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ABSTRACT
Identity-based encryption (IBE) systems are relatively re-
cently proposed; yet they are highly popular for messaging
applications since they offer new features such as certificate-
less infrastructure and anonymous communication. How-
ever, recent studies also reveal that the infrastructure needed
for IBE systems may be as complicated as the conventional
public key cryptosytems and not sufficient research has been
conducted in relevant issues concerning the infrastructure.
In this paper, we intended to propose an IBE infrastructure
for messaging applications. The proposed infrastructure re-
quires one registration authority and at least one public key
generator and they secret share the master secret key. In ad-
dition, the PKG also shares the same master secret with each
user in the system in a different way. Therefore, the PKG
will never be able to learn the private keys of users under
non-collusion assumption. Users can also select meaning-
ful pseudonyms and communicate anonymously using them
with other users in the system. We discuss different aspects
of the proposed infrastructure such as security, key revoca-
tion, uniqueness of the identities, and non-repudiation that
constitute the main drawbacks of other IBE schemes. We
demonstrate that our infrastructure solves many of these
drawbacks under certain assumptions. We also provide some
implementation results to show the feasibility of the pro-
posed infrastructure.
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1. INTRODUCTION
Identity-based encryption (IBE) scheme is a public key

cryptosystem where the public keys are unique identities
in arbitrary string forms. For instance; e-mail addresses,
names, pseudonyms or IP addresses can serve as a public
key in IBE systems. The original concept was initially in-
troduced by Shamir in 1984 [19] while the first practical re-
alization of IBE system becomes feasible via pairing-based
cryptography proposed by Boneh and Franklin [2]. With
the advent of pairing-based cryptography; new applications
of IBE cryptosystem as well as new techniques, to realize
it more efficiently, become the major focus of the contem-
porary research. Generally speaking, in IBE cryptosystems,
there exists a trusted third party, so-called Private Key Gen-
erator (PKG), which is responsible for generating global pa-
rameters to be employed in the system as well as the private
keys for the registered users. Users obtain their private keys
from the PKG, in order to decrypt their messages intended
for them. The secure delivery of private keys should be
performed over secure channels, where confidentiality and
authentication are provided.

In principal; IBE is a public key cryptosystem, where each
user has a public and private key pair. To illustrate, sup-
pose that a user, Alice, wants to send a message to Bob. She
encrypts the message with Bob’s unique public key, e.g. his
e-mail address ‘bob@openuniv.edu’. Bob requests the corre-
sponding private key from the PKG, to decrypt the message.
The PKG calculates the private key, sends it to Bob, and
Bob consequently decrypts the message.

Since the bound between the user and the user’s public
key is based on an inherent or real-word relationship (e.g.
user/name, user/e-mail address, user/assumed role etc.), the
need for an infrastructure is seen by some not as compre-
hensive as the conventional public key infrastructure (PKI).
Whereas, as elaborately pointed out in [6], a fully-functional
IBE system would also require a complex infrastructure in
which some aspects have not been fully investigated. Firstly,
there is the issue of uniqueness of public keys in IBE since
real world names or identities tend to be not unique. There-
fore, there should be a registration authority to keep track
of used names, i.e. public keys. Secondly, the key revoca-
tion could lead to some inconvenience since one may find it
difficult to obtain a new descriptive name for oneself such
as finding a new name. One way to revoke a key without
actually changing the public key requires that system pa-
rameters be changed resulting in changing of private key of
every user in the system. And finally, all IBE schemes have
the key escrowing property, which is considered as a weak-



ness since the PKG knows the private key of every user.
Thus, the PKG not only is able to decrypt any message but
also can fabricate a signature on behalf of any user. The
former results in the loss of privacy and anonymity of users
in their communications while the latter leads to loss of non-
repudiation property. There have also been previous works
in literature, e.g. [16], [1], [3] on the IBE infrastructure,
that essentially proposed similar techniques to overcome the
mentioned drawbacks and provide the user privacy.

In this paper, our contribution is proposing solutions to
some of the shortcomings of IBE systems. Limiting our at-
tention to messaging systems such as instant messaging and
e-mail applications we outline an infrastructure for IBE sys-
tem. Our basic construction follows the idea of secret shar-
ing of the master secret key between two semi-honest parties,
namely the private key generator (PKG) and the registra-
tion authority (RA). In addition, the PKG shares the same
master secret key with each user in a different way, having
one share for each user registered in the system. Thus, a
user and the PKG have to participate in a protocol to gen-
erate the private key for the user. A user’s only interaction
with the RA is during the registration phase, in which the
RA not only checks the uniqueness of the identity but also
assists in the protocol that generates two new shares of the
master secret key; one for the user and the other for the
PKG. One benefit of our model is that there is no need to
employ a secure channel between the PKG and users to de-
liver private keys since the PKG sends only its share of the
private key to users, which carries no information about the
private key itself.

We also propose to use ever-changing public keys by at-
taching date information to the natural identities of users
whose frequency is determined by the underlying commu-
nication model. While public keys changing on daily basis
are convenient for instant messaging applications, weekly
or monthly public keys in case of asynchronous persistent
communication models such as e-mail systems seem feasi-
ble. The PKG’s shares of the private keys are sent to users
automatically. The PKG does not need to be a global party
in the system; there can be many local PKGs serving in-
tranets or subdomains. For instance, the message exchange
server is a candidate for a local PKG.

In our infrastructure, the users can freely adopt pseudonyms
or nicknames for anonymous communication. The hard-
ness of elliptic curve discrete logarithm problem protects
the anonymity of users from the scrutiny of the PKG or any
other party.

Our most basic assumption is that the RA and PKG never
collude since they are semi-honest and follow the protocol
steps exactly. Similarly, we also assume that a user and the
PKG do not collude since we believe that there are many in-
centives for users not to collude with the PKG such as losing
their privacy and/or anonymity if they do so. Furthermore,
we can prevent users from colluding with the PKG or re-
vealing their secrets using tamper-proof crypto modules.

This work basically extends our previous work in [11] by
fixing certain security problems in the registration phase,
providing extensive security analysis illustrating possible at-
tacks, and presenting the integration of our protocol to an
e-mail client Mozilla Thunderbird.

We give a brief information about identity-based encryp-
tion systems and their mathematical background in the sec-
ond section. The third section includes a detailed explana-

tion of our infrastructure. An additional property, namely
the anonymity of our system is discussed in section 4. The
analysis of our proposed scheme is given in section 5. In the
sixth section, implementation details are given. The paper
ends up with conclusion and future works.

2. IDENTITY-BASED ENCRYPTION SYSTEMS
In this section, we give background information on identity-

based encryption schemes.

2.1 Mathematical Background
We use identity-based encryption (IBE) systems that uti-

lize elliptic curves and pairing operations as proposed in [2].
An elliptic curve E(Fp) over a finite field Fp is defined with
the equation,

y2 = x3 + ax + b with a, b ∈ Fp

The solutions to this equation are called elliptic curve points,
and shown as P = (x, y), where x and y are the coordinates
and elements of the underlying field Fp. The points on el-
liptic curve along with so-called point at infinity form an
additive group. We can denote the point addition as P +Q,
and define elliptic curve scalar multiplication of an elliptic
curve point P by an integer α, as αP . The order of a point
is the smallest integer, n, such that nP = O , where O
denotes the point at infinity, which is the identity element
of the elliptic curve group. The security of elliptic curves
relies on the difficulty of solving elliptic curve discrete loga-
rithm problem (ECDLP). The ECDLP basically states that
given two points Q and P from the equation, Q = αP , it is
computationally infeasible to find α.

Bilinear maps over elliptic curve points play a central role
in IBE systems. A bilinear map is defined over two groups
of the same prime-order q denoted by G1 and G2. G1 is an
additive group and is formed of a group of points on elliptic
curves while G2 is a multiplicative group. Bilinear map,
therefore, is defined as G1 × G1 → G2. Basically, a bilinear
map, which is denoted as ê(·, ·), accepts two elements as
input from G1 and returns an element in G2. An important
property of bilinear maps is bilinearity [7] which is explained
below.

ê(xP, yQ) = ê(P, yQ)x = ê(P, xyQ) = ê(P, Q)xy

∀P, Q ∈ G1, ∀x, y ∈ Zq

Tate and Weil pairings [14], [8] are the two widely-used
pairing functions. Our scheme is based on Tate pairing
which is, in general, more efficiently calculated than the Weil
pairing.

Public and private keys of users, in IBE systems, are el-
liptic curve points. For this purpose, a hash function, H1

which is defined as H1 : {0.1}∗ → G1, is employed to con-
vert a string of arbitrary length (i.e. identity) to a point
on the underlying elliptic curve. In addition to H1, another
hash function, H2 : G2 → {0, 1}n is used in encryption and
decryption phases. For further information about elliptic
curves and pairing based cryptography one can profitably
refer to [12] and [5].

2.2 Work Flow of IBE
In general, an IBE system consists of four phases [17]:



1. Setup phase: Below are the activities performed in
this phase.

• Selection of the elliptic curve and the master se-
cret key, s, and the generation of the public key of
the system, PSY S = sP , where P is the generator
point of G1, group of chosen elliptic curve.

• Selection of hash functions, H1, H2 and the bilin-
ear mapping function.

2. Extraction: The private key generator generates the
user’s private key. The public key of a user (ID) is de-
noted as QID while the private key of a user is denoted
as DID.

QID = H1(ID) and DID = sQID,

where ID is an arbitrary string. Any party that knows
ID can calculate QID since H1 is a public hash func-
tion.

3. Encryption: Encryption is performed by using re-
ceiver’s public key (say Alice) as follows:

• (U, V ) = (rP, M ⊕ H2(gQ))

• where r ∈R Z∗

q (i.e. r is randomly selected in Z∗

q )
and

• gQ = ê(QA, PSY S)r, ⊕ denotes exclusive-OR op-
eration, and QA is the public key of Alice.

Here M is the plaintext and the pair (U, V ) is the
ciphertext, which is consequently sent to Alice.

4. Decryption: In decryption phase, the ciphertext (U, V )
can only be decrypted if the receiver’s private key (DA)
is known. The following steps are applied in decryp-
tion process:

V ⊕ H2(gQ′) = M where gQ′ = ê(DA, U)

The decryption works since

V ⊕ H2(ê(DA, U)) = V ⊕ H2(ê(sQA, rP ))

= V ⊕ H2(ê(rQA, sP ))

= V ⊕ H2(ê(QA, PSY S)r)

= V ⊕ H2(gQ)

= M ⊕ H2(gQ) ⊕ H2(gQ) = M

3. OUR INFRASTRUCTURE
This section describes the main steps in the proposed in-

frastructure omitting the encryption and decryption phases
since they are identical to the original IBE encryption and
decryption schemes outlined above.

3.1 Setup Phase
We utilize secret sharing of the master key, s. With this

purpose, two semi-honest parties1 are formed; the Private
Key Generator (PKG) and the Registration Authority (RA).
The RA is responsible for registering users in the beginning
while the PKG is responsible for distribution of private keys.

1A semi-honest party follows the protocol steps exactly as
defined, and does not involve in extra-protocol activities.
This is somewhat a weaker assumption than the fully-trusted
authority.
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Figure 1: The two-party protocol for computing

PSY S

In addition, the RA and PKG share the master secret key as
follows: Initially, the RA and the PKG choose two random
secret keys, sRA and sPKG, where s = sRA + sPKG is the
master key. Since s must not be known by two semi-honest
parties, we stipulate that the RA and the PKG do not col-
lude with each other. Indeed, so long as the PKG and the
RA do not collude nobody knows the master secret key. A
two-party protocol for generating the secret share and the
public key of the system PSY S is illustrated in Figure 1.

After selecting its secret share of master secret key, the
RA computes PRA = sRAP , which is its share of public key
of the systems, and sends it to the PKG. Similarly, the PKG
computes its share of system public key, PPKG = sPKGP
and performs the elliptic curve addition PSY S = PPKG +
PRA. Consequently, the PKG publishes the system public
key, PSY S .

3.2 Registration phase
In the registration phase, the user is first introduced to

the system by a secure three-party protocol that involves
the user, the RA, and the PKG. The aim of the three-
party protocol is two-fold: i) check the uniqueness of the
user identity, and ii) securely compute new shares of the
master secret and give one share to the user and the other
to the PKG. The protocol steps are illustrated in Figure 2.
The registration phase utilizes public key cryptography and
we assume that the user (i.e. Alice in Figure 2) knows
the public keys of the RA and PKG. ERA[x] and EPKG[x]
stand for encryption of x with public key of the correspond-
ing party, i.e. the public keys of RA and PKG, respec-
tively. The PKG uses a homomorphic public key cryp-
tosystem similar to the one in [18]. Therefore, we have
EPKG[m1] · EPKG[m2] = EPKG[m1 + m2].

The protocol steps are explained as follows:

• Step 1 The user (Alice in Figure 2), for the first and
last time, contacts the RA by sending her identity (A)
in the first message. Alice also encrypts the difference
between her secret share sA and a random number r1

using the public key of the RA and sends the resulting
ciphertext X = ERA[r1 − sA] along with her identity
A to the RA.

• Step 2 The RA first checks whether the ID of Alice, A
is unique; if not, it helps Alice choose a unique identity.
It then obtains the difference r1 − sA by decrypting
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Figure 2: The registration protocol

X and adds its own share of the master secret, sRA

and another random number r2 to the difference. It,
subsequently, encrypts r1 − sA + sRA + r2 and sends
the resulting ciphertext Y = EPKG[r1−sA +sRA +r2]
back to Alice. The value r2 is a random number chosen
by the RA.

• Step 3 Alice removes the random number r1 by per-
forming the operation EPKG[r1 − sA + sRA + r2] ×
EPKG[−r1] = EPKG[sRA − sA + r2]. The resulting
ciphertext EPKG[sRA − sA + r2] is sent to the RA.
Alice also sends EPKG[sAP ] to the RA, which serves
as a token to authenticate Alice to the PKG in their
subsequent transactions.

• Step 42 The RA removes the random number r2 sim-
ilarly and forward EPKG[sRA − sA] to the PKG which
first performs EPKG[sRA−sA]×EPKG[sPKG] = EPKG[s−
sA]. It then decrypts the resulting ciphertext and ob-
tain its share of master secret sA′. Note that s =
sA + sA′. The PKG also decrypts EPKG[sAP ] and
obtains sAP . Finally, it checks whether the following
equality holds: sAP + sA′P = PSY S .

As a result of the registration phase, the user and the
PKG come to posses different shares of the master secret s.
Therefore, a user and the PKG must collaborate to generate
a private key corresponding to any public key chosen by the
user. The fact that they collaborate makes the generation
and secure transmission of private key to the user simpler
and more efficient as explained in subsequent sections. Pro-
vided that none of the users and the PKG do not collude, the
master secret will never be revealed. Note that no coalition
of users is able to construct the master secret since the user

2Step 4 of the registration protocol is more complicated than
described here due to security considerations. The full de-
scription of this step is given in Section 5.2

shares themselves do not contain any information about the
master secret.

We have two motivations to believe that non-collusion as-
sumption is valid and realistic: i) the PKG is semi-honest,
and therefore does not try to learn about the secret shares
of the users unless openly told by the users, and ii) a user
does not want to reveal its share to the PKG since doing so
gives the PKG the ability to access the messages intended
for the user and to generate signatures on behalf of the user.
Furthermore, the secret share sA of a user can always be
kept in a trusted zone of its hardware and will never leave
this zone in the clear. And, we can prevent the user from
learning the secret share by employing tamper-proof crypto
module as explained in Section 5.2.

3.3 Public Key Selection and Private Key Ex-
traction

In identity-based encryption system, public keys are gen-
erally arbitrary strings that contain identity of the user and
other relevant publicly available information. Furthermore,
the public keys can contain descriptive information about
the intended recipient. This clearly alleviates the problem
of public key certification used to establish a binding be-
tween the public key and the identity of public key owner.
Apparently, this bond is inherent in IBE systems. This,
nevertheless, complicates the key revocation problem since
changing a user’s public key entails changing of its identity.
Changing one’s identity raises certain concerns since finding
another descriptive name for an individual may be difficult
per se. However, the more important point is the compli-
cated infrastructure (e.g. certification revocation lists) re-
quired for informing other users on the compromised or stale
public keys.

In messaging applications, on the other hand, the prob-
lem of key revocation can be addressed using ”ever-changing”
public keys. Namely, public key of a user can contain strings
related to situational information such as the location, time,



date, and role of the user besides the unique identity of the
user. We simply propose to include date (or time) infor-
mation in the identity (hence the public key) of the user.
Therefore, the users in our messaging infrastructure has pub-
lic keys, that are updated frequently. For instance, a user
ID may contain date information, such as March 14, 2008,
which is a public information and can be appended to the
ID easily. The string ”bob@openuniv.edu:14/03/2008” is an
example for ever-changing public keys.

If the public keys change as frequently as every day, then
the corresponding private keys must be re-computed as fre-
quently. As mentioned earlier, both the user and the PKG
must participate in the private key generation procedure.
In classical IBE systems, the secret key is generated by the
PKG and then securely transmitted to the user. Before, the
key generation, the user must authenticate itself to the PKG
and secure channel must be established between the user and
the PKG. Otherwise, the private key can be fallen in the
hands of other users or worse yet adversaries. The proposed
scheme, on the other hand, utilizes only implicit authentica-
tion of the user and does not require a secure channel. The
private key generation scheme is illustrated in Figure 3.

The user, Alice, selects a public key by appending date
and other relevant information to her identity and obtains
QA, which is sent to the PKG. The PKG then computes its
share of the public key sA′ · QA and sends it to Alice. Alice
then computes DA = sA · QA + sA′ · QA = s · QA, which is
her private key, DA corresponding to the public key QA.

Alice PKG

1) Q
A

2) s
A'

Q
A

D
A
 = s

A
Q

A
+s

A'
Q

A

Figure 3: Private key extraction protocol
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Figure 4: User Identification to the PKG

In case there is a need for explicit identification of the user
to the PKG, they can use a modified version of Schnorr’s
identification protocol as illustrated in Figure 4. The effort
undertaken by the user is one elliptic curve point multiplica-
tion with a scalar and one multiplication and one subtraction
in modulo n, where n is the order of base point P .

The steps of the identification protocol are summarized
below:

• Step 1 The user Alice, first selects a random integer
k and performs the elliptic curve scalar multiplication,
kP , where P is the base point for the underlying el-
liptic curve group. Alice sends kP to the PKG as a
witness.

• Step 2 The PKG selects a random integer r and sends
it to Alice as a challenge.

• Step 3 Alice, upon reception of r, computes y ≡
k− sAr (mod n) and send the resulting value y to the
PKG.

• Step 4 The PKG computes yP − rsAP , where sAP
serves as the public key of Alice obtained during the
registration, and authenticate Alice if the result is the
same as the witness kP .

If the PKG needs to authenticate itself to Alice, they can
use any identification scheme utilizing the public key of the
PKG which is assumed to be in possession of Alice.

4. USING PSEUDONYMS FOR ANONYMITY
The users, for anonymity reasons, may want to use nick-

names or so-called pseudonyms in their interaction with other
users in the system. In the classical setting of IBE sys-
tems, the PKG knows both the public key (identity) and
private key of every user; hence the anonymity cannot be
achieved. One simple trick can, however, help users gener-
ate pseudonyms on their own without a help from the PKG.
Recall that a user, say Alice, has public and private keys,
QA and DA = sQA where s is the master secret key. Alice
can select a random number k, calculates RA = kQA, and
declares RA as her pseudonym. Alice also calculates kDA

and uses it as her new private key in decryption and sign-
ing operations. A similar approach is taken in [10], where
users can compute their private keys without any assistance
from the PKG. One important problem, however, associated
with this technique is that the pseudonyms are meaningless
random looking bit-strings. Although pseudonyms in this
scheme tend do be unique they are also hard to remem-
ber. This may be a concern in certain applications such
as messaging where nicknames are specifically chosen to be
easy-to-remember.

Our approach is based on a technique we call blinding of
the pseudonyms. As illustrated in Figure 5, after selecting
a pseudonym, QPN , Alice blinds it by performing elliptic
curve scalar multiplication, kQPN , where k is the randomly
selected blinding factor. The resulting blinded point QBL

is then sent to the PKG that computes sA′QBL and sends
it back to Alice. Alice, finally, computes k−1(sA′QBL) +
sAQPN = sQPN . Consequently, Alice declares QPN (or
more specifically PN) as her public key and uses DPN =
sQPN as her private key.

Note that no other party including the PKG and the
RA can discover the identity of the user in the proposed
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anonymity protocol since they do not have the knowledge of
the users private keys under the non-collusion assumption.
Blinding does not fully achieve the anonymity in the clas-

sical setting where the PKG is able to compute the private
key corresponding to any given pseudonym. Therefore, the
PKG can decrypt any message being exchanged in the clas-
sical setting. However, in the proposed protocol the PKG
and RA needs to collaborate to compute a private key, which
they will do when a legitimate need arises such as revoking
the pseudonym of an ill-behaving user.

Another issue with the anonymity is the uniqueness of
chosen pseudonyms. As pointed out in [6], having two users
sharing the same pseudonym will result in the loss of se-
curity and privacy. Thus, users should check whether it is
available before they adopt a pseudonym. One solution to
this problem is that the RA publishes an authentic list of
used pseudonyms. The users check the pseudonym against
this list and notify the RA that the chosen pseudonym is
no longer available if it is not in the list. The RA, in turn,
updates the list of used pseudonyms. In certain applications
users may not want the RA to know the used pseudonyms.
In this case, the RA keeps a list for the hash values of the
used pseudonyms and users can decide if a pseudonym is
used by performing the comparison over the hash values3.

Another concern using pseudonyms is that there is still a
risk that a user may assume a pseudonym which is already
adopted by another user; a problem which exists in other
pseudonym-based schemes as well. Since we do not explic-
itly address this problem, the protocol in Figure 5 does not
prevent users from adopting other users’ pseudonyms. In-
stead, a three-party protocol between user, the RA, and the
PKG is to be developed to ensure that the users register with
unique pseudonyms. A sketch of the protocol, which is based
on the one outlined in Figure 5 can be given as follows: User
anonymously contacts with the RA and sends QPN value.
The RA checks if another user has already registered with
the same QPN ; if not, the blinding operation is performed by
multiplying QPN with a random value of k, the result is dig-

3If the so-called dictionary attack is of a concern, we may
require that the RA perform the uniqueness check. Hav-
ing a semi-honest RA which never involves in extra protocol
activities we assume that it does not apply the dictionary at-
tack. Alternatively, the RA can utilize a secure comparison
protocol.

itally signed with the RA’s signature and sent together with
k back to the user. In the following step, the user sends
(kQPN )sign to the PKG that verifies the RA’s signature.
If the signature verifies, the PKG computes sA′kQPN and
sends the result back to the user. The received sA′kQPN

value is multiplied with k−1 and sA′QPN is obtained on the
user side. Finally; user’s private key, sQPN , is calculated
by adding sAQPN and sA′QPN . Since our primary applica-
tion area is that of e-mail, where pseudonyms are not used,
a secure pseudonym-creation protocol for other messaging
applications requires further effort and security analysis de-
pending on the applications’ requirements.

5. ANALYSIS OF THE PROPOSED INFRAS-
TRUCTURE

In this section, we analyze the proposed infrastructure
from four different perspectives, namely i) security, ii) non-
repudiation, iii) validity of public keys, and iv) key revoca-
tion.

5.1 Security
The security of the proposed infrastructure is based on two

basic assumptions on the involved parties: i) non-collusion
property between certain parties, and ii) semi-honest nature
of the PKG and the RA.

Employing two or more trusted parties that do not col-
lude was already proposed by Boneh and Franklin in [2]
and also in [4]. In both schemes, a user has to contact all
trusted parties to obtain its private key and furthermore
the user has to establish a secure channel with each trusted
party in this key extraction phase. Our scheme diverges from
the previous schemes in two aspects. Firstly, it introduces
two trusted-third parties, the private key generator (PKG)
and the registration authority (RA), which secret share the
master secret s and again do not collude with each other.
Secondly, each user shares the same master secret with the
PKG in a different way. Therefore, a user does not need to
contact both trusted parties to acquire his/her private key
since s/he can do so using a protocol involving itself and the
PKG (cf. Figure 3). Furthermore, the communication be-
tween the user and the PKG does not need to be encrypted.
Users do not wish to collude with the PKG since otherwise
would mean the loss of their privacy and/or anonymity in
their messaging transactions.

Our second assumption involves the semi-honest nature
of the PKG and the RA. We do not make any assumption
on the users of the system; they only try to protect their
own interest. Property of semi-honest party was first intro-
duced by Goldreich in [9] and it simply assumes that such
parties are honest but curious. In other words, they do not
participate in extra protocol activities but gather any leaked
information from the protocol. For instance, the PKG will
never try to register as a user in the system since this would
compromise the master secret to the PKG. The interface for
user registration is not available to the PKG. Unless users
openly encrypt their private shares of the master secret with
the public key of the PKG and send it to the PKG the semi-
honest PKG will never learn the private shares of the users.
A user will not reveal his/her private share to the PKG or
RA since this share also serves as his/her private key in
the identification protocol illustrated in Figure 4. In other
words, a user should not collude with the PKG since doing



so will enable the PKG to calculate the master secret s.
Another advantage of the proposed infrastructure is that

it provides convenience in key distribution. Only assump-
tion we hold in key distribution is that a user who would
like to register knows the public keys of the PKG and RA.
Users can acquire this knowledge from publicly available re-
sources such as web pages. Furthermore, a user does not
necessarily authenticate oneself to the PKG to obtain the
private key since the value sent by the PKG, i.e. sA′QA,
does not contain any information on the private key of the
user. The information sent by the PKG becomes useful only
if it is received by the intended user.

Considering the difficulty of initial identification of users
during the registration as pointed out in [6], we assume that
the user is able to prove her identity to the RA during the
registration protocol. It could be the case where the user
personally goes to the RA and show a piece of identification
to prove her identity. Any further elaboration on this issue
is beyond the scope of this paper.

5.2 Non-Repudiation
Non-repudiation, by which a user cannot deny her own

transactions with the other entities in the system, is a prop-
erty almost non-existent in IBE systems. Our infrastruc-
ture provides the non-repudiation property under certain
assumptions. The first assumption is non-collusion assump-
tion between the PKG and the RA, and a user and the
PKG. Since a user’s share of the master secret serves also
her private key in her interaction with the PKG, such as
identification protocol, she can be held responsible for pro-
tecting her share from compromise as in the case of pri-
vate key in conventional public key cryptosystems. How-
ever, a user can claim that some other user compromises his
own share to the PKG not her and that the PKG becomes
able to sign messages for every user (hence the loss of non-
repudiation). If this is the case, our infrastructure reduces
to classical IBE system. However, the situation with our in-
frastructure is indeed better than the classical IBE systems
since a user’s ability to compromise her share of master se-
cret to the PKG can be constrained.

One way of doing it is to employ a trusted tamper-proof
crypto module that operates on the secret share of the user
and performs all the functions in a protected manner. This
module or engine will have a certain interface to the outside
applications that can be designed not to leak information on
user’s share of the master secret. Note that we only try to
prevent the leakage on the user’s share since its compromise
to the PKG will destroy the non-repudiation property of the
whole system. Therefore, the primary goal in providing the
non-repudiation property is to ensure correct functioning of
the system against the disruptive user activities.

There are five instances that a user makes calls to the
crypto module’s functions that involve her secret share:

1. ERA[r1 − sA] in registration phase (cf. Figure 2).

2. EPKG[−r1]×EPKG[r1−sA+sRA] in registration phase
(cf. Figure 2).

3. DA = sAQA + sA′QA in private key extraction phase
(cf. Figure 3).

4. y = k − sAr in user identification phase in Figure 4.

5. sA′QBL/k+sAQPN in pseudonym generation (cf. Fig-
ure 5)

In instance 1, only the difference of the share sA to a ran-
dom value chosen by the module leaves the module; hence it
leaks no information on sA. In instance 4, a zero knowledge
protocol is used, which was proved to leak no information
on the secret value. In instances 3 and 5, sA leaves the mod-
ule as the multiple of an elliptic curve point. This value also
does not leak any information based on hardness of ECDLP.
In instance 2, the user can call EPKG[−r1]×EPKG[r1−sA+
sRA + r2]×EPKG[sRA] if it obtains EPKG[sRA], which will
never be available to her. However, the registration phase
must be inspected more closely to reveal the attack possi-
bilities, which we do in the following.

The user may cause the share sA to be revealed to herself
or the PKG by changing the public keys used in the registra-
tion protocol. Assuming that the user is capable of changing
both public keys, she applies the man-in-the-middle-attack
in the registration phase and learns sA as illustrated in Fig-
ure 6.
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Figure 6: Man-in-the-middle attack when user

changes the public keys of the RA and the PKG

The user makes the crypto module to use a different pub-
lic key with which she encrypts r1 − sA and returns the
ciphertext X ′. After having decrypted the ciphertext X ′

and obtained r1 − sA, the user re-encrypts it using the RA’s
real public key and forwards the ciphertext X to the RA.
The RA responds to this message in usual way and sends Y
to the user, who replaces it with Y ′. The ciphertext Y ′ is
the ciphertext of r1−sA encrypted under another public key
which the crypto module treats it as the authentic public key
of the PKG. However, this public key is in fact chosen by
the user who naturally knows the corresponding private key.
The user decrypts Z′ and obtains the secret share sA; since
she also knows r1 −sA, the user is able to recover r1 as well.
The user performs EPKG(−r1)×EPKG(r1 − sA + sRA + r2)
and sends the result EPKG(−sA + sRA + r2) to the RA.
Therefore, we must prevent the user from changing the pub-
lic keys employed in the crypto module. A tamper-proof and
trusted crypto module can have hardcoded public keys, or
public keys which can be changed by only authorized users.
The remaining questions to resolve is that whether we pro-
tect both public keys or only one of them.

If the user is able to change only one of the public keys
then the situation will require another two analysis. Firstly,



assume that the user can change only the public key of the
RA. Then the man-in-the-middle-attack works as in Figure
7. As can be observed from the figure, the user herself cannot
recover the secret share sA, but enables the PKG to do so
when the PKG decrypts EPKG(−sA). Note that the user
has to use the correct public key of the PKG since we assume
that it cannot replace it.
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Figure 7: Man-in-the-middle attack when user is

able to change only the public key of the RA

Finally, in case the user is able to change only the public
key of the PKG, since the RA and the hardware module uses
different public keys no information is revealed to anyone.
Therefore, if the user is not able to change the public key of
the RA, then the two attacks described above cannot be ap-
plied. Therefore, it is sufficient that the tamper-proof crypto
module must prevent the user from changing the public key
of the RA.
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Figure 8: Query Attack on the RA

Another type of attack that can be applied by anyone who
knows the two public keys is called query attack and depicted
in Figure 8, wherein the secret share of the RA is revealed to
the PKG. To prevent this attack, Step 4 of the registration

protocol (cf. Figure 2) must be modified as in Figure 9.
In the modified version of Step 4, the RA does not immedi-

ately remove its random number r2 after it receives the mes-
sage Z from the user. Instead, it relays Z to the PKG that
decrypts it and obtains −sA + sRA + r2 (or sRA + r2 in case
query attack is applied). The secret share of the RA sRA is
protected by the random number r2 even if the query attack
is applied. The PKG performs elliptic curve point multipli-
cation of the base point P by the integer −sA +sRA +r2 and
sends the resulting elliptic curve point Z′ to the RA. The RA
in turn computes (−sA +sRA +r2)P −r2P = (−sA +sRA)P ,
which would be sRAP in case of the query attack. There-
fore, the RA can detect the query attack when Z′ − r2P is
equal to sRAP ; if this is the case it aborts the registration
protocol. Otherwise, it continue with regular execution of
the step 4 of the registration protocol as described in Figure
2.
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Figure 9: Secured Version of Step 4 of Registration

Protocol

One can claim that the registration protocol is compli-
cated and may take quite a long time. However, this compli-
cation can be tolerated since it is executed only once for each
user initially or in case of secret share refreshment which oc-
curs not very frequently. On the other hand, our private key
generation and distribution protocols are very efficient and
convenient.

In summary, it is not possible to provide non-repudiation
in IBE systems without a tamper-proof crypto module that
protects the secret share of the users and public key of the
RA used in the registration protocol. Best way to imple-
ment a tamper-proof crypto module is doing it in the hard-
ware whereby there are many techniques to guarantee the
protected and secure execution of cryptographic primitives.
Software obfuscation methods to hide secret keys and pro-
tect the public key of the RA against replacement can also
be used to provide a similar protection. However, obfusca-
tion methods are proven to give way to certain attack types;
they only provide limited protection.

5.3 Validity Period of Public Keys
Another issue in the proposed infrastructure is the valid-

ity duration of users’ public keys. As mentioned earlier, we
propose to append date information to IDs of the users. The
issue then becomes what sort of date information to use in



the IDs. Our approach is to define the duration, depending
on the application and the underlying communication model
used in the message exchange. For instance, we propose to
append day information to the IDs in instant messaging ap-
plications where users must be on-line and the communica-
tion is transient. The user acquires the PKG’s part of the
belonging private key in the first login in that day and it
computes the private key, which expires next day.

For asynchronous messaging systems such as e-mail, where
users are most of the time off-line, we propose to use ei-
ther date of current week or month information appended
to users ID. We believe that to change the public key of
the user every week does not constitute too much overhead
in e-mail applications. Considering many e-mail messages
an average user receives in a week, storing PKG’s share of
user’s private key (a point on the underlying elliptic curve)
in the same directory as the e-mails received in that week
only marginally increases the storage requirements allocated
for that user. Once the user connects to the exchange server
for the first time in a week it downloads PKG’s share of the
belonging private key for that week. If the user has not con-
nected to the e-mail server for more than a week, the e-mail
program downloads PKG’s share of the private key for pre-
vious weeks as well. Note that these downloading operations
are done transparently to the user or rather it is pushed to
the user by the e-mail server. By adding the user’s own
share to the PKG’s share, the user obtains the private key
for the current week and will be able to decrypt any mes-
sage received that week. Note that when the need arises,
for instance by an explicit request from the user, PKG can
re-generate its share of any user’s private key.

Another approach in determining the validity period of
the public keys is to give the sender of the message as an
option in e-mailing applications. This way, the sender will
choose whether it uses monthly or weekly public key of the
recipient.

Our infrastructure can easily accommodate role-based mes-
saging applications as proposed in [15]. Instead of using
names, e-mail addresses, pseudonyms, any description for a
role or time and space constraints can be used as a public
key in our infrastructure.

5.4 Key Revocation Problem
In the proposed IBE scheme, revocation becomes an is-

sue in two different circumstances: i) a particular time-
dependent private key, e.g. sQA, or ii) secret share of any
particular user, e.g. sA, is compromised. When the former
happens, the adversary can decrypt the messages intended
for the corresponding user or sign messages on behalf of that
user until the expiration date of the corresponding public
key. This is the reason why we would like to use frequently
changing public keys. The shorter the validity period of a
public key, the less likely the corresponding private key being
fallen in the hands of an adversary assuming that capturing
a private key requires substantial efforts. In addition, the
damage is also minimized when a public key is used only for
short amount of time. In order to guarantee that no com-
promised key is used in encryption or signature verification
operations, the PKG can publish a (revocation) list of com-
promised keys. Compromised public keys can be extended
with a known public information to generate a new pub-
lic/private key pair.

If a user compromise her share of the master secret, which

we believe is less likely than the former case, the situation
must be handled in a different way. The adversary that has
the secret share can impersonate the corresponding user, de-
crypt any messages intended for the user and sign messages
on behalf the user. In addition, the adversary can generate a
new private key in collaboration with the PKG. Therefore,
shortening the validity period does not remedy this situa-
tion. In this case, the user must change its share and initiate
a new registration phase. With the new share of the master
secret, the user implicitly invalidate the old one, with which
the adversary cannot extract the private keys. There is no
need to keep revocation lists since the user does not have to
change its public key after the new share is generated. Ad-
versary revealing the compromised share to the PKG will,
however, result in loss of non-repudiation property.

6. SOME IMPLEMENTATION ISSUES
Our infrastructure is built upon a supersingular elliptic

curve with the equation y2 = x3 + 1 mod p where p has
a size of 512 bits so as to provide an equivalent security to
1024-bit RSA. For the implementation, we utilize the elliptic
curve and pairing classes of MIRACL library [13] which has
been developed by Shamus Software Limited. In addition,
Intel Celeron 1.5 Ghz computer is used as a base platform
together with its Windows XP operating system. Table 14

features the execution times of the cryptographic operations
in different protocols for each party, namely PKG, RA and
the user. The numbers indicated below each party, show the
execution times of the corresponding processes, relevantly in
terms of milliseconds. Clearly, our infrastructure not only
offers a secure infrastructure but also provides an efficient
system with high execution performance.

Table 1: The Performance

Process PKG(ms) RA(ms) User(ms)

Computing PSY S 16 17 -
Registration 242 271 140

Private Key Extraction 16 - 20
Pseudonym Generation 16 - 60

The data to be stored on each party is also another impor-
tant aspect to be taken into account since it heavily affects
the implementation in terms of its performance. The size of
the data in bytes, to be stored on each entity, is shown in
Table 2. Whereas the C++ built processes are indicated as
executables, the parameters and variables are stored in data
files with the extension ‘.ibe’. It should also be pointed out
that the size of executable files may vary depending on the
implementation and deployment method. Supporting this
fact, the larger size of database connection executable de-
ployed in PKG side is introduced by its implementation in
C#.

IBE systems, as pointed out earlier, are convenient for
messaging applications. Therefore, we integrated a simpli-
fied version of the proposed infrastructure with one of the

4Note that the communication latencies are excluded. Table
1 is constructed by running user side only one time, consid-
ering the latency requirement on user side; and both PKG
and RA 100 times, since throughput is a concern.



Table 2: The File Storage

Entity File name File size(Kb)

PKG Data Files 2.39
Executables 20.6

RA Data Files 2.63
Executables 0.73

User Data Files 2.00
Executables 1.70

widely used open-source e-mail applications, Mozilla Thun-
derbird. In order to embed the proposed infrastructure in
an e-mail application, Thunderbird provides a flexible and
rich platform. Developing an extension requires a knowledge
of XUL and JavaScript languages. While XUL language is
generally used to define new window elements such as bars,
menu items or buttons on the user interface, JavaScript is
utilized to assign events on the created window elements
and also executes the underlying C++ built processes such
as encryption and decryption routines.

In the Thunderbird implementation, three add-ins have
been developed, for the RA, the PKG and the user sepa-
rately, since these entities have different roles. As shown
in Figure 10, all these entities communicate via mail server
except for the registration phase where users register from a
website at first step. The e-mail server plays the central role
and generally works as a bridge between PKG, RA and the
user. In addition, two additional email addresses have been
registered for the RA and the PKG, namely ‘ibe ra@openuniv.edu’
and ‘ibe pkg@openuniv.edu’.

Mail Server PKGUser

HTTP

Web

Form
RA

SMTP

SMTP

SMTP

SMTP

SMTP

Figure 10: The System Architecture

After the extension is installed all phases are handled au-
tomatically except for the decryption phase. The specific
details are given below:

1. Setup Phase: When started, both add-ins on RA and
PKG’s side randomly select secret numbers and each
calculates their shares of the system public key. The
setup phase is initiated when the RA automatically
sends its share of the system public key to the PKG
via an e-mail message whose subject is ‘IBE Setup’.
The add-in on PKG’s side has an event listener which
checks for the sender and the subject field of the newly
arrived mails. If the received mail’s subject is ‘IBE Setup’
and the sender is ‘ibe ra@openuniv.edu’ then PKG ex-
ecutes its setup phase and ends up with calculating the
public key of the system. We assume that the PKG

and RA have a secure channel to communicate.

2. Registration Phase: Users register in the system via
RA’s web interface. At the first step; name, surname,
email and additional password information are entered
on the web-form and sent to RA via HTTP protocol by
clicking on the login button. The user is asked to pick
an e-mail address which is checked for uniqueness by
comparing it to the e-mail addresses in the database.
If the e-mail address is already chosen the user is asked
to choose another email address. The following steps
of the registration phase are handled automatically by
the add-in installed on each entity and initiated by the
user side.

3. Encryption Phase: When a user clicks on the send
button; the encryption process in the add-in is called,
the mail body is automatically encrypted and sent to
the recipient. The encryption is performed using en-
veloping method whereby a symmetric secret key is
encrypted by the public key of the recipient which is
equal to its e-mail address concatenated with the date
information. The body of the message is encrypted by
the symmetric key using AES.

4. Decryption Phase: Users can decrypt their mes-
sages by clicking on the decrypt menu item.

Since we do not employ a secure crypto module to guaran-
tee a secure execution of cryptographic primitives, we hard-
coded the public key of the RA in the user add-in program
and do not allow users to change it. Similarly, the secret
share of the user sA is not kept in a place where the user
cannot easily access. We did not implement the user iden-
tification and pseudonym generation protocols. The private
key extraction protocol is implemented in a different man-
ner from Figure 3. The PKG periodically e-mails its share
of user private key to each user, from which the user add-
in computes the private key of the user. Except for the
HTTP connection to the RA in the registration phase to
check the uniqueness of the address, the messages in all the
implemented protocols are sent as e-mails with an unique
identifying description in the subject field. The correspond-
ing add-in programs constantly check for the subject fields
of every e-mail messages to take an appropriate action.

7. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a new IBE infrastructure that

is intended for utilization in messaging applications. The
proposed infrastructure aims to solve some inherent draw-
backs of the IBE systems while retaining their advantage.
Key escrowing problem is solved by a method where users
and the private key generator secret shares the master se-
cret key. The omniscient private key generator in classical
IBE systems which knows all private keys is replaced by
a semi-honest third party that does not have information
about these private keys. In the presence of the semi-honest
private key generator, it is possible to have anonymous and
secure communication under the non-collusion assumption.
We also made investigations as to how the non-repudiation
property can be provided in our infrastructure. We imple-
mented the cryptographic protocols used in the proposed in-
frastructure and demonstrated that computational require-
ments for the parties are acceptable. We also integrated an



e-mail system with the proposed infrastructure and are cur-
rently experimenting with the implementation to evaluate
its convenience to the users.

As previously mentioned, there are other similar works
[16], [1], [3], independently proposed to solve key escrowing
problem in IBE applications. We leave the comparison of
other works to our proposed infrastructure in terms of per-
formance, security and privacy as a future work. In addition,
we aim to explore the hierarchical pseudonym management
protocol within the proposed infrastructure.
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