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Joint Morphological-Lexical Language
Modeling for Processing Morphologically Rich
Languages with Application to Dialectal Arabic

Ruhi Sarikaya, Mohamed Afify, Yonggang Deng, Hakan Erdogan, Yuging Gao

Abstract— Language modeling for an inflected language
such as Arabic poses new challenges for speech rgaition and
machine translation due to its rich morphology. Rith morphology
results in large increases in out-of-vocabulary (O®) rate and
poor language model parameter estimation in the alesice of large

quantities of data. In this study, we present a jot
morphological-lexical language model (JMLLM) that takes
advantage of Arabic morphology. JMLLM combines

morphological segments with the underlying lexicalitems and
additional available information sources with regads to
morphological segments and lexical items in a singljoint model.
Joint representation and modeling of morphologicaland lexical
items reduces the OOV rate and provides smooth pratbility
estimates while keeping the predictive power of whe words.
Speech recognition and machine translation experinms in
dialectal-Arabic show improvements over word and mmpheme
based trigram language models. We also show that athe
tightness of integration between different informaion sources
increases, both speech recognition and machine tralation
performances improve.

Index Terms— Language Modeling, Maximum Entropy
Modeling, Morphological Analysis, Joint Modeling.

I. INTRODUCTION

Arabic, respectively.
A standard n-gram language model computes the
probability of a word sequencyy ={w,...w.}. as a product

of conditional probabilities of each word gives history.
This probability is typically approximated b1 most recent
words,

PW) = I_! POW, W, g0 W 4q)

There is an inverse relationship between the ptigdipower
and robust parameter estimatiomegrams. A increases the
predictive power increases, however due to dataskpa
language model parameters may not be robustly &stin
Therefore, settingh to 2 or 3 appears to be a reasonable
compromise between these competing goals. Robust
parameter estimation problem is however more prooed for
Arabic due to its rich morphology compared to nofteicted
languages. One would suspect that words may ntiédbest
lexical units in this case and, perhaps, morphckdginits
would be a better choice.

In addition to its morphological structure, Arabias
certain lexical rules for gender and number matghiRor
example, the adjective iftAh gydh(good girl in English)

There are numerous widely spoken inflected languagg§fiers from the same adjective wld gyd (good boyin

Arabic is one of these highly inflected languagés.
Arabic, affixes are appended to the beginning ar &ma stem
to generate new words. Affixes indicate case, gengase,
number, and many other attributes that can be ededowith
the stem. Most natural language processing apjaitatuse

English) to match the gender, and alsdti&tAn gydtAn(two
good girlsin English) to match the number. By examining
error patterns in speech recognition and machiaestation
outputs we observed that many sentences contaicalex
mismatch errors between words. Using the above pbearthe

word based vocabularies that are unaware of thgierancewld gydmight in some cases be recognizedwiss

morphological relationships between words. For eictid
languages this leads to a rapid growth of the voleap size.
For example, a parallel corpus (pairwise senterareskations)
of 337K utterances between English and dialectalilArabic
has about 24K and 80K unique words for English hadi
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gydh where the correct adjective is replaced by thectisde
of the wrong gender. This makes a lot of sensepeesh
recognition because many of the lexically mismatcfiems
differ in only one phone and are thus acousticedigfusable.
Adding gender information in the language modellddelp
in reducing these errors.  This motivated us tmwoduce
lexical attributes in the language model. Lexictfilautes of
the vocabulary, e.g. number, gender, and type ameually
marked. These attributes will be discussed in @il in
Section V.
In this work, we present a new language modeling

technique called Joint Morphological-Lexical Langea
Model (JMLLM) for inflected languages in generabafwrabic
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in particular and apply it to speech recognitiom amachine TABLE |
translation tasks. JMLLM models the dependencies/éen PREFIX AND SUFFIX LIST FORDIALECTAL IRAQI ARABIC IN BUCKWALTER
' . . . . REPRESENTATION
morpheme and word-grams, attribute information assouateca Prefix List | chAL bhAl InAl, whAl. WbAl, WAl DAl
D

with morphological segmerttand words. These dependencie hAl EAl fAL Al cd. Il b. f . d. w
are represented via a tree structure called Moguital-  [Sifix List | thmA ty}1A AmA_ thA_thm. tkm. thA iny

Lexical Parse Tree (MLPT). MLPT is used by JMLLM to whA, whm, wkm, wnA, wny, An, hA, hm
tightly integrate information sources provided by a hn, km, kn, nA, ny, tm, wA, wh, wk, wn, yn
morphological analyzer with the lexical informatibna single tk, th, h, k, t, y

joint language model. MLPT is a generic structund & can

include, if available, other information sourcesoab the facing the same language modeling issues [25, @634. In
!exical .items (i.e. lexical .attril.)utes, syntactefsantic 5| of the mentioned studies above the use of naggfical
information), or the sentence (i.e. dialog state). knowledge at the modeling stage is limited to cs@gmenting

JMLLM is simply a joint distribution defined oveiné he words into shorter morphemes. In these modets t
vocabularies of the leaves (morphemes in our casé)non- ye|ationship between the lexical items and morpteigenot
terminal nodes of the MLPT. In our implementatio use a mogeled explicitly. Instead, two separate languagelels are
maximum entropy model to represent this joint @stion it on the word based original corpus and segegenbrpus
with a set of features given in Section V-D. Logsgpeaking, ang they are interpolated. However, in most of dhetsidies
this maximum entropy model can be viewed as aforpheme sequence generation process in speeanitimo
mterpolatlon of.d|str|but|ons c_>f the nodes of thgag and hgnce or machine translation decoding is further consedi[4] by
provides a des!rable smoothlng.ef'fect on the fehstribution.  ome rule based mechanisms exploiting the knowledgbe
JMLLM also improves the dictionary’s coverage ofe th momhological segmentation algorithm. For examilxical
domain and reduces the out-of-vocabulary (OOV) 1a¥e jtems are segmented into one or more prefixesvietbby a
predicting morphemes while keeping the predictioevgr of  gtem, which is also followed by one or more suffixthen a
whole words. This model statistically estimates ot  gygfix cannot follow a prefix without having a stecoming
probability of a sentence and its morphologicallysis. before it.

In the above presentation of the model and alsthén Factored Language Models (FLMs) [5, 14] are diffiere
model description in Section V, to be precise, @&IiCt OUr  {han the previous methods and are similar to JMLtdvsome
discussion to a certain configuration of the tiéer example, eytent. Unlike other approaches, in both FLM and.IM the
we associate morpheme.s to |egves, and I-|m|t .tfmnﬂt trqe relationship between lexical and morphological Bemre
nodes to the morphological attributes, lexical seamd their explicitly modeled within a single model. In an FLbrds are
attributes. However any sensible choice of the heades or decomposed into a number of features and the igult
internal tree nodes can be covered by the present®el. opresentation is used in a generalized back-dierse to
Even though in our implementation we use a det@stitn jmprove robustness of probability estimates for elsar
parse provided by a rule based segmentation metth&d, ,pserved worai-grams. In an FLM, each word is viewed as a
proposed model also accommodates the case of plietiab vector of k factors:W:{f.l £<}. An FLM provides the
parses. o b o

The rest of the paper is organized as follows. iSedt probabilistic model P(f | f,,...,f\) where the prediction of
provides an overview of prior work addressing leagei factorf is based orN parents{f,,....f }. For example, ifw

modeling for morphologically rich languages. Setitll  onresents a word token andrepresents a part-of-speech

describes our morphological segmentation methodshért (POS) tag, the modeR(w |w_,,w_,,t_,). predicts the current
overview of maximum entropy modeling is given incten P2 A

IV. The proposed JMLLM is presented in Section ¥cit®n
VI describes the speech recognition and statisticathine
translation (SMT) architecture. Experimental resukind
discussions are provided in Section VII, followeg the
conclusions.

word based on traditionalgram model as well as POS tag of
the previous word. The main advantage of FLMs caoegbéo
previous methods is that they allow users to putniguistic
knowledge to explicitly model the relationship beem word
tokens and POS, or morphological information. Likgram
models, smoothing techniques are necessary in pdgam
estimation. In particular, a generalized back-offeane is used

v, there has b b ) . in training an FLM. Our approach uses maximum gro
Recept y, there has been a number of new stuldneasdaat modeling as opposed to direct maximum likelihooddelimg
addressing robust parameter estimation and raptabdary <o in ELMs

growth problems for morphologically rich languadssusing
the morphological units to represent the Ilexicatmis m
[1,2,3,4,34]. Even though Arabic is receiving mumhthe
attention, there are many other morphologicalli tanguages

Il. RELEVANT PREVIOUS WORK

MORPHOLOGICAL ANALYSIS

Applying morphological segmentation to data impotiee
domain coverage of the dictionary used for speechgnition
1 We use “morphological segment” and morpheme ihtmgeably. or machine translation and reduces the OOV ratenEwough
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there is a large volume of segmented data availéble
Modern Standard Arabic (MSA), we do not know of augh
data for training a statistical morphological azely to
segment Iragi Arabic language. In fact, Iraqi Amlis so
different than MSA, we are not aware of any stuslyetaging
the MSA text resources to improve Iragi Arabic laage
modeling or machine translation.

In this section, we present a word segmentatioarélkgn
that is used to generate the morphological decoitipos
needed by the proposed language models. This @dgomwas
initially proposed in [4]. Starting from predefindibts of
prefixes and suffixes (affixes) the segmentatiogoathm
decomposes each word in a given vocabulary intoobtieree
possible forms: {prefix+stem,
prefix+stem+suffix}, or leaves it unchanged. Altlybuaffixes
in Arabic are composite, i.e. a word can start Jewith
multiple prefixes (suffixes), we found in prelimiya
experiments that allowing multiple affixes leads aolarge
insertion rate in the decoded output and resultsvarse
overall performance. For this reason, we decidezhty allow
a single prefix and/or suffix for each stem.
implementation, we use the sets of prefixes anfixesfgiven
in Table I, in Buckwalter transliteration [6], fdalectal Iraqi
Arabic.

The most straightforvard way to perform
decomposition is to do blind segmentation using ltmeest
matching prefix and/or suffix in the list. Howevethe
difficulty with blind segmentation is that sometisnghe
beginning (ending) part of a word agrees with dipisuffix).
This leads to illegitimate Arabic stems. For exaenphe word
AlgY? (threw in English),
decomposed, has its initial part agreeing with gopular
prefix Al. In this case blind segmentation
decompositionAl-qY and hence to the invalid stegY. In
order to avoid this situation we employ the follogi
segmentation algorithm. The algorithm still relies blind
segmentation but accepts a segmentation only ifalh@ving
three rules apply:

(1) The resulting stem has more than two characters

prefix

v v v v i v v v
0] L=l 0] B [a] 2]

stem+suffix

the

Fig. 1. Morphological Lexical Parse Tree (MLPT) #o dialectal-Arabic
sentence.

' should not allow a segmentation that may causeran, & it is

not going to reduce the size of the lexicon.

Even after applying the above rules there aailll be
some erroneous decompositions, and we indeed fauraty
small number of them by visual inspection of theateposed
lexicon. However, we do not provide a formal “errate” of

the segmentation because this would require a nignua
I OUgegmented reference lexicon. A useful heuristict tban

mitigate the effect of these residual errors ikdep the top-N
frequent decomposable words intact. A value of Ndfb@as
experimentally found to work well in practice.

Using a morphological segmentation algorithm will
produce affixes in the speech recognition and nmachi
translation outputs. These affixes should be gltedthe
following or previous word to form meaningful word$o
facilitate such gluing each prefix and suffix isrked with a -
(e.g. we have prefix Al- or suffix —yn). Two gluirechemes

a verb that should not begre sed. The first is very simple and just stiig word that

starts(ends) with a - to the previous(following) raio The

leads to thgecong tries to apply some constraints to prevegiences of

affixes and to ensure that these affixes are niatcled to
words that start(end) with a prefix(suffix). No ietable
difference is seen between the two approaches.

A few words about the morphological decomposition

algorithm are worth mentioning here. First, thisniere of a
word segmentation algorithm than a

(2) The resulting stem is accepted by the Buckwaltgye;omposition algorithm in a strict linguistic senslowever,

morphological analyzer [6].

(3) The resulting stem exists in the original diofiry.

The first rule eliminates many of the
segmentations. The second rule ensures that thebisvarvalid
stem in the Buckwalter morphological analyzer li3te

it is very simple to apply and all it needs isst 6f affixes and
a lexicon. In previous work [4], we found that wgithis

illegitimate 55 rithm to tokenize the lexicon and the languagelel data

leads to significant reduction in word error raidiis was a
major motivation in using it in more elaborate laage model

Buckwalter morphological analyzer provides a deceni-nemes as discussed in the rest of this paper.

coverage of Modern Standard Arabic (MSA). It wasind
experimentally that for a news corpus it only mssabout 5%
of the most frequent 64K words and that most of rthigsed
words are typos and foreign names. Unfortunatbly fact that
the stem is a valid Arabic stem does not alwaydyirtipat the
segmentation is valid. The third rule, while stitht offering
such guarantee, simply prefers keeping the woractnf its
stem does not occur in the lexicon. The rational¢hat we

2 Using Buckwalter Arabic transliteration.

IV. MAXIMUM ENTROPYMODELING

The Maximum Entropy method is a flexible statidtica
modeling tool that has been widely used in manyasref
natural language processing [9, 12, 27]. Maximurtrogy
modeling produces a probability model that is agoom as
possible while matching empirical feature expeotati
exactly. This can be interpreted as making as fesu@ptions

morphological
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as possible in the model.
combines multiple overlapping information sourciesiures).

Maximum entropy modelinghay look like a disadvantage at first, but it césoashow the

strength of maximum entropy modeling. That is, & ek

For an observation (e.g. a morpheme or word) and a historevidences related to an outcome are weighted tmrass

(context)h, the probability model is given by:
exp(Z)Ii f; (o.h))
OZexp(Z/\j fj (0%,h))

Notice that the denominator includes a sum ovepadsible

P(o|h) =

probability to that outcome. The weights are ledrnga
improved iterative scaling (lIS) algorithm [9]. Thmain
reason for using the maximum entropy method ifletsbility

in integrating overlapping information sources ititte model.
This is a desirable feature for integrating morphatal and
lexical attributes in the language model.

Because of the aforementioned advantages we use the

outcomes,0', which is essentially a normalization factor formaximum entropy method for implementing JMLLM. The

probabilities to sum to 1. The functions are usually referred

to as feature functions or simply features. In toatext of
natural language processing using binary featunetions is
very popular. These binary feature functions avemias:

_{% if o=0 andq (h)=1
fi (0.h) = { 0, otherlwise I

where o] is the outcome associated with featufe and

q, (h) is an indicator function on history.

maximum entropy method allows JMLLM to incorporate
lexical items, morphemes as well as attributescaata with
these lexical items and morphemes into the languagéel.

The maximum entropy method has been used in lareguag

modeling before, in the context afgram models [9], whole
sentence models [13], syntactic structured langunaagels [7]

and semantic structured language models [8]. SdHaruse of
morphology for language modeling has been largeditdd to

segmenting words into morphemes to build a morpheased
language model. Language specific information sush
morphological and lexical attributes s
Additionally, joint modeling of these informationowces

For example, a bigram featurg representing the word rather than using them as sources to derive featuas not

sequence “ARABIC LANGUAGE" in maximum entropy

modeling would haveO = “LANGUAGE" and g, (h) would

be the question “Does the contekt contain the word
“ARABIC" as the previous word of the current word ?The

been considered. Integrating all available infdiamasources
such as morphological and language specific featimea
single model could be very important to improvehbspeech
recognition and machine translation performancextNee
present the maximum entropy based Joint Morphoétgic

model parameters are denotedipywhich can be considered Lexical Language Modeling (JMLLM) method.

as weights associated with feature functions. &lage several

V. JOINT MORPHOLOGICAL-LEXICAL LANGUAGE MODELING

methods to smooth maximum entropy models to avoid

overtraining [9]. The most effective smoothing nueth as
shown in [9], is an instance of fuzzy maximum epjro
smoothing. This type of smoothing amounts to addirggro-
mean Gaussian prior to each parameter. The onlyting

parameters to be determined are variance termsedch

Gaussian. In our experiments, we used the samanearivalue
for all model parameters. This fixed value was mj#ed on a
held-out set using Powell's algorithm [31].

This section describes in detail the IMLLM mod8lsfore
discussing the models we will present the morpholig
lexical parse tree (MLPT) which represents the rim@tion
sources and their dependencies used in the modelwilV
also discuss two implementations of the JMLLM whigh
refer to asIMLLM-leafandJMLLM-tree

A. Morphological-Lexical Parse Tree
The MLPT consists of a tree structured joint repnégtion

Besides Maximum Entropy method, another alternativgf the lexical and morphological items in a senéeand their

machine learning approach that can be used fortask is

associated attribute information. An example of\tPT for

overlooked.

memory based learning (MBL) [28]. MBL can represenin Arabic sentence is given in Fig. 1. The leafehetree are
exceptions that are crucial for Iinguistics. Simila MBL, morphemes that are predicted by the |anguage méceh
each instance, including exceptions is represeased feature morpheme has one of the three attributes: {preitem,
in maximum entropy modeling. However, unlike MBL,suffix} as generated by the morphological analysantioned
maximum entropy method may forget about individuah Section Ill. In addition to the morphologicatrdtutes, each

instances if there is feature selection/pruningirdumodel
training. In this study, we did not perform any tfea
selection. If there is any exception representdatiénform of a
feature, they will not be lost. However, maximuntrepy
method weighs a set of features (evidences) toeprefie

word can take three sets of attributes: {type, gendumber}.
Word type can be considered as POS, but here wsidewn
only nouns (N), verbs (V) and remaining words atgeled as
“other” (O). Gender can be masculine (M) or femai(F).
Number can be singular (S), plural (P) or doublg (iis is

outcome over the other. If the contribution of tfeature
belonging to an exception is not sufficiently highen the
exception may not be predicted correctly. This pimeenon

specific to Arabic). For example, the label “NMi®Bt the first
word, <3, shows that this word is a noun (N), male (M), and
plural (P).
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The MLPT given in Fig. 1 is built by starting with
sequence of decomposable words, which is in th&lmicbw.

Then, a morphological analysis is applied to therdwo

sequence to generate the morpheme sequence altmtheir

morphological attributes. We have a lexical attébuable

prepared by human annotators for all the word&énttaining

data. This table contains lexical attributes mew above.
The result of the morphological analysis togetheth vithe

lexical attributes is used to fill the corresporglimodes in the
tree.

The dependencies represented in MLPT are integiated

JMLLM. We hypothesize that as we increase the atnofin
information represented in the MLPT and the tighthef
integration, the JMLLM performance should
Applying morphological segmentation to data impwee
dictionary’s coverage of the domain and reduces GV
rate. For example, splitting the wordedl asdu (prefix) and
5568 (stem) as in Fig. 1, allows to decode other coatimns of
this stem with the prefixes and suffixes providadTiable I.
These additional combinations will hopefully covdrose

words in the test data that have not been seenhdén tloose

unsegmented training data.

B. JMLLM Basics

In language modeling, we are interested in estigatine
probability of the morpheme sequendgM). Formally, we

the conditional probability P(M | C,,) as the language model

score. The relation between the conditional andntjoi
probabilities is given as:

P(M,C,) = P(M|C_)P(C,)

Here, we interpretP(C,,) as the probability of a parse among
all possible parses in the language of interest, caficulating

P(C,) is possible regardless of the method of generatiag

parse tree C,, whether the parsing is deterministic or
probabilistic. However in this paper, we do not de®

IMProve -5 |culate P(C,) separately, since we either calculate

P(M|C,,) or P(M,C,) directly in our models.

We refer to the model predictingM | C,,) asIMLLM-leaf

since it predicts the morpheme sequence (at theedeaf
MLPT) given the parse informatiodMLLM-leaf represents a
integration” of information between morpheme

sequence and its parse tree since it assumes re tpeeC,,
as part of the “world” information. Another integtation of

JMLLM-leafis that the parse probabilitk(C,,) is assumed to

can computeP(M) by summing over all possible MLPT pe 1 in the expression for the joint probabiR.C,,), thus

parses:

P(M) = ) P(M,C)

whereC denotes a parse tree that includes all the infioma
in the non-terminal nodes of an MLPT. Note that BT is

composed of two partd] andC. Here,C, is the most likely

parse tree (in statistical parsing) or the propcsiadle parse
of the morpheme sequence (in rule based segmantatiote
that we do not need to specify the way the pargndone,
whether it is deterministic, as used in this paperstatistical.

Given a proposed parse trég, , we can calculate®(C,,) or

P(M,C,,) based on all possible parses seen in the trainiﬂtﬁﬁ' i :
the MLPT into a text sequence allows us to grougcadly

data. The reasoning behind usif§M,C,,) as the language

model score is that it relies not only on the moipbical
history, but also on lexical, and attribute histary the
sentence and can be more indicative of the mearlivegs of
the morpheme sequend& Using the joint probability of the
word sequence and syntactic parse tree [35] or i EArse
tree [8] as the language model score yielded eagiy
improvements. We also adopt the same approachsipéper
by estimating the probability of MLPT for the larage model
score.

Another reasonable choice for language model siote

it is assumed that(C,,) does not affect the computation of
P(M,C,,).

The model predicting the joint probabilitf’(M,C,,) is
called IMLLM-tree since all the information in the MLPT is
used directly to calculate the joint probabilityheT joint
probability is estimated by multiplying the probiitli of the
non-terminal nodes with the probability of the nueme
sequence. This model represents a “tight integrataf all
available information sources in the MLPT.

The first step in building the JMLLM is to repres&iLPT
as a sequence of morphemes, morphological atteputerds,
d word attributes using a bracket notation [8n¥&rting

related morphological segments and their attribulesthis
notation, each morpheme is associated (associatidaenoted
by “=") with an attribute (i.e. prefix/stem/suffixand the
lexical items are represented by opening and djosikens,
[WORD and WORD] respectively. Lexical attributese ar
represented as an additional layer of labels okerwords.

The parse tree given in Fig. 1 can be converted éntoken

sequence in text format as shown below. Note Alnabic is
read from right to left.

[!S! [NMP <Li=stem NMP] [NFS fehidl dihis=stem aGprefix

Zahidl] NFS] [V [us=i das=suffixx=d =stem | =prefixsa=d)

consider the parse tre@, as given information and calculatev/] [NFS [55ill s seili=stem Ju=prefix ssils] NFS] IS!]
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This representation uniquely defines the MLPT giwreRig. 1.
Here, lexical attributes can be used as joint kbslin “NFS”
or three separate labels: “N, F, S”.

Next, we explain how the bracket representation foan
used to train two different JMLLM models and detemn
features.

C. JMLLM for Morphological-Lexical Parse Tree Leaf
Prediction: JIMLLM-leaf

In this model, we decompose the conditional prditab

expressionP(M [ C,,) as follows:

P(M|C,) = I_! P(mlh)

]
PM,C,y) = [] Pt lt)

where t; is a token in the bracket notation afds the total

number of tokens. We note that the feature setréming the
JMLLM models stays the same and is independenthef t
“tightness of integration”.

E. Features Used for JIMLLM

JMLLM can employ any type of questions one canweri
from MLPT to predict the next morpheme. In addititm
trigram questions about previous morphemes, questdout
the attributes of the previous morphemes, pareqtdeitem
and attributes of the parent lexical item can belu¥he set of
guestions used in the model are as follows:

Here,m denotes théth morpheme in the morpheme sequence * Unigram history (empty history).

M, whereM hasN morphemesh; represents the history for the
morphemem; and includes all tokens appearing befoxein
the bracket notation given above. Thus, in theohyspart, we
can use the non-terminal nodes of the MLPT paese @iong
with the previous morphemes. This model looselggrates

* Previous morphemen _; (bigram feature)

Previous two morphemess,, m  (trigram feature).

1

Immediate parent wordw() for the current morpheme

the parse and the morpheme sequence by assuming a (m)
)

conditional dependence df on the non-terminal nodes of the

parse tree.
Although we may use all parse tree information ur o

history, sincec,, is assumed to be given, we only use

subset, corresponding to the tokens appearing dafan the
bracket notation. This enables the models we depvelobe
used in real-time decoding (if real-time parsing ba done as
well) or lattice rescoring. We explain featuresdiseJMLLM-
leaf andJMLLM-treein Section V.E.

D. JMLLM for Entire Morphological-Lexical Parse Tree
Prediction: IMLLM-tree
In the previous section, we decomposed the prababil
computation into two parts. However, it is possitdeointly
calculate the probability of the morpheme sequemue the
Gu Wwithin a single modelJMLLM-tree directly calculates

P(M,C,,) and, thus “tightly integrates” the parse and laggu

model probabilities. To facilitate the computatiohthe joint
probability, we use the bracket notation introdueedlier to
express an MLPT. This representation makes it easkefine
a joint statistical model since it enables the cotafion of the
probability of both morpheme and word tokens ussigilar
context information. Unlike loose-integration, tightegration
requires every token in the bracket representatiiofe an
outcome of the joint model. Thus,
vocabulary,ij =v,, 0V, 0V,, 0V,, IS the union of morpheme,

word, morphological attribute and lexical attribwtecabulary.
Note that for each item in the word and lexicalilatite
vocabularies there is an opening and closing btaakesion.

We represent the joint probabilitgm, c ) as:

* Previous parent wordw(_, )

» Morphological attributes for the previous two moepies
a

(ma_,ma_).
* Lexical attributes for the current parent word;().
* Lexical attributes for the previous parent woreh(_, ).
* Previous tokent,  (token bigram feature).
* Previous two tokens: ,t , (trigram token features).

* Previous morpheme and its parent word (w_ ).

The history given inP(o | h) consists of answers to these
questions. Clearly, there are numerous questioascan ask
from the MLPT in addition to the list given abovihe “best”
feature set depends on the task, information ssuacel the
amount of data. In our experiments, we have noaestively
searched for the best feature set but rather usedai subset
of these features (listed above) which we belienee heelpful
for predicting the next morpheme. It is also warthting that
we did not use morpheme 4-gram features nor wogdaB:
features. Therefore, morpheme trigram language huadebe
considered as a fair baseline to compare JMLLMs to.

the model outcome the janguage model score for a given morpheme using

JMLLM is conditioned not only on the previous moepies
but also on their attributes, the lexical items athekir
morphological and lexical attributes. Therefores thnguage
model scores are expected to be smoother comparedram
models especially for unseen morphenmegrams. For
example, during decoding we want to estimate thodadility
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of “P(estimate | probability, smooth)However, assume that quinphone questions are used in this case. Thétingstree
we observe neither “smooth probability estimate”r nohas about 2K leaves. Each leaf is then modeledguain
“probability estimate” in the training data. tagram modeling Gaussian mixture model. These models are firstdbemped
we back off to unigram probability for “estimate®n the and then refined using three iterations of forwbadkward
other hand, in JMLLM, the-gram features (trigram, bigram training. The current system has about 75K Gaussian

and unigram) are only 3 of the 11 features we disibove. The language model training data has 2.8M word$ wit
Typically, in addition to unigram feature there Mie several 98K unique words and it includes acoustic modehing data
features that are active (e.g., lexical attributesrphological @S @ subset. The pronunciation lexicon consists thef
attributes, or parent lexical item for the curremord or grapheme mappings of these unique words. The mgtppm
previous word). The probabilities of these featuaes added graphemes is one-to-one and there are very fewpation

to the unigram probability, which may result in mo®ther variants that are supplied manually mainly for nensb A
. : ' ) ” tatistical tri I del using Modifiedeler-Ne
probability estimate than the unigram probabilitjore. stafistical trigrarm 'anguage mode? using y

) . smoothing [23, 29] has been built for both the gnsented
However, we do not know of a way to quantify thiSyzs  \which is referred to as Word-3gr, and the
smoothness. morphologically analyzed data, which is called Megur.
A static decoding graph is compiled by composing th
VI.  SYSTEMARCHITECTURES language model, the pronunciation lexicon, the sieitree,
. . and the HMM graphs. This static decoding schemdgciwh
A. Speech Recognition Architecture compiles the recognition network off-line beforecdding, is
The speech recognition experiments are conductednon pecoming very popular in speech recognition [32heT
Iragi Arabic speech recognition task, which cowbesmilitary  resulting graph is further optimized using deteimition and
and medical domains. The acoustic training datasisorof minimization to achieve a re|ative|y Compact stunet
about 200 hours of speech collected in the cordéXBM's  Decoding is performed on this graph using a Vitdsbam
DARPA supported speech-to-speech (S2S) translatioject  search.
10].
[ ]The speech data is sampled at 16kHz and the featurB- Statistical Machine Translation System
vectors are computed every 10ms. First, 24-dimeasio  Statistical machine translation training starts hwit
MFCC features are extracted and appended with rdmaef collection of parallel sentences. We train 10 ifers of IBM
energy. The feature vector is then mean and eneriflodel-1 followed by 5 iterations of word-to-word HW[11].
normalized. Nine vectors, including the currentteeand four Models of two translation directions, from Engligh Iraqi
vectors from its right and left contexts, are statleading to a Arabic and from lIragi Arabic to English, are traine
216-dimensional parameter space. The feature Spafmlly Simu|taneous|y for both Model-1 and HMM. More
r.educed. fro'm' 216 to 40 plimensions using a com@naﬁf specifically, let C (M (e f) be the number of times (soft
linear discriminant analysis (LDA) and maximum likeod e~ fA™
linear transformation (MLLT). This 40-dimensionaotor is ~count, collected in the E-step of the Expectaticaxvhization
used in both training and decoding. (EM) algorithm) that the English worelgenerates the foreign
We use 33 graphemes representing speech and sitanceword f in the direction from English to Arabic at itexatin.
acoustic modeling. These graphemes correspondtersén  Similarly let C( (f,e) be the corresponding number of
Arabic plus silence and short pause models. Shawels are
implicitly modeled in the neighboring graphemeseTkason
for using grapheme models instead of the more pompHhone . ) .
modelsgis;g asp follows. Arabic transcripts are usualtiten St€P Of the EM algorithm, we linearly combine ctsufrom
without short vowels, and hence using phone modsigires two directions and use that to re-estimate the dviosword
restoring these short vowels; a process known aelization.  translation probabilityt (f |€) at iteration(n+1):
Doing this manually is very tedious, and automatic

times thatf generate® in the other direction. To estimate the
translation lexicon from English to foreign langeag the M-

vowelization is error-prone especially for dialéctaabic. In C(n)(e - f)=a c™ (e f)+ (l—a)C‘”’ (f e)
numerous experiments with vowelization of the traindata e- et
and hence building phone models we were not able to {0 (f |e) = CPe - f)

outperform the grapheme system. This is in cont@$?SA ZC(”)(e -~ f)

where it was found that phone models are betten tha

graphemes [33]. This was achieved largely becadsano where a [1[0]1]is a scalar controlling the contribution of

:ﬁ;lljr;f ggg}e“fgt'ﬁgm%r?;e;g deszlue %p\lllvei!t?] ?é_theﬁ Bw statistics from the other direction. A higher valud
ySIS. grap 9 a indicates less proportion of soft counts borrowesinf the

hidden Markov model (HMM). o )
Acoustic model training proceeds as follows. F&aturomer direction. We fixa value to be 0.5 for a balanced

vectors are first aligned, using initial modelsmodel states. l€xicon.  Similarly, ~we can re-estimate word-to-word
A decision tree is then built for each state usimg aligned translation probabilityt(e| f) at iteration §+1).
feature vectors by asking questions about the glwooentext; After HMM word alignment models are trained, we
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perform a Viterbi word alignment procedure in twicedtions
independently. By combining word alignments in twc
directions using heuristics [17], a single set tH#tis word
alignments is then formed. Phrase translation cites are
derived from word alignments. All phrase pairs Whiespect
the word alignment boundary constraint are idegdifiand
pooled together to build phrase translation talilestwo
directions using the maximum likelihood criterionittw
pruning. We set the maximum number of words in Arab
phrases to be 5. This will finish the phrase trafish training
part.

The translation engine is a phrase based multksta
implementation of log-linear models similar to Pl [15].

TABLE Il
SPEECHRECOGNITION LANGUAGE MODEL RESCORINGEXPERIMENTSWITH

THE 460K SENTENCECOMPLETE CORPUS AN[230K SENTENCEHALF THE
CORPUS
Half The Complete Corpus
Language Models Corpus WER
WER (%)
(%)
N-best Oracle 22.1 18.4
Word Trigram (Word-3gr) 38.7 32.2
Morpheme Trigram (Morph-3gr) 37.7 31.3
Word-3gr + Morph-3gr 37.6 31.0
JMLLM-leaf 37.1 30.5
JMLLM-leaf + Morph-3gr 36.4 30.1
JMLLM-leaf + Word-3gr 36.6 29.8
JMLLM-tree 36.9 29.9
JMLLM-tree + Morph-3gr 35.9 29.4
JMLLM-tree + Word-3gr 36.1 29.2

Given an English inpug, the decoder is formulated as
statistical decision making process that aims td fthe
optimal foreign word sequenc& by integrating multiple
feature functions:

K
f* = argmax 2 Ah (f.e)
k=1

where/]k is the weight of feature functionK. Like most other

maximum entropy based translation engines, acdaéufes in
our decoder include translation models in two diogs, IBM
Model-1 style lexicon weights in two directionsné¢mage
model, distortion model, and sentence length pgnalese
feature weights ,Qk) are tuned discriminatively on the

development set to directly maximize the transtatio
performance measured by an automatic error megtich( as
BLEU [18]) using the downhill simplex method [16The
decoder generates an N-best list, which can bearsd using
a different model, such as an improved languageemad a
post-processing stage to generate the final trémslautput.

VIl. EXPERIMENTAL RESULTS

A. Speech Recognition Experiments

We mentioned that the language model training ta
2.8M words with 98K unique lexical items. The
morphologically analyzed training data has 58K usiq
vocabulary items. The test data consists of 2716rarnces
spoken by 19 speakers. It has 3522 unsegmentaxhléams,
and morphological analysis reduces this figure3bs3

In order to evaluate the performance of JMLLM, tiida
with a low lattice error rate is generated by ae¥bt decoder
using the word trigram model (Word-3gr) languagedeio
From the lattice at most 200 (N=200) sentencesanacted
for each utterance to form an N-best list. Theseramces are

In a previous study [20], we reported results ftmosely
integrated” JMLLM (MLLM-lea®) which are provided here.
JMLLM-leaf obtains 30.5%, which is 1.7% and 0.8% better
than Word-3gr and Morph-3gr, respectively. Integiolg
JMLLM-leaf with Word-3gr improves the WER to 29.8%,
which is 1.2% better than that of the interpolatidéiword-3gr
and Morph-3gr. The interpolation weights are saiadly to
0.5 for each LM. Adding the Morph-3gr in a threayw
interpolation does not provide further improvement.

In this study, we also provide results forglitly
integrated” JMLLM (MLLM-tree) JMLLM-tree provides an
additional 0.6% improvement ovéMLLM-leaf Interpolating
JMLLM-tree with Morph-3gr and Word-3gr improves the
WER by 0.5% and 0.7%, respectively comparedNt_LM-
tree. Again three-way interpolation does not providditdnal
improvement. Even though JMLLMs are not built usig
gram morpheme features, it is valuable to repastNorph-
4gr results. The Morph-4gr language model achie8@&6%
WER.

In order to investigate the impact of different amis of
training data on the proposed methods, the expatsme
described above are repeated with 230K utterangrusoThe
results are provided in the middle column of Tdhléorph-
3gr still outperformed Word-3gr. However, the feswith
half the data reveal that Morph-3gr becomes mofectfe
than the Word-3gr, when interpolated with bdiLLM-leaf
and JMLLM-tree We believe this is because of the fact that
data sparseness has a more severe impact on WothaBgit
has on Morph-3gr. InterpolatintMLLM-tree with Morph-3gr
provided the best result (35.9%), which is 1.7%tdrethan
Word-3gr + Morph-3gr.

In summary, for the complete training corpdiSiLLM-tree
alone achieves a 2.3% and 1.4% absolute error tiedsac
compared to Word-3gr and Morph-3gr, respectivelyhew

rescored using the JMLLM and the morpheme trigrafmterpolated with Word-3gr, JMLLM-tree obtains 1.8%

language model (Morph-3gr). The language modelonasg
experiments are performed for the entire corpusgchwinas

absolute error reduction compared to interpolateordABgr
and Morph-3gr. Standard p-tdstshows that these

460K utterances and half the corpus, which has 23qmprovements are Significant at p<0.001 level.

utterances. The last column in Table Il presergslite for the
460K corpus. The first entry (18.4%) is the oraaieor rate of
the N-best list. Morph-3gr error rate is 0.9% betiten that of
the Word-3gr. Log-linear interpolation of these daage
models provides a small improvement (0.3%) over pedgr.

3 We used the Matched Pairs Sentence-Segment Ward (BAPSSWE)
test, available in standard SCLITE's statisticadteyn comparison program
from NIST with the option “mapsswe”.
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B. Machine Translation Experiments TABLE Il
. . . . STATISTICAL MACHINE TRANSLATION NBESTLIST RESCORINGWITH JMLLM

The machine translation task considered here isutabo BLEU (%) BLEU (%)

. . . . . 0 0
translating English sentences into Iraqi ArabiceTtarallel Language Models DevSel TosiSet
corpus has 430K uttgrancg pairs with 90K word; (50K N-bost List Oracle 3789 3827
morphemes). The Iraqi Arabic language model trainiata Morpheme Trigram (Morph-3gr) 20.74 30.61
includes the Iragi Arabic side of the parallel ampas a Word Trigram (Word-3gr) 30.71 31.21
subset. A statistical trigram language model usimaglified Morph-3gr + Word-3gr 3071 8125
Knesser-Ney smoothing [23] has been built for the IMLLM-leat 3063 31.40
) Yy 9 JMLLM-leaf + Morph-3gr 30.69 31.49
morphologically segmented data. A developmen{3etSet) JMLLM—leaf + Word-3gr 30.71 31.67
of 2.2K sentences is used to tune the feature higigA jmtm-tfee Moroh.a 3?(,)-1830 3§i7713

-tree + Morph-3gr . .
separate test set (TestSet) of 2.2K utterancesusee to IMLLM-tree + Word-3gr 31.98 3176

evaluate the language models for machine translatio

The translation performance is measured by the BLE
score [18] with one reference for each hypothdsimrder to
evaluate the performance of the JMLLM, a transtafibbest
list (N=10) is generated using the baseline Morgh-3 C. Discussions

language model. First, on the DevSet all featumsghts When examining the errors from our translationeystwe
including the language model weight are optimizetl tsee that some of the poor recognition and traosiatiay be
maximize the BLEU score using the downhill simpte&thod  oypjained by the rather different behavior of tegraentation
[16]. These weights are fixed when the languageeisodre  method on the training and test data. The OOV fatethe
used on the TestSet. In a previous study [21].applied | nsegmented speech recognition test data is 3.3%, t
JMLLM-leafon a different TestData. In this gtudy, in adufiti corresponding number for the morphologically anetyziata
to the results for JMLLMeaf, we also provide results for j5 2 704 Hence, morphological segmentation redtiee©0OV
JMLLM-tree The translation BLEU (%) scores for the DevSefyte by only 0.6%. It is worth comparing the vodalby
are given in the first column of Table Ill. Thestirow (37.89 (equction on the training data (41%) to the vocahul
and 38.27) provides the oracle BLEU scores forNIftmst list  yeduction on the test set (6%). Even though the&/ @ades for
generated for both DevSet and TestSet. Given thedtu oth unsegmented and segmented test data areatdtigh,
weights for Morph-3gr and other translation scotes,N-best he characteristics of the test data appear toiffereht than
list is used to tune the weight for JMLLMs. On DevSet, the the training data in its morphological make-up. Wéieve this
baseline  Morph-3gr achieves 29.74, and word-lrigrafg pecause the training data was collected ovesrakyears. In
rescoring improves the BLEU score to 30.71. Int&ig the  he peginning there was more emphasis on the metticaain
Morph-3gr and Word-3gr does not provide additionaht |ater the emphasis shifted towards the checkpbiouse
improvement.  JMLLM-leaf achieves 30.63 by itself and search, vehicle search types of dialogs in thetanjlidomain.
interpolating it with Morph-3gr and Word-3gr impmes the  Hgyever, the test data was set aside from the firstypart of
BLEU score marginally. On the other hanMLLM-tree  the collected data. In other words the test dats wet
achieves 30.80 and interpolation with Morph-3griiaves the  niformly/randomly sampled from the entire datasite this
result to 31.10. Interpolation with Word-3gr impesvthe apnarent mismatch between training and test dataspeech
score to 31.28, which is about 1.5 points bettantthat of the recognition results are encouraging.
Morph-3gr and 0.6 points better than that of thertivggr. For machine translation experiments, the OOV ratetife
The results on DevSet are encouraging but resalthe nceqmented machine translation test data is 8.0,
Tes;Slet Iareththe true dasselssmen]tc ?_f btlhe Illir(t)ﬁosgdlambm corresponding number for the morphologically anetyziata
mode's. In the second column of Table € resalre is 7.4%. Hence, morphological segmentation redtlee©0OV
provided for the TestSet by fixing the tuned wesgbnh the Jate by 1.3% (15% relative), which again, is notlage a

DevSet.JMLLM-leaf improves the results by 0.8 points an . . .
0.2 points compared to Morph-3gr and Word-SQrfedUCt'on as compared to the training data reduacfabout

respectively. InterpolatingMLLM-leaf with Morph-3gr and 40% r.elat-|ve reduction). We believe this would hrmhg
Word-3gr improves the results by an additional ioints and  Potential improvement we could get from JMLLM, sinc
0.3 points, respectivelyJMLLM-treeimproves the result from JMLLM is expected to be more effective compareatod n-
31.40 to 31.71 compared tdMLLM-leaf Interpolating 9ram models, when the OQV rate is significantlyuazt after
JMLLM-tree with Morph-3gr and Word-3gr improves theSegmentation. Improving the morphological segnientato
results marginally. cover more words can potentially improve the penfamce of

In summary, JIMLLM-tree improves the results by 1.1 JMLLMs.
points which is significantfy better compared to Morph-3gr ~ Even though it was not evaluated in this study, ohthe
and 0.5 points compared Word-3gr on the TestSdienefits of tight-integration using joint modelifgecomes

apparent when a set of alternatives are generatedgsentence

4 The improvement is significant at the 80% conficieinterval. We use rather than just a single parse. -FOI‘ example, sy have
the well-known bootstrapping technique to meashee donfidence interval more than one MLPT for a given sentence because of
for BLEU. alternative morphological analysis, tagging or

deitionally, JMLLM-tree consistently outperform§MLLM-
leaffor both DevSet and TestSet.
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semantic/syntactic parses. Then, tight-integralshlim joint [13] Ronald Rosenfeld, Stanley F Chen, and Xiaojin Zkhole sentence

modeling allows not only to get the best morphemquence exponential language models: a vehicle for lingcistatistical
. . . integration”,Computer Speech and Langua8(1), 2001.
but alsq the best' morphological analysis and/ogitegand/or [14] K. Kirchhoff and M. Yang. 2005.“Improved languageodeling for
semantic/syntactic parses of a sentence. statistical machine translationACL'05 workshop on Building and
Using Parallel Textpages 125-128.
VIIl. CONCLUSIONS [15] P. Koehn, F. J. Och, and D. Marcu, “Pharaoh: A beaarch decoder

for phrase based statistical machine translatiodetst, Proc. of 6th
We presented a new language modeling techniquedcall ~ Conf. of AMTA2004.

Joint MorphologicaI-LexicaI Language Modeling (Jl\/MD. [16] F. J. Och and H. Ney, “Discriminative training améximum entropy

. . LS models for statistical machine translatiorPACL, pages 295-302,
for inflected languages in general and Arabic imtipalar. University of Pennsylvania 2002.

JMLLM allows joint modeling of lexical, morphologit and [17] F. J. Och and H. Ney, “A Systematic Comparison afidus Statistical

additional information sources about morpholog®agments Alignment Models”,Comp. Linguistics29(1):9-51, 2003.

d lexical items. JMLLM has both the predictiv of the [18] K. Papineni, S. Roukos, T. Ward, and W-J. Zhu, EBL: a Method for
an ’ P e\eo Automatic Evaluation of machine translatio®CL 02 pages 311-318,
word based language model and the coverage of dingheme 2002.

based language model. It is also expected to hangother [19] P. Liang, B. Taskar, and D. Klein, "Alignment by regment”,

i : HLT/NAACL pages 104-111, 2006.
probability estimates than both morpheme and waadet [20] R. Sarikaya, M Afify and Y. Gao, “Joint Morpholagi-Lexical

language models. Two implementations of the JMLLErev Modeling (JMLLM) for Arabic,”ICASSP'07 Honolulu Hawaii, 2007.
proposed. One calledMLLM-leaf that loosely integrates the [21] R. Sarikaya and Y. Deng, “Joint Morphological-LeaidModeling for

r information while th ther tightly int r Machine Translation,HLT/NAACL'07 Rochester, NY, 2007.
parse ormatio € the other tigntly eglsutéle parse [22] R. Zens, E. Matusov, and H. Ney, “Improved wordyathent using a

inform?-t.ion and is referred to a}sMLLM-trge Speech symmetric lexicon model'COLING pages 36-42, 2004.
recognition and machine translation experimentadulte [23] S. Chen, J. Goodman, “An Empirical Study of SmawghTechniques
demonstrate that JMLLM provides encouraging impnoeets for Language ModelingACL-96 Santa Cruz, CA, 1996.

. . [24] P. Geutner, “Using morphology towards better largeabulary speech
over the baseline word and morpheme based triggagubge recognition systemsICASSP'95 Detroit, MI, 1995.

models. Moreover, tight-integration of all availabl [25] M. Kurimo, et.al, “Unlimited vocabulary speech recognition for

information sources in the MLPT provides additiona{zs] ggs\llutli?ative |339Jua§esk’ HIkT/NAA(EL pp. V104—bll|1, Zg'f- Soeech
. K . .W. Kwon, and J. Park, “Korean Large Vocabularyfimious Speec
improvements over the loose-integration. Recognition with Morpheme-based Recognition Units3peech

Communicationyol. 39, pp. 287-300, 2003.
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