obstacles. The similarities in the sliding mode 
manifolds definition and the sliding mode equation (13), 
which represents the closed loop behavior of the system, 
are justifying the attempt to search for the definition of the 
sliding mode manifold in such a way that all three control 
problems may be solved by the same controller and 
switching between different modes: the trajectory tracking, 
the force control and impedance control may be combined 
so to allow control to be reaction to the present of the 
contact with environment and the controller parameters the 
same for all control modes.  From trajectory tracking 
manifold it is apparent that the system configuration could 
be modified by changing function f(t) in (6).  On the other 
hand the impedance control may be easily interpreted from 
(13). The closed loop behavior of the system (13) can be 
interpreted in a way that the system under control acts as a 
mass-spring-damper system with equivalent mass being 
Me=I, Equivalent spring Kp=CD and equivalent damper 
Kd=C+D as depicted in Fig. 2 

In the contact with environment the controlled system 
will react as virtual impedance creating a force Fe due to 
the contact. In the above framework it is possible to unify 
all of the above tasks in one and specify the control task as 
a requirement that control should be selected to enforce the 
configuration of the system qσCqq =+& to track its 

reference 
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Fig. 2 The interpretation of the SMC closed loop system in contact wiyth 
environment 

 
Matrix β  is diagonal with diagonal elements in the 

directions in which contact force should be controlled 
should be changed so to maintain the required contact force 
– the simples and yet efficient solution is to keep these 
coefficients just proportional to force error. In the 
directions where forces should not be maintained at the 
required level but either trajectory tracking or compliance 
control coefficients of matrix β should be kept at 1. Matrix 
α  defines the compliance parameters. This matrix is 
diagonal with elements being different from zero in the 
directions in which compliance is to be maintained and 
being zero in the directions in which either contact force or 
trajectory tracking should be maintained.  

The control is the same as in (11) and the closed loop 
transient is described by 0Dσσ =+& .  In the directions in 
which compliance is maintained the system acts as a 
damper spring system and the dynamics is defined by 

0αFqCq =−+ e∆∆& .  The structure of such a controller is 
depicted in Fig. 3 

 
 
 
 
 
 
 
 
 

Fig. 3. The structure of the system 

IV. EXAMPLES 

A. SMC in PZT position tracking control  

As an illustrative example of sliding mode control a 
position control for PZT actuator is discussed in this 
section. The electromechanical lumped model exhibits 
large hysterezis as a main nonlinearity of the system [16]. 
Since the accuracy of the system depends on the 
disturbance as depicted in (14) the SMC is combined with 
disturbance observer to see the possible influence on the 
achievable accuracy. The observer is designed as a position 
tracking system and it exhibits the second order dynamics.  

 
1) Experimental results in position tracking - The 
experimental setup consists of a Piezomechanik’s 
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PSt150/5/60 stack actuator ( 60max =x µm, 800max =F N, 
150max =v Volt) connected to SVR150/3 low-voltage, low-

power amplifier. The actuator has built-in strain-gages for 
position measurement. Force measurement is accomplished 
by a load cell placed against the actuator. The entire setup 
is connected to DS1103 module hosted in a PC with 
dSPACE software Control Desk v.2.0. In all experiments 
the parameters of the sliding mode controllers (both 
controllers in disturbance observer and in outer loop) are 
kept as C=800, D=2500, and they are not tuned for best 
performance. The experimental results are depicted in Fig. 
4 and 5 respectively. For the feedback signal filtering a 
simple filter is used but it was not accounted for in the 
controller design so all three systems have unmodelled 
dynamics in the loop.  

The behavior of the sliding mode controller (Fig. 4) and 
sliding mode controller with disturbance observer is similar 
but error for the system with disturbance observer (Fig. 5) 
is about 50% smaller. In addition the output noise is much 
smaller in the system with disturbance observer. This 
demonstrates the possibility of combining the disturbance 
observer with SMC control methods. 

 
Fig. 4 Tracking of the sinusoidal reference for a PZT actuator. Sliding 

mode control without disturbance feedback 
 

2) PZF force control - For the force observer the modeling 
of hysteresis is needed so a nonlinear model of the plant 
constructed as a nominal plant with hysteresis added is 
used for force estimation. The structure of the force control 
system is depicted in Fig. 6, while the experimental set-up 
is as in Fig. 7. The experiments depicted in Fig.7 shows 
smooth transients in the force control. The transients 
without any overshoot is most likely due to the fact that 
actuator is in contact with environment before the force 
reference is changed so no impact force is present in the 
system. 

 
Fig. 10 Tracking of the sinusoidal reference for a PZT actuator. Sliding 

mode control without disturbance feedback 
 
 
 
 
 
 
 
 
 

Fig. 6 The structure of the sliding mode force controller 

 

 

 

 

 

 

Fig. 7. 15N Step force response with estimated force as feedback signal 
 

B. Generalized SMC control – simulation results 

The behavior of the generalized system with a sliding 
mode manifold (15) and control (11) is simulated for single 
axis system described by: 
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A moving obstacle ( )( )tfcxx ooo sin10 +=  had been 
introduced to the system. All frequencies are selected 
different within a range of (0.5-5) Hz. Parameters of the 
controller have been selected C=200 and D=250 and are 
kept constant for all experiments. The contact force with 
environment has been simulated as 
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( ) ( )oedoepe xxKxxKF && −+−=  with Kep=1000 and 

Ked=50. The reference trajectory is selected to be 
sinusoidal with frequency 1 Hz.  
 In order to illustrate the validity of the approach the 
system motion had been simulated in different tasks. The 
trajectory tracking, the force control and the impedance 
control on the manifold (6), (16) and (9) with controllers as 
defined by (11) (note that different definition of σ is used 
in each case) were analyzed and work of each structure 
separately had been confirmed. The simulation of the 
generalized structure as defined by (15) is depicted in Fig. 
8 and 9.  

 
Fig. 8 The trajectory tracking combined with force control in contact with 
an unknown obstacle. Obstacle defined as xa=0.1(1+0.3sin(25t)), force in 

contact with environment is calculated as Fe=1000(x-xa)+50(v-va) 

 
 
Fig 9. The trajectory tracking and force control in contact with unknown 

obstacle and α=1 in (15). Obstacle position and force as in Fig. 8. 

V. CONCLUSIONS 
In this paper the sliding mode control framework in 

motion control systems is discussed. The emphasis is put 
on the robustness of the system motion in sliding mode and 
the general solution for tracking, force control and the 
compliance in motion control systems. It has been shown 
that in the ideal sliding mode the motion is defined by 
design parameters only and it does not depend on the plant 
parameters or the external disturbances. The equivalency 
with acceleration control is shown. The realization of the 
sliding mode control in discrete-time framework is 
discussed. As an example a PZT actuator position tracking 
and force controls tasks are discussed. It has been shown 
that both tasks can be effectively solved in the sliding 
mode framework. The general framework for the 
combination of the trajectory tracking with compliance and 
the force control in fully actuated systems is proposed and 
it has been shown that such framework allows natural 
behavior of the system in the presence of the contact with 
environment if such a contact results in the reaction force 
in some of the manipulator’s joints. 
 

VI. REFERENCES 
[1] Utkin V. I., Sliding modes in control and optimization, Springer-

Verlag, 1992 
[2] Slotine, J-J.: “ Sliding Mode Controller Design for Nonlinear 

Systems”, Int. J. Control, Vol. 40, No.2, 1983 
[3] Wang, W. J. and G.H. Wu: Variable structure control design on 

discrete-time systems-another point viewpoint, Control-theory and 
advanced technology, Vol. 8, no. 1, pp. 1-16,  

[4] DeCarlo R.A., Zak S.H. and Matthews G.P. “Variable Structure 
Control of Nonlinear  Multivariable Systems: A Tutorial,” Proc of 
IEEE  Vol. 76, No.3, 1988. 

[5] V.I. Utkin, “Sliding Mode Control Design Principles and 
Applications to Electric Drives”, IEEE Tran. Ind. Electr. Vol. 40, 
No.1, pp421-434,  1993  

[6] Drakunov, S. V. and V. I. Utkin: On discrete-time sliding modes, 
Proc. of Nonlinear control system design Conf., March 1989, Capri, 
Italy, pp. 273-78, 

[7] Furuta K, Sliding mode control of a discrete system, System and 
Control Letters, Vol. 14, no. 2, 1990, pp. 145-52, 

[8] Utkin V.I.: Sliding Mode Control in Discrete Time and Difference 
Systems, Variable Structure and Lyapunov Control, Ed. by Zinober 
A.S., Springer Verlag, London, 1993 

[9] Drazenovic B.: The invariance conditions in variable structure 
systems, Automatica, vol.5, pp. 287-295, Pergamon Press, 1969. 

[10] Bondarev, A.G., S.A. Bondarev, N.E. Kostileva and V.I. Utkin, 
“Sliding Modes in Systems with Asymptotic State Observers”, 
Automation and Remote Control, 1985. 

[11] V. Utkin, J. Guldner and J. Shi, Sliding Modes in Electromechanical 
Systems, Taylor & Francis, 1999 

[12] K. Ohnishi, Masaaki Shibata and Tushiyuki Murakami, “Motion 
Control for Advanced Mechatronics,” Transactions on 
Mechatronics, IEEE, Vol. 1, No. 1, pp. 56-67, 1996 

[13] Seiichiro Katsura, Yuichi Matsumato, and Kouhei Ohnishi, 
“Analysis and Experimental Validation of Force Bandwidth for 
Force Control,” International Conference on Industrial Technology, 
IEEE, pp. 796-801, 2003 

[14] Watura Iida, and Kouhei Ohnishi, “Sensorless Force Control with 
Force Error Observer,” International Conference on Industrial 
Technology, IEEE, pp. 157-162, 2003 

[15] Young K.-K.D.: Controller design for a manipulator using theory of 
variable structure systems, IEEE Transaction on Systems, Man and 
Cybernetics, 8, 1978, p.p. 210-18 

[16] Michael Goldfarb and Nikola Celanovic, “Modeling Piezolectric 
Stack Actuators for Control of Micromanipulation,” Contr. Sys. 
Mag., IEEE, Vol. 17, pp. 69-79, 1997 

Force Fe 
Feref=15+7.5sin(32t) 

Feref=10   

Feref=2   

Trajectory   Feref=15+7.5sin(32t) 
Feref=10   

Feref=2   
Reference and 
actual trajectory   

Force Fe α=1 no force limit  

Error in original 
trajectory tracking  

Trajectory in 
the presence 
of obstacle 

Trajectory   

Trajectory 
without  obstacle  

Time   

Time   

Feref=15+7.5sin(48t) 
Feref=12   

Feref=4   


