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Abstract— Language modeling for an inflected language 

such as Arabic poses new challenges for speech recognition and 
machine translation due to its rich morphology. Rich morphology 
results in large increases in out-of-vocabulary (OOV) rate and 
poor language model parameter estimation in the absence of large 
quantities of data.  In this study, we present a joint 
morphological-lexical language model (JMLLM) that takes 
advantage of Arabic morphology. JMLLM combines 
morphological segments with the underlying lexical items and 
additional available information sources with regards to 
morphological segments and lexical items in a single joint model.  
Joint representation and modeling of morphological and lexical 
items reduces the OOV rate and provides smooth probability 
estimates while keeping the predictive power of whole words. 
Speech recognition and machine translation experiments in 
dialectal-Arabic show improvements over word and morpheme 
based trigram language models. We also show that as the 
tightness of integration between different information sources 
increases, both speech recognition and machine translation 
performances improve.  
 

Index Terms— Language Modeling, Maximum Entropy 
Modeling, Morphological Analysis, Joint Modeling.  

I. INTRODUCTION 

here are numerous widely spoken inflected languages. 
Arabic is one of these highly inflected languages. In 

Arabic, affixes are appended to the beginning or end of a stem 
to generate new words. Affixes indicate case, gender, tense, 
number, and many other attributes that can be associated with 
the stem. Most natural language processing applications use 
word based vocabularies that are unaware of the 
morphological relationships between words. For inflected 
languages this leads to a rapid growth of the vocabulary size. 
For example, a parallel corpus (pairwise sentence translations) 
of 337K utterances between English and dialectal Iraqi Arabic 
has about 24K and 80K unique words for English and Iraqi 
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Arabic, respectively.  
A standard n-gram language model computes the 

probability of a word sequence, },...,{ 1 KwwW= , as a product 

of conditional probabilities of each word  given its history. 
This probability is typically approximated by n-1 most recent 
words, 

 
 

 
There is an inverse relationship between the predictive power 
and robust parameter estimation of n-grams. As n increases the 
predictive power increases, however due to data sparsity 
language model parameters may not be robustly estimated. 
Therefore, setting n to 2 or 3 appears to be a reasonable 
compromise between these competing goals.  Robust 
parameter estimation problem is however more pronounced for 
Arabic due to its rich morphology compared to non-inflected 
languages. One would suspect that words may not be the best 
lexical units in this case and, perhaps, morphological units 
would be a better choice.  

In addition to its morphological structure, Arabic has 
certain lexical rules for gender and number matching. For 
example, the adjective in ftAh gydh (good girl in English) 
differs from the same adjective in wld gyd (good boy in 
English) to match the gender, and also in ftAtAn gydtAn (two 
good girls in English) to match the number. By examining 
error patterns in speech recognition and machine translation 
outputs we observed that many sentences contain lexical 
mismatch errors between words. Using the above example, the 
utterance wld gyd might in some cases be recognized as wld 
gydh, where the correct adjective is replaced by the adjective 
of the wrong gender. This makes a lot of sense in speech 
recognition because many of the lexically mismatched items 
differ in only one phone and are thus acoustically confusable. 
Adding gender information in the language model could help 
in reducing these errors.   This motivated us to introduce 
lexical attributes in the language model. Lexical attributes of 
the vocabulary, e.g. number, gender, and type are manually 
marked. These attributes will be discussed in more detail in 
Section V. 

In this work, we present a new language modeling 
technique called Joint Morphological-Lexical Language 
Model (JMLLM) for inflected languages in general and Arabic 
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in particular and apply it to speech recognition and machine 
translation tasks. JMLLM models the dependencies between 
morpheme and word n-grams, attribute information associated 
with morphological segments1 and words. These dependencies 
are represented via a tree structure called Morphological-
Lexical Parse Tree (MLPT). MLPT is used by JMLLM to 
tightly integrate information sources provided by a 
morphological analyzer with the lexical information in a single 
joint language model. MLPT is a generic structure and it can 
include, if available, other information sources about the 
lexical items (i.e. lexical attributes, syntactic/semantic 
information), or the sentence (i.e. dialog state).  

JMLLM is simply a joint distribution defined over the 
vocabularies of the leaves (morphemes in our case) and non-
terminal nodes of the MLPT. In our implementation, we use a 
maximum entropy model to represent this joint distribution 
with a set of features given in Section V-D. Loosely speaking, 
this maximum entropy model can be viewed as an 
interpolation of distributions of the nodes of the tree and hence 
provides a desirable smoothing effect on the final distribution. 
JMLLM also improves the dictionary’s coverage of the 
domain and reduces the out-of-vocabulary (OOV) rate by 
predicting morphemes while keeping the predictive power of 
whole words. This model statistically estimates the joint 
probability of a sentence and its morphological analysis.  

In the above presentation of the model and also in the 
model description in Section V, to be precise, we restrict our 
discussion to a certain configuration of the tree. For example, 
we associate morphemes to leaves, and limit the internal tree 
nodes to the morphological attributes, lexical items and their 
attributes. However any sensible choice of the leaf nodes or 
internal tree nodes can be covered by the presented model. 
Even though in our implementation we use a deterministic 
parse provided by a rule based segmentation method, the 
proposed model also accommodates the case of probabilistic 
parses.  

The rest of the paper is organized as follows. Section II 
provides an overview of prior work addressing language 
modeling for morphologically rich languages. Section III 
describes our morphological segmentation method. A short 
overview of maximum entropy modeling is given in Section 
IV. The proposed JMLLM is presented in Section V. Section 
VI describes the speech recognition and statistical machine 
translation (SMT) architecture. Experimental results and 
discussions are provided in Section VII, followed by the 
conclusions. 

II.  RELEVANT PREVIOUS WORK  

Recently, there has been a number of new studies aimed at 
addressing robust parameter estimation and rapid vocabulary 
growth problems for morphologically rich languages by using 
the morphological units to represent the lexical items 
[1,2,3,4,34].  Even though Arabic is receiving much of the 
attention, there are many other morphologically rich languages 
 

1 We use “morphological segment” and morpheme interchangeably. 

facing the same language modeling issues [25, 26, 30, 34].  In 
all of the mentioned studies above the use of morphological 
knowledge at the modeling stage is limited to only segmenting 
the words into shorter morphemes. In these models the 
relationship between the lexical items and morphemes is not 
modeled explicitly. Instead, two separate language models are 
built on the word based original corpus and segmented corpus 
and they are interpolated. However, in most of these studies 
morpheme sequence generation process in speech recognition 
or machine translation decoding is further constrained [4] by 
some rule based mechanisms exploiting the knowledge of the 
morphological segmentation algorithm. For example, if lexical 
items are segmented into one or more prefixes followed by a 
stem, which is also followed by one or more suffixes, then a 
suffix cannot follow a prefix without having a stem coming 
before it. 

Factored Language Models (FLMs) [5, 14] are different 
than the previous methods and are similar to JMLLM  to some 
extent. Unlike other approaches, in both FLM and JMLLM the 
relationship between lexical and morphological items are 
explicitly modeled within a single model. In an FLM words are 
decomposed into a number of features and the resulting 
representation is used in a generalized back-off scheme to 
improve robustness of probability estimates for rarely 
observed word n-grams.  In an FLM, each word is viewed as a 

vector of k factors: },...,{ 1 K
iii ffw = . An FLM provides the 

probabilistic model ),...,|( 1 NfffP  where the prediction of 

factor f is based on N parents },...,{ 1 Nff . For example, if w 

represents a word token and t represents a part-of-speech 
(POS) tag, the model, ),,|( 112 −−− iiii twwwP , predicts the current 

word based on traditional n-gram model as well as POS tag of 
the previous word. The main advantage of FLMs compared to 
previous methods is that they allow users to put in linguistic 
knowledge to explicitly model the relationship between word 
tokens and POS, or morphological information. Like n-gram 
models, smoothing techniques are necessary in parameter 
estimation. In particular, a generalized back-off scheme is used 
in training an FLM. Our approach uses maximum entropy 
modeling as opposed to direct maximum likelihood modeling 
used in FLMs.  

III.  MORPHOLOGICAL ANALYSIS  

Applying morphological segmentation to data improves the 
domain coverage of the dictionary used for speech recognition 
or machine translation and reduces the OOV rate. Even though 

TABLE I 
PREFIX AND SUFFIX LIST FOR DIALECTAL IRAQI  ARABIC IN BUCKWALTER 

REPRESENTATION  

Prefix List chAl, bhAl, lhAl, whAl, wbAl, wAl, bAl, 
hAl, EAl, fAl, Al, cd, ll, b, f, c, d, w 

Suffix List thmA, tynA, hmA, thA, thm, tkm, tnA, tny, 
whA, whm, wkm, wnA, wny, An, hA, hm, 
hn, km, kn, nA, ny, tm, wA, wh, wk, wn, yn, 
tk, th, h, k, t, y  
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Fig. 1.  Morphological Lexical Parse Tree (MLPT) for a dialectal-Arabic 
sentence. 

 

there is a large volume of segmented data available for 
Modern Standard Arabic (MSA), we do not know of any such 
data for training a statistical morphological analyzer to 
segment Iraqi Arabic language. In fact, Iraqi Arabic is so 
different than MSA, we are not aware of any study leveraging 
the MSA text resources to improve Iraqi Arabic language 
modeling or machine translation. 

In this section, we present a word segmentation algorithm 
that is used to generate the morphological decomposition 
needed by the proposed language models. This algorithm was 
initially proposed in [4]. Starting from predefined lists of 
prefixes and suffixes (affixes) the segmentation algorithm 
decomposes each word in a given vocabulary into one of three 
possible forms: {prefix+stem, stem+suffix, 
prefix+stem+suffix}, or leaves it unchanged. Although affixes 
in Arabic are composite, i.e. a word can start (end) with 
multiple prefixes (suffixes), we found in preliminary 
experiments that allowing multiple affixes leads to a large 
insertion rate in the decoded output and results in worse 
overall performance. For this reason, we decided to only allow 
a single prefix and/or suffix for each stem. In our 
implementation, we use the sets of prefixes and suffixes given 
in Table I, in Buckwalter transliteration [6], for dialectal Iraqi 
Arabic. 

The most straightforward way to perform the  
decomposition is to do blind segmentation using the longest 
matching prefix and/or suffix in the list. However, the 
difficulty with blind segmentation is that sometimes the 
beginning (ending) part of a word agrees with a prefix (suffix).  
This leads to illegitimate Arabic stems. For example, the word 
AlqY2 (threw in English), a verb that should not be 
decomposed, has its initial part agreeing with the popular 
prefix Al. In this case blind segmentation leads to the 
decomposition Al-qY and hence to the invalid stem qY.  In 
order to avoid this situation we employ the following 
segmentation algorithm. The algorithm still relies on blind 
segmentation but accepts a segmentation only if the following 
three rules apply: 

(1) The resulting stem has more than two characters. 
(2) The resulting stem is accepted by the Buckwalter   
morphological analyzer [6].  
(3) The resulting stem exists in the original dictionary. 
The first rule eliminates many of the illegitimate 

segmentations. The second rule ensures that the word is a valid 
stem in the Buckwalter morphological analyzer list. The 
Buckwalter morphological analyzer provides a decent 
coverage of Modern Standard Arabic (MSA). It was found 
experimentally that for a news corpus it only misses about 5% 
of the most frequent 64K words and that most of the missed 
words are typos and foreign names. Unfortunately, the fact that 
the stem is a valid Arabic stem does not always imply that the 
segmentation is valid. The third rule, while still not offering 
such guarantee, simply prefers keeping the word intact if its 
stem does not occur in the lexicon. The rationale is that we 

 
2 Using Buckwalter Arabic transliteration. 

should not allow a segmentation that may cause an error, if it is 
not going to reduce the size of the lexicon.  
     Even after applying the above rules there could still be 
some erroneous decompositions, and we indeed found a very 
small number of them by visual inspection of the decomposed 
lexicon. However, we do not provide a formal “error rate” of 
the segmentation because this would require a manually 
segmented reference lexicon. A useful heuristic that can 
mitigate the effect of these residual errors is to keep the top-N 
frequent decomposable words intact. A value of N=5000 was 
experimentally found to work well in practice.  

Using a morphological segmentation algorithm will 
produce affixes in the speech recognition and machine 
translation outputs. These affixes should be glued to the 
following or previous word to form meaningful words. To 
facilitate such gluing each prefix and suffix is marked with a - 
(e.g. we have prefix Al- or suffix –yn). Two gluing schemes 
are used. The first is very simple and just sticks any word that 
starts(ends) with a - to the previous(following) word. The 
second tries to apply some constraints to prevent sequences of 
affixes and to ensure that these affixes are not attached to 
words that start(end) with a prefix(suffix). No noticeable 
difference is seen between the two approaches. 

A few words about the morphological decomposition 
algorithm are worth mentioning here. First, this is more of a 
word segmentation algorithm than a morphological 
decomposition algorithm in a strict linguistic sense. However, 
it is very simple to apply and all it needs is a list of affixes and 
a lexicon. In previous work [4], we found that using this 
algorithm to tokenize the lexicon and the language model data 
leads to significant reduction in word error rate. This was a 
major motivation in using it in more elaborate language model 
schemes as discussed in the rest of this paper. 

IV.  MAXIMUM  ENTROPY MODELING 

 
The Maximum Entropy method is a flexible statistical 

modeling tool that has been widely used in many areas of 
natural language processing [9, 12, 27]. Maximum entropy 
modeling produces a probability model that is as uniform as 
possible while matching empirical feature expectations 
exactly. This can be interpreted as making as few assumptions 
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as possible in the model. Maximum entropy modeling 
combines multiple overlapping information sources (features). 
For an observation o (e.g. a morpheme or word) and a history 
(context) h, the probability model is given by:  

 

∑ ∑
∑

=
'

)),'(exp(

)),(exp(

)|(     
o j

i

hojfj

hoifi
hoP λ

λ

 

Notice that the denominator includes a sum over all possible 
outcomes, o', which is essentially a normalization factor for 

probabilities to sum to 1. The functions
i

f  are usually referred 

to as feature functions or simply features. In the context of 
natural language processing using binary feature functions is 
very popular. These binary feature functions are given as:  
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where 
io  is the outcome associated with feature 

i
f  and  

)( hq
i

 is an indicator function on history.  

For example, a bigram feature 
if   representing the word 

sequence “ARABIC LANGUAGE" in maximum entropy 

modeling would have  io = “LANGUAGE" and )(hq
i  would 

be the question “Does the context h contain the word 
“ARABIC" as the previous word of the current word ?".  The 
model parameters are denoted byiλ , which can be considered 

as weights associated with feature functions.  There are several 
methods to smooth maximum entropy models to avoid 
overtraining [9]. The most effective smoothing method, as 
shown in [9], is an instance of fuzzy maximum entropy 
smoothing. This type of smoothing amounts to adding a zero-
mean Gaussian prior to each parameter. The only smoothing 
parameters to be determined are variance terms for each 
Gaussian. In our experiments, we used the same variance value 
for all model parameters. This fixed value was optimized on a 
held-out set using Powell's algorithm [31]. 

Besides Maximum Entropy method, another alternative 
machine learning approach that can be used for our task is 
memory based learning (MBL) [28]. MBL can represent 
exceptions that are crucial for linguistics. Similar to MBL, 
each instance, including exceptions is represented as a feature 
in maximum entropy modeling. However, unlike MBL, 
maximum entropy method may forget about individual 
instances if there is feature selection/pruning during model 
training. In this study, we did not perform any feature 
selection. If there is any exception represented in the form of a 
feature, they will not be lost. However, maximum entropy 
method weighs a set of features (evidences) to prefer one 
outcome over the other. If the contribution of the feature 
belonging to an exception is not sufficiently high, then the 
exception may not be predicted correctly. This phenomenon 

may look like a disadvantage at first, but it can also show the 
strength of maximum entropy modeling. That is, a set of 
evidences related to an outcome are weighted to assign a 
probability to that outcome. The weights are learned via 
improved iterative scaling (IIS) algorithm [9]. The main 
reason for using the maximum entropy method is its flexibility 
in integrating overlapping information sources into the model. 
This is a desirable feature for integrating morphological and 
lexical attributes in the language model.  

Because of the aforementioned advantages we use the 
maximum entropy method for implementing JMLLM. The 
maximum entropy method allows JMLLM to incorporate 
lexical items, morphemes as well as attributes associated with 
these lexical items and morphemes into the language model. 
The maximum entropy method has been used in language 
modeling before, in the context of n-gram models [9], whole 
sentence models [13], syntactic structured language models [7] 
and semantic structured language models [8]. So far, the use of 
morphology for language modeling has been largely limited to 
segmenting words into morphemes to build a morpheme based 
language model. Language specific information such as 
morphological and lexical attributes is overlooked. 
Additionally, joint modeling of these information sources 
rather than using them as sources to derive features has not 
been considered.  Integrating all available information sources 
such as morphological and language specific features in a 
single model could be very important to improve both speech 
recognition and machine translation performance. Next, we 
present the maximum entropy based Joint Morphological-
Lexical Language Modeling (JMLLM) method.  

V. JOINT MORPHOLOGICAL-LEXICAL LANGUAGE MODELING 

This section describes in detail the JMLLM models. Before 
discussing the models we will present the morphological-
lexical parse tree (MLPT) which represents the information 
sources and their dependencies used in the model. We will 
also discuss two implementations of the JMLLM which we 
refer to as JMLLM-leaf and JMLLM-tree.  

A. Morphological-Lexical Parse Tree 

The MLPT consists of a tree structured joint representation 
of the lexical and morphological items in a sentence and their 
associated attribute information. An example of an MLPT for 
an Arabic sentence is given in Fig. 1. The leaves of the tree are 
morphemes that are predicted by the language model. Each 
morpheme has one of the three attributes: {prefix, stem, 
suffix} as generated by the morphological analysis mentioned 
in Section III. In addition to the morphological attributes, each 
word can take three sets of attributes: {type, gender, number}. 
Word type can be considered as POS, but here we consider 
only nouns (N), verbs (V) and remaining words are labeled as 
“other” (O). Gender can be masculine (M) or feminine (F). 
Number can be singular (S), plural (P) or double (D) (this is 
specific to Arabic).  For example, the label “NMP” for the first 
word, ����, shows that this word is a noun (N), male (M), and 
plural (P).   
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The MLPT given in Fig. 1 is built by starting with a 
sequence of decomposable words, which is in the middle row. 
Then, a morphological analysis is applied to the word 
sequence to generate the morpheme sequence along with their 
morphological attributes. We have a lexical attribute table 
prepared by human annotators for all the words in the training 
data. This table contains lexical attributes mentioned above. 
The result of the morphological analysis together with the 
lexical attributes is used to fill the corresponding nodes in the 
tree.  

The dependencies represented in MLPT are integrated in 
JMLLM. We hypothesize that as we increase the amount of 
information represented in the MLPT and the tightness of 
integration, the JMLLM performance should improve. 
Applying morphological segmentation to data improves the 
dictionary’s coverage of the domain and reduces the OOV 
rate. For example, splitting the word, ����	�
 as ��
 (prefix) and 
���� (stem) as in Fig. 1, allows to decode other combinations of 
this stem with the prefixes and suffixes provided in Table I.  
These additional combinations will hopefully cover those 
words in the test data that have not been seen in the 
unsegmented training data.  

B. JMLLM Basics 

In language modeling, we are interested in estimating the 
probability of the morpheme sequence, P(M). Formally, we 
can compute P(M) by summing over all possible MLPT 
parses:  

 

∑=
C

CMPMP ),()(  

where C denotes a parse tree that includes all the information 
in the non-terminal nodes of an MLPT. Note that any MLPT is 

composed of two parts, M and C.  Here, M
C  is the most likely 

parse tree (in statistical parsing) or the proposed single parse 
of the morpheme sequence (in rule based segmentation). Note 
that we do not need to specify the way the parsing is done, 
whether it is deterministic, as used in this paper, or statistical.  

Given a proposed parse tree M
C , we can calculate )(

M
CP  or 

),(
M

CMP  based on all possible parses seen in the training 

data. The reasoning behind using ),(
M

CMP  as the language 

model score is that it relies not only on the morphological 
history, but also on lexical, and attribute history in the 
sentence and can be more indicative of the meaningfulness of 
the morpheme sequence M. Using the joint probability of the 
word sequence and syntactic parse tree [35] or semantic parse 
tree [8] as the language model score yielded encouraging 
improvements. We also adopt the same approach in this paper 
by estimating the probability of MLPT for the language model 
score. 

Another reasonable choice for language model score is to 

consider the parse tree MC  as given information and calculate 

the conditional probability  )|(
M

CMP  as the language model 

score. The relation between the conditional and joint 
probabilities is given as:    

)()|(),(    
MMM

CPCMPCMP =  

Here, we interpret )(
M

CP as the probability of a parse among 

all possible parses in the language of interest, and calculating 

)(
M

CP  is possible regardless of the method of generating the 

parse tree M
C , whether the parsing is deterministic or 

probabilistic. However in this paper, we do not need to 

calculate )(
M

CP  separately, since we either calculate 

)|(
M

CMP  or ),(
M

CMP  directly in our models. 

We refer to the model predicting )|(
M

CMP  as JMLLM-leaf 

since it predicts the morpheme sequence (at the leaves of 
MLPT) given the parse information. JMLLM-leaf represents a 
“loose integration” of information between morpheme 

sequence and its parse tree since it assumes the parse tree M
C  

as part of the “world” information. Another interpretation of 

JMLLM-leaf is that the parse probability )(
M

CP  is assumed to 

be 1 in the expression for the joint probability ),(
M

CMP , thus 

it is assumed that )(
M

CP  does not affect the computation of 

),(
M

CMP .  

The model predicting the joint probability ),(
M

CMP  is 

called JMLLM-tree since all the information in the MLPT is 
used directly to calculate the joint probability. The joint 
probability is estimated by multiplying the probability of the 
non-terminal nodes with the probability of the morpheme 
sequence. This model represents a “tight integration” of all 
available information sources in the MLPT.  

The first step in building the JMLLM is to represent MLPT 
as a sequence of morphemes, morphological attributes, words, 
and word attributes using a bracket notation [8]. Converting 
the MLPT into a text sequence allows us to group lexically 
related morphological segments and their attributes. In this 
notation, each morpheme is associated (association is denoted 
by “=") with an attribute (i.e. prefix/stem/suffix) and the 
lexical items are represented by opening and closing tokens, 
[WORD and WORD] respectively. Lexical attributes are 
represented as an additional layer of labels over the words. 
The parse tree given in Fig. 1 can be converted into a token 
sequence in text format as  shown below. Note that Arabic is 
read from right to left. 

 
[!S! [NMP ����=stem NMP] [NFS [
����	� 
����=stem áÇ=prefix 
��	�
�� ] NFS] [V [������ äæ=suffix  ��� =stem í =prefix ������]  

V] [NFS [����	�
 ����	�
=stem  ��
=prefix  ����	�
] NFS] !S!] 
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This representation uniquely defines the MLPT given in Fig. 1. 
Here, lexical attributes can be used as joint labels as in “NFS” 
or three separate labels: “N, F, S”.  

Next, we explain how the bracket representation can be 
used to train two different JMLLM models and determine 
features. 

C. JMLLM for Morphological-Lexical Parse Tree Leaf 
Prediction: JMLLM-leaf 

 In this model, we decompose the conditional probability 

expression )|(
M

CMP  as follows:  

 

∏
=

=
N

i
iiM

hmPCMP
1

)|()|(  

Here, mi denotes the ith morpheme in the morpheme sequence 
M, where M has N morphemes. hi represents the history for the 
morpheme mi and includes all tokens appearing before mi in 
the bracket notation given above. Thus, in the history part, we 
can use the non-terminal nodes of the MLPT parse tree along 
with the previous morphemes. This model loosely integrates 
the parse and the morpheme sequence by assuming a 
conditional dependence of M on the non-terminal nodes of the 
parse tree. 

Although we may use all parse tree information in our 

history, since 
M

C  is assumed to be given, we only use a 

subset, corresponding to the tokens appearing before mi in the 
bracket notation. This enables the models we develop to be 
used in real-time decoding (if real-time parsing can be done as 
well) or lattice rescoring. We explain features used in JMLLM-
leaf and JMLLM-tree in Section V.E.   

D. JMLLM for Entire Morphological-Lexical Parse Tree 
Prediction: JMLLM-tree 

In the previous section, we decomposed the probability 
computation into two parts. However, it is possible to jointly 
calculate the probability of the morpheme sequence and the 

MC  within a single model. JMLLM-tree directly calculates 

),(
M

CMP  and, thus “tightly integrates” the parse and language 

model probabilities. To facilitate the computation of the joint 
probability, we use the bracket notation introduced earlier to 
express an MLPT. This representation makes it easy to define 
a joint statistical model since it enables the computation of the 
probability of both morpheme and word tokens using similar 
context information. Unlike loose-integration, tight-integration 
requires every token in the bracket representation to be an 
outcome of the joint model. Thus, the model outcome 
vocabulary, 

LAMAWM VVVV ∪∪∪=ℜ , is the union of morpheme, 

word, morphological attribute and lexical attribute vocabulary. 
Note that for each item in the word and lexical attribute 
vocabularies there is an opening and closing bracket version. 

We represent the joint probability ),(
M

CMP   as: 

∏
=

−=
T

i
iiM

tttPCMP
1

11 ),...,|(),(      

where it  is a token in the bracket notation and T is the total 

number of tokens.  We note that the feature set for training the 
JMLLM models stays the same and is independent of the 
“tightness of integration”.   

E. Features Used for JMLLM 

JMLLM can employ any type of questions one can derive 
from MLPT to predict the next morpheme. In addition to 
trigram questions about previous morphemes, questions about 
the attributes of the previous morphemes, parent lexical item 
and attributes of the parent lexical item can be used. The set of 
questions used in the model are as follows: 

 
•  Unigram history (empty history). 

•  Previous morpheme: 1−im  (bigram feature) 

•  Previous two morphemes: 
21

,
−− ii

mm  (trigram feature). 

•  Immediate parent word (iw ) for the current morpheme 

( im ). 

•  Previous parent word ( 1−iw ) 

•  Morphological attributes for the previous two morphemes 

(
21

,
−− ii

mama ). 

•  Lexical attributes for the current parent word (iwa ). 

•  Lexical attributes for the previous parent word ( 1−iwa ). 

•  Previous token: 
1−i

t  (token bigram feature). 

•  Previous two tokens: 
21

,
−− ii

tt  (trigram token features). 

•   Previous morpheme and its parent word (
11

,
−− ii

wm ).  

The history given in )|( hoP  consists of answers to these 

questions.  Clearly, there are numerous questions one can ask 
from the MLPT in addition to the list given above. The “best” 
feature set depends on the task, information sources and the 
amount of data. In our experiments, we have not exhaustively 
searched for the best feature set but rather used a small subset 
of these features (listed above) which we believe are helpful 
for predicting the next morpheme.  It is also worth noting that 
we did not use morpheme 4-gram features nor word 3-gram 
features. Therefore, morpheme trigram language model can be 
considered as a fair baseline to compare JMLLMs to. 

The language model score for a given morpheme using 
JMLLM is conditioned not only on the previous morphemes 
but also on their attributes, the lexical items and their 
morphological and lexical attributes. Therefore, the language 
model scores are expected to be smoother compared to n-gram 
models especially for unseen morpheme n-grams. For 
example, during decoding we want to estimate the probability 
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of “P(estimate | probability, smooth)”. However, assume that 
we observe neither “smooth probability estimate” nor 
“probability estimate” in the training data. In n-gram modeling 
we back off to unigram probability for “estimate”. On the 
other hand, in JMLLM, the n-gram features (trigram, bigram 
and unigram) are only 3 of the 11 features we listed above.  
Typically, in addition to unigram feature there will be several 
features that are active (e.g., lexical attributes, morphological 
attributes, or parent lexical item for the current word or 
previous word). The probabilities of these features are added 
to the unigram probability, which may result in a smoother 
probability estimate than the unigram probability alone. 
However, we do not know of a way to quantify this 
smoothness. 

VI.  SYSTEM ARCHITECTURES 

A. Speech Recognition Architecture 

The speech recognition experiments are conducted on an 
Iraqi Arabic speech recognition task, which covers the military 
and medical domains. The acoustic training data consist of 
about 200 hours of speech collected in the context of IBM’s 
DARPA supported speech-to-speech (S2S) translation project 
[10].  

The speech data is sampled at 16kHz and the feature 
vectors are computed every 10ms. First, 24-dimensional 
MFCC features are extracted and appended with the frame 
energy. The feature vector is then mean and energy 
normalized. Nine vectors, including the current vector and four 
vectors from its right and left contexts, are stacked leading to a 
216-dimensional parameter space. The feature space is finally 
reduced from 216 to 40 dimensions using a combination of 
linear discriminant analysis (LDA) and maximum likelihood 
linear transformation (MLLT). This 40-dimensional vector is 
used in both training and decoding. 

We use 33 graphemes representing speech and silence for 
acoustic modeling. These graphemes correspond to letters in 
Arabic plus silence and short pause models. Short vowels are 
implicitly modeled in the neighboring graphemes. The reason 
for using grapheme models instead of the more popular phone 
models is as follows. Arabic transcripts are usually written 
without short vowels, and hence using phone models requires 
restoring these short vowels; a process known as vowelization. 
Doing this manually is very tedious, and automatic 
vowelization is error-prone especially for dialectal Arabic. In 
numerous experiments with vowelization of the training data 
and hence building phone models we were not able to 
outperform the grapheme system. This is in contrast to MSA 
where it was found that phone models are better than the 
graphemes [33]. This was achieved largely because of an 
accurate vowelization process supplied by the Buckwalter 
analysis. Each grapheme is modeled with a 3-state left-to-right 
hidden Markov model (HMM).  

Acoustic model training proceeds as follows. Feature 
vectors are first aligned, using initial models, to model states. 
A decision tree is then built for each state using the aligned 
feature vectors by asking questions about the phonetic context; 

quinphone questions are used in this case. The resulting tree 
has about 2K leaves. Each leaf is then modeled using a 
Gaussian mixture model. These models are first bootstrapped 
and then refined using three iterations of forward-backward 
training. The current system has about 75K Gaussians.   

The language model training data has 2.8M words with 
98K unique words and it includes acoustic model training data 
as a subset. The pronunciation lexicon consists of the 
grapheme mappings of these unique words. The mapping to 
graphemes is one-to-one and there are very few pronunciation 
variants that are supplied manually mainly for numbers. A 
statistical trigram language model using Modified Kneser-Ney 
smoothing [23, 29] has been built for both the unsegmented 
data, which is referred to as Word-3gr, and the 
morphologically analyzed data, which is called Morph-3gr. 

A static decoding graph is compiled by composing the 
language model, the pronunciation lexicon, the decision tree, 
and the HMM graphs. This static decoding scheme, which 
compiles the recognition network off-line before decoding, is 
becoming very popular in speech recognition [32]. The 
resulting graph is further optimized using determinization and 
minimization to achieve a relatively compact structure. 
Decoding is performed on this graph using a Viterbi beam 
search.  

B. Statistical Machine Translation System 

Statistical machine translation training starts with a 
collection of parallel sentences. We train 10 iterations of IBM 
Model-1 followed by 5 iterations of word-to-word HMM [11]. 
Models of two translation directions, from English to Iraqi 
Arabic and from Iraqi Arabic to English, are trained 
simultaneously for both Model-1 and HMM. More 
specifically, let ( )feC n

fe ,)(
→  be the number of times (soft 

count, collected in the E-step of the Expectation Maximization 
(EM) algorithm) that the English word e generates the foreign 
word f in the direction from English to Arabic at iteration n. 

Similarly let ( )efC n
ef ,)(

→  be the corresponding number of 

times that f generates e in the other direction. To estimate the 
translation lexicon from English to foreign language in the M-
step of  the EM algorithm, we linearly combine counts from 
two directions and use that to re-estimate the  word-to-word 

translation probability )|( eft  at iteration (n+1):  

 

( ) ( )efCfeCfeC n
ef

n
fe

n ,)1(,)( )()()(
→→ −+⋅=→ αα  

∑ →
→=+

'

)(

)(
)1(

)'(
)(

)|(

f

n

n
n

feC

feC
eft  

where ]1,0[∈α is a scalar controlling the contribution of 

statistics from the other direction. A higher value of 
α indicates less proportion of soft counts borrowed from the 
other direction. We fix α  value to be 0.5 for a balanced 
lexicon. Similarly, we can re-estimate word-to-word 
translation probability )|( fet  at iteration (n+1). 

After HMM word alignment models are trained, we 
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perform a Viterbi word alignment procedure in two directions 
independently. By combining word alignments in two 
directions using heuristics [17], a single set of static word 
alignments is then formed. Phrase translation candidates are 
derived from word alignments. All phrase pairs which respect 
the word alignment boundary constraint are identified and 
pooled together to build phrase translation tables in two 
directions using the maximum likelihood criterion with 
pruning. We set the maximum number of words in Arabic 
phrases to be 5. This will finish the phrase translation training 
part. 

The translation engine is a phrase based multi-stack 
implementation of log-linear models similar to Pharaoh [15]. 
Given an English input e, the decoder is formulated as a 
statistical decision making process that aims to find the 
optimal foreign word sequence f* by integrating multiple 
feature functions: 

∑
=

=
K

k
efhf kk

1
),(argmax*

f
λ  

where 
kλ  is the weight of feature function 

kh . Like most other 

maximum entropy based translation engines, active features in 
our decoder include translation models in two directions, IBM 
Model-1 style lexicon weights in two directions, language 
model, distortion model, and sentence length penalty. These 
feature weights (

kλ ) are tuned discriminatively on the 

development set to directly maximize the translation 
performance measured by an automatic error metric (such as 
BLEU [18]) using the downhill simplex method [16]. The 
decoder generates an N-best list, which can be re-scored  using 
a different model, such as an improved language model, in a 
post-processing stage to generate the final translation output. 

VII.  EXPERIMENTAL RESULTS 

A. Speech Recognition Experiments 

We mentioned that the language model training data has 
2.8M words with 98K unique lexical items. The 
morphologically analyzed training data has 58K unique 
vocabulary items. The test data consists of 2719 utterances 
spoken by 19 speakers. It has 3522 unsegmented lexical items, 
and morphological analysis reduces this figure to 3315.  

In order to evaluate the performance of JMLLM, a lattice 
with a low lattice error rate is generated by a Viterbi decoder 
using the word trigram model (Word-3gr) language model. 
From the lattice at most 200 (N=200) sentences are extracted 
for each utterance to form an N-best list. These utterances are 
rescored using the JMLLM and the morpheme trigram 
language model (Morph-3gr). The language model rescoring 
experiments are performed for the entire corpus, which has 
460K utterances and half the corpus, which has 230K 
utterances. The last column in Table II presents results for the 
460K corpus. The first entry (18.4%) is the oracle error rate of 
the N-best list. Morph-3gr error rate is 0.9% better than that of 
the Word-3gr. Log-linear interpolation of these language 
models provides a small improvement (0.3%) over Morph-3gr. 

In a previous study [20], we reported results for “loosely 
integrated” JMLLM (JMLLM-leaf) which are provided here. 
JMLLM-leaf obtains 30.5%, which is 1.7% and 0.8% better 
than Word-3gr and Morph-3gr, respectively. Interpolating 
JMLLM-leaf with Word-3gr improves the WER to 29.8%, 
which is 1.2% better than that of the interpolation of Word-3gr 
and Morph-3gr. The interpolation weights are set equally to 
0.5 for each LM.  Adding the Morph-3gr in a three way 
interpolation does not provide further improvement.   
      In this study, we also provide results for “tightly 

integrated” JMLLM (JMLLM-tree). JMLLM-tree provides an 
additional 0.6% improvement over JMLLM-leaf. Interpolating 
JMLLM-tree with Morph-3gr and Word-3gr improves the 
WER by 0.5% and 0.7%, respectively compared to JMLLM-
tree. Again three-way interpolation does not provide additional 
improvement. Even though JMLLMs are not built using 4-
gram morpheme features, it is valuable to report the Morph-
4gr results. The Morph-4gr language model achieves 30.6% 
WER. 

In order to investigate the impact of different amounts of 
training data on the proposed methods, the experiments 
described above are repeated with 230K utterance corpus. The 
results are provided in the middle column of Table II. Morph-
3gr still outperformed Word-3gr.  However, the results with 
half the data reveal that Morph-3gr becomes more effective 
than the Word-3gr, when interpolated with both JMLLM-leaf 
and JMLLM-tree. We believe this is because of the fact that 
data sparseness has a more severe impact on Word-3gr than it 
has on Morph-3gr. Interpolating JMLLM-tree with Morph-3gr 
provided the best result (35.9%), which is 1.7% better than 
Word-3gr + Morph-3gr. 

In summary, for the complete training corpus, JMLLM-tree 
alone achieves a 2.3% and 1.4% absolute error reductions 
compared to Word-3gr and Morph-3gr, respectively. When 
interpolated with Word-3gr, JMLLM-tree obtains 1.8% 
absolute error reduction compared to interpolated Word-3gr 
and Morph-3gr. Standard p-test3 shows that these 
improvements are significant at p<0.001 level.  

 
3 We used the Matched Pairs Sentence-Segment Word Error (MAPSSWE) 

test, available in standard SCLITE’s statistical system comparison program 
from NIST with the option “mapsswe”. 

TABLE II 
SPEECH RECOGNITION LANGUAGE MODEL RESCORING EXPERIMENTS WITH 

THE 460K SENTENCE COMPLETE CORPUS AND 230K SENTENCE HALF THE 

CORPUS  

Language Models 
Half The 

Corpus WER 
(%)  

Complete Corpus 
WER (%) 

N-best Oracle 22.1 18.4 
Word Trigram (Word-3gr) 38.7 32.2 

Morpheme Trigram (Morph-3gr) 37.7 31.3 
Word-3gr +  Morph-3gr 37.6 31.0 
JMLLM-leaf 37.1 30.5 
JMLLM-leaf + Morph-3gr 36.4 30.1 
JMLLM-leaf + Word-3gr 36.6 29.8 
JMLLM-tree 36.9 29.9 
JMLLM-tree +  Morph-3gr 35.9 29.4 
JMLLM-tree +  Word-3gr 36.1 29.2 
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B. Machine Translation Experiments  

The machine translation task considered here is about 
translating English sentences into Iraqi Arabic. The parallel 
corpus has 430K utterance pairs with 90K words (50K 
morphemes). The Iraqi Arabic language model training data 
includes the Iraqi Arabic side of the parallel corpus as a 
subset. A statistical trigram language model using modified 
Knesser-Ney smoothing [23] has been built for the 
morphologically segmented data.  A development set (DevSet) 
of 2.2K sentences is used to tune the  feature weights. A 
separate test set (TestSet) of 2.2K utterances are used to 
evaluate the language models for machine translation.  

The translation performance is measured by the BLEU 
score [18] with one reference for each hypothesis. In order to 
evaluate the performance of the JMLLM, a translation N-best 
list (N=10) is generated using the baseline Morph-3gr 
language model.  First, on the DevSet all feature weights 
including the language model weight are optimized to 
maximize the BLEU score using the downhill simplex method 
[16]. These weights are fixed when the language models are 
used on the TestSet.  In a previous study [21], we applied 
JMLLM-leaf on a different TestData.  In this study, in addition 
to the results for JMLLM-leaf, we also provide results for 
JMLLM-tree. The translation BLEU (%) scores for the DevSet 
are given in the first column of Table III. The first row (37.89 
and 38.27) provides the oracle BLEU scores for the N-best list 
generated for both DevSet and TestSet. Given the tuned 
weights for Morph-3gr and other translation scores, the N-best 
list is used to tune the weight for JMLLMs. On the DevSet, the 
baseline Morph-3gr achieves 29.74, and word-trigram 
rescoring improves the BLEU score to 30.71. Interpolating the 
Morph-3gr and Word-3gr does not provide additional 
improvement.  JMLLM-leaf achieves 30.63 by itself and 
interpolating it with Morph-3gr and Word-3gr improves the 
BLEU score marginally.  On the other hand, JMLLM-tree 
achieves 30.80 and interpolation with Morph-3gr improves the 
result to 31.10. Interpolation with Word-3gr improves the 
score to 31.28, which is about 1.5 points better than that of the 
Morph-3gr and 0.6 points better than that of the Word-3gr.  

The results on DevSet are encouraging but results on the 
TestSet are the true assessment of the proposed language 
models. In the second column of Table III the results are 
provided for the TestSet by fixing the tuned weights on the 
DevSet. JMLLM-leaf improves the results by 0.8 points and 
0.2 points compared to Morph-3gr and Word-3gr, 
respectively. Interpolating JMLLM-leaf with Morph-3gr and 
Word-3gr improves the results by an additional 0.1 points and 
0.3 points, respectively.  JMLLM-tree improves the result from 
31.40 to 31.71 compared to JMLLM-leaf. Interpolating 
JMLLM-tree with Morph-3gr and Word-3gr improves the 
results marginally. 

In summary, JMLLM-tree improves the results by 1.1 
points which is significantly4 better compared to Morph-3gr 
and 0.5 points compared Word-3gr on the TestSet. 

 
4 The improvement is significant at the 80% confidence interval. We use 

the well-known bootstrapping technique to measure the confidence interval 
for BLEU.  

Additionally, JMLLM-tree consistently outperforms JMLLM-
leaf for both DevSet and TestSet. 

C. Discussions 

When examining the errors from our translation system, we 
see that some of the poor recognition and translation may be 
explained by the rather different behavior of the segmentation 
method on the training and test data. The OOV rate for the 
unsegmented speech recognition test data is 3.3%, the 
corresponding number for the morphologically analyzed data 
is 2.7%. Hence, morphological segmentation reduces the OOV 
rate by only 0.6%.  It is worth comparing the vocabulary 
reduction on the training data (41%) to the vocabulary 
reduction on the test set (6%).  Even though the OOV rates for 
both unsegmented and segmented test data are not that high, 
the characteristics of the test data appear to be different than 
the training data in its morphological make-up. We believe this 
is because the training data was collected over several years. In 
the beginning there was more emphasis on the medical domain 
but later the emphasis shifted towards the checkpoint, house 
search, vehicle search types of dialogs in the military domain. 
However, the test data was set aside from the very first part of 
the collected data. In other words the test data was not 
uniformly/randomly sampled from the entire data. Despite this 
apparent mismatch between training and test data the speech 
recognition results are encouraging. 

For machine translation experiments, the OOV rate for the 
unsegmented machine translation test data is 8.7%, the 
corresponding number for the morphologically analyzed data 
is 7.4%. Hence, morphological segmentation reduces the OOV 
rate by 1.3% (15% relative), which again, is not as large a 
reduction as compared to the training data reduction (about 
40% relative reduction). We believe this would limit the 
potential improvement we could get from JMLLM, since 
JMLLM is expected to be more effective compared to word n-
gram models, when the OOV rate is significantly reduced after 
segmentation.  Improving the morphological segmentation to 
cover more words can potentially improve the performance of  
JMLLMs. 

Even though it was not evaluated in this study, one of the 
benefits of tight-integration using joint modeling becomes 
apparent when a set of alternatives are generated for a sentence 
rather than just a single parse.  For example, we may have 
more than one MLPT for a given sentence because of 
alternative morphological analysis, tagging or 

TABLE III 
STATISTICAL MACHINE TRANSLATION NBEST LIST RESCORING WITH JMLLM   

BLEU (%) BLEU (%) 
Language Models 

DevSet TestSet 

N-best List Oracle 37.89 38.27 
Morpheme Trigram (Morph-3gr) 29.74 30.61 

Word Trigram (Word-3gr) 30.71 31.21 
Morph-3gr + Word-3gr 30.71 31.25 
JMLLM-leaf 30.63 31.40 
JMLLM–leaf +  Morph-3gr 30.69 31.49 
JMLLM–leaf +  Word-3gr 30.71 31.67 
JMLLM-tree 30.80 31.71 
JMLLM-tree + Morph-3gr 31.10 31.73 
JMLLM-tree + Word-3gr 31.28 31.76 
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semantic/syntactic parses. Then, tight-integration with joint 
modeling allows not only to get the best morpheme sequence 
but also the best morphological analysis and/or tagging and/or 
semantic/syntactic parses of a sentence.   

VIII.  CONCLUSIONS 

We presented a new language modeling technique called 
Joint Morphological-Lexical Language Modeling (JMLLM) 
for inflected languages in general and Arabic in particular. 
JMLLM allows joint modeling of lexical, morphological and 
additional information sources about morphological segments 
and lexical items. JMLLM has both the predictive power of the 
word based language model and the coverage of the morpheme 
based language model. It is also expected to have smoother 
probability estimates than both morpheme and word based 
language models. Two implementations of the JMLLM were 
proposed. One called JMLLM-leaf that loosely integrates the 
parse information while the other tightly integrates the parse 
information and is referred to as JMLLM-tree. Speech 
recognition and machine translation experimental results 
demonstrate that JMLLM provides encouraging improvements 
over the baseline word and morpheme based trigram language 
models. Moreover, tight-integration of all available 
information sources in the MLPT provides additional 
improvements over the loose-integration.  
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