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Abstract. In the literature about algebraic geometry codes one finds a lot of results improving

Goppa’s minimum distance bound. These improvements often use the idea of “shrinking” or

“growing” the defining divisors of the codes under certain technical conditions. The main

contribution of this article is to show that most of these improvements can be obtained in a

unified way from one (rather simple) theorem. Our result does not only simplify previous results

but it also improves them further.

1. Introduction

Let F be an algebraic function field of genus g with full constant field Fq, where q is a prime
power. Let G and D be two divisors of F such that D = P1 + · · ·Pn is the sum of n distinct
rational places of F and Pi /∈ supp(G) for any i. With these data, Goppa constructed two types
of linear codes (see [7]), which are now called Algebraic Geometry (AG) codes. These are:

CL = CL(D,G) = {(f(P1), . . . , f(Pn)) : f ∈ L(G)}

CΩ = CΩ(D,G) = {(resP1(ω), . . . , resPn(ω)) : ω ∈ Ω(G−D)}

The codes CL and CΩ are also called the functional and the residue codes, respectively.
The theory of function fields gives us tools to estimate the parameters of AG codes. It is clear

that the length of both codes is n. For the dimension and the minimum distance, we have

k(CL) = `(G)− `(G−D), d(CL) ≥ n− degG,

(1.1)

k(CΩ) = i(G−D)− i(G), d(CΩ) ≥ degG− (2g − 2).

Here, as usual, `(G) stands for the dimension of the space L(G) and i(G) is the index of speciality
of G, which is also equal to `(W −G) for a canonical divisor W of F .

The lower bounds of Goppa on the minimum distances of AG codes in (1.1) are called the
designed minimum distances of CL and CΩ. Several authors have attempted to sharpen Goppa’s
general estimate on d(CΩ) by making assumptions on the divisor G. In [4, 5, 6, 8, 9], the main
idea is to choose a divisor G with certain assumptions on the Weierstrass gap set of the points
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2 IMPROVEMENTS ON AG CODES

in supp(G) and then use this to obtain better estimates than the designed distance of CΩ. More
recently, Maharaj et al. [11] introduced the notion of the floor of a divisor, which yielded further
improvements and extended some of the earlier works. Finally in [10], Lundell and McCullough
obtained a result that generalizes the results of Maharaj et al. Except for [6, Theorem 4], all of
the results on d(CΩ) in the articles mentioned so far can be recovered from [10, Theorem 3].

In this article we obtain two new results that improve the designed distances of residue codes
further. One of these (Theorem 2.4) extends and improves the bound of Lundell-McCullough.
The diagram below indicates the implications between various results on the subject.

Theorem 2.4 in this article

[10, Theorem 3]

[9, Proposition 3.10]

[5, Theorem 2.1]

[4, Theorem 3.3]

[8, Theorem 3.4]

[11, Theorem 2.10]

[12, Corollaries 18,19] [4, Theorem 3.4]

[8, Theorem 3.3]

Our second result (Theorem 2.12) generalizes the bound of Garcia-Kim-Lax ([6, Theorem
4]), which is not implied by any other result mentioned above, hence missing in the diagram.
These theorems, together with related examples, are provided in Section 2. Our examples are
generated on the Suzuki function field over the finite field F8. We present examples of codes for
which [10, Theorem 3] or [6, Theorem 4] are not applicable or they yield weaker improvements.
We also compare our bounds’ performance against the recent generalized order bound of Beelen
([2]).

In all of the works mentioned above, and also in Section 2, a major role is played by divisors
whose Riemann-Roch spaces are invariant under “growing” or “shrinking” by certain effective
divisors. This leads us to define and study a new equivalence relation on the group Div(F ) of
divisors of F in Section 3.

In the final section, we address two issues. The first is the improvements on the Goppa bound
for functional codes in the literature. Such results are scarce and they follow rather easily.
Secondly, we prove that the notion of the ceiling of a divisor introduced in [12] is not needed
for the purpose of obtaining improved minimum distance estimates on AG codes, since related
results in [12] can be obtained from the floor notion if Serre’s duality is used.

Notation used througout will be rather standard and is the same as that used in [13]. Unless
otherwise stated, we assume that the divisor D is

(1.2) D = P1 + P2 · · ·+ Pn,
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where the Pi’s are distinct rational places of the function field F/Fq. In our examples, we used
Magma [3] to compute dimensions of Riemann-Roch spaces.

2. New Lower Bounds for d(CΩ)

Our goal in this section is to obtain two different improvements on the Goppa bound by
extending the results of [6, 10]. We start with a useful observation.

Lemma 2.1. Let A,B,H be divisors with the following properties:

(i) L(A) ⊆ L(B),
(ii) H ≥ 0,

(iii) vP (A) = vP (B) for all P ∈ supp(H).

Then we have L(A−H) ⊆ L(B −H).

Proof. Let f ∈ L(A−H). Then f ∈ L(B) since L(A−H) ⊆ L(A) ⊆ L(B) by (i) and (ii). For
P /∈ supp(H), we have

vP (f) ≥ −vP (B) = −vP (B −H).

For P ∈ supp(H),
vP (f) ≥ −vP (A−H) = −vP (B −H)

by (iii). Hence, f ∈ L(B −H). �

The following is an immediate consequence of Lemma 2.1 and it generalizes [8, Lemma 3.1].

Corollary 2.2. Let A,B be divisors with L(A) = L(B). Let H ≥ 0 be a divisor with vP (A) =
vP (B) for all P ∈ supp(H). Then L(A−H) = L(B −H).

Remark 2.3. Condition (iii) in Lemma 2.1 is essential. To see this, let A = P be a place with
`(A) = 1. Let B = 0 and H = P . Then, L(A) = L(B) = Fq. However, L(A − H) = Fq and
L(B −H) = L(−P ) = {0}. So, L(A) ⊆ L(B) but L(A−H) 6⊆ L(B −H).

We are ready to state our first improvement on Goppa’s bound for residue codes.

Theorem 2.4. Let D be as in (1.2) and suppose that A,B,C,Z ∈ Div(F ) satisfy the following
conditions:

(i)
(

supp(A) ∪ supp(B) ∪ supp(C) ∪ supp(Z)
)⋂

supp(D) = ∅,
(ii) L(A) = L(A− Z) and L(B) = L(B + Z),

(iii) L(C) = L(B).

If G = A+B, then the minimum distance d of the code CΩ(D,G) satisfies

(2.1) d ≥ degG− (2g − 2) + degZ + (i(A)− i(G− C)).

Proof. Let ω ∈ Ω(G −D) be a differential such that the codeword c = (resP1(ω), . . . , resPn(ω))
of CΩ(D,G) has the minimal weight d. Assume without loss of generality that resPi(ω) 6= 0 for
1 ≤ i ≤ d. If we set

D′ = P1 + · · ·+ Pd,
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then (ω) ≥ G−D′. The canonical divisor W = (ω) can be written as

(2.2) W = G−D′ + E,

with E ≥ 0 and supp(E) ∩ supp(D′) = ∅. Since degW = 2g − 2, it follows from (2.2) that

(2.3) d = degD′ = degG− (2g − 2) + degE.

We want to give a lower bound on degE. By the Riemann-Roch theorem we have

`(A+ E) = deg(A+ E) + 1− g + i(A+ E)

`(A) = degA+ 1− g + i(A),

and hence

(2.4) degE = (`(A+ E)− `(A)) + (i(A)− i(A+ E)) .

Terms on the right-hand side of (2.4) can be rewritten as follows:

`(A+ E)− `(A) = `(A+ E)− `(A− Z) (by (ii))
≥ `(A+ E)− `((A− Z) + E) (since E ≥ 0)
= degZ + `(W −A− E)− `(W − (A− Z)− E) (by Riemann-Roch)
= degZ + `(B −D′)− `((B + Z)−D′) (by (2.2) and defn. of G)
= degZ (by (i,ii) and Cor. 2.2)

On the other hand,

i(A+ E) = `(W −A− E)
= `(B −D′) (by (2.2) and defn. of G)
= `(C −D′) (by (i,iii) and Cor. 2.2)
≤ `(C −D′ + E) (since E ≥ 0)
= i(G− C) (by (2.2))

Combining these two inequalities with Equation 2.4, we get

degE ≥ degZ + (i(A)− i(G− C)) .

Putting this in (2.3), we finish the proof of Theorem 2.4. �

Remark 2.5. Note that we can assume that i(A) − i(G − C) ≥ 0 since by letting C = B, we
have G− C = G−B = A.

The bound of Lundell-McCullough, and hence all of the other results that it implies (cf. the
diagram in Section 1), is a straightforward consequence of Theorem 2.4.

Corollary 2.6. ([10, Theorem 3]) Let D be as in (1.2) and suppose that A,B,Z ∈ Div(F )
satisfy the following conditions:

(i)
(
supp(A) ∪ supp(B) ∪ supp(Z)

)⋂
supp(D) = ∅,

(ii) Z ≥ 0, L(A) = L(A− Z) and L(B) = L(B + Z).
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If G = A+B, then the minimum distance d of the code CΩ(D,G) satisfies

d ≥ degG− (2g − 2) + degZ.

Example 2.7. Consider the Suzuki function field F = F8(x, y)/F8 defined by the equation
y8 − y = x10 − x3. This function field has 65 rational places and its genus is 14. Let P∞ denote
the unique (rational) place at infinity and P0,0 be the rational place corresponding to x = y = 0.
Let D be the sum of the remaining rational places. We consider the two-point AG code CΩ(D,G)
with G = 17P∞ + 11P0,0. Let

A = 15P∞ + 3P0,0, B = 2P∞ + 8P0,0, C = 8P0,0, and Z = 2P∞.

Since

L(13P∞ + 3P0,0) = L(15P∞ + 3P0,0) and L(8P0,0) = L(2P∞ + 8P0,0) = L(4P∞ + 8P0,0),

the hypotheses of Theorem 2.4 are satisfied. We have i(A) − i(G − C) = 1. Hence, the Goppa
bound on the minimum distance is improved by 3 to obtain

dCΩ(D,G) ≥ 28− 26 + 2 + 1 = 5.

We note that the improvement on this code obtained by Lundell-McCullough only comes from
degZ and it is equal to 2 (cf. [10, Table 2]).

Similary, we improve the Lundell-McCullough bound by 1 for the codes in Table 1, i.e. one
more improvement over degZ. For simplicity, we write aP∞ + bP0,0 as (a, b) in the table.
Note that dG, dLM , dGST represent the bounds of Goppa, Lundell-McCullough and Theorem
2.4, respectively.

G A B C Z dG dLM dGST

(17, 9) (15, 1) (2, 8) (0, 8) (2, 1) 0 3 4
(17, 11) (15, 3) (2, 8) (0, 8) (2, 0) 2 4 5
(18, 8) (15, 2) (3, 6) (0, 0) (2, 1) 0 3 4
(21, 5) (15, 2) (6, 3) (0, 0) (1, 2) 0 3 4
(24, 6) (16, 2) (8, 4) (0, 8) (0, 2) 4 6 7

Table 1. Improvements on the Suzuki function field over F8 via Theorem 2.4

Remark 2.8. Aside from the removal of positivity condition on divisor Z, the main contribution
of Theorem 2.4 over Corollary 2.6 is the difference of indices of speciality (cf. Inequality 2.1 and
Example 2.7).

Remark 2.9. Since L(A) = L(A − Z), we have degZ = i(A − Z) − i(A) by Riemann-Roch
theorem. Hence, maximum possible contribution by (2.1) over the Goppa bound is

degZ + i(A)− i(G− C) = i(A− Z)− i(G− C) ≤ i(A− Z).
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Our next goal is to obtain a second improvement on the Goppa bound by generalizing the
result of Garcia-Kim-Lax in [6]. For this purpose we define a useful function. If E ≥ 0 is an
effective divisor, define

hE(A) := `(A+ E)− `(A) ≥ 0, for any A ∈ Div(F ).

We need some lemmas related to the function hE . Note that these lemmas are generalizations
of the Lemma on page 203 of [6].

Lemma 2.10. If Z ≥ 0 is a divisor with supp(Z)∩ supp(E) = ∅, then hE(B) ≤ hE(B +Z) for
any divisor B ∈ Div(F ).

Proof. Define the linear map

ϕ : L(B + Z) −→ L(B + Z + E)/L(B + E)
z 7→ z mod L(B + E).

Note that the kernel of ϕ is

ker(ϕ) = L(B + Z) ∩ L(B + E) = L(B)

by Lemma 3.1(i) and the assumption that supp(Z) ∩ supp(E) = ∅. Therefore ϕ induces an
embedding, which implies that the difference

hE(B + Z)− hE(B) =
(
`(B + Z + E)− `(B + E)

)
−
(
`(B + Z)− `(B)

)
is nonnegative. Hence, hE(B) ≤ hE(B + Z). �

Lemma 2.11. Let A,B,D′, E, Z be divisors with the following properties:

(i) Z ≥ 0, L(A) = L(A− Z) and L(B) = L(B + Z),
(ii) D′ ≥ 0 and supp(Z) ∩ supp(D′) = ∅,

(iii) E = W −A−B +D′ ≥ 0 for a canonical divisor W .

Then, hE(A) = hE(A− Z) + degZ and hE(B + Z) = hE(B) + degZ.

Proof. The first equality follows from the following:

hE(A)− hE(A− Z) = `(A+ E)− `(A− Z + E) (by (i))
= degZ + `(W −A− E)− `(W −A+ Z − E) (by Riemann-Roch)
= degZ + `(B −D′)− `(B + Z −D′) (by (iii))
= degZ (by (i,ii) & Cor. 2.2)

The other equality is proved similarly. �

The following is our second improvement over Goppa’s bound.

Theorem 2.12. Let D be as in (1.2) and suppose that A,B,Z ∈ Div(F ) satisfy the following
properties:

(i)
(

supp(A) ∪ supp(B) ∪ supp(Z)
)⋂

supp(D) = ∅,
(ii) supp(A−B) ⊆ supp(Z),
(iii) Z ≥ 0, L(A) = L(A− Z) and L(B) = L(B + Z +Q) for all Q ∈ supp(Z),
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(iv) B + Z + P ≤ A for some P ∈ supp(Z).

If G = A+B, then the minimum distance d of the code CΩ(D,G) satisfies

(2.5) d ≥ degG− (2g − 2) + degZ + 1.

Proof. By Theorem 2.4, we know that d ≥ degG− (2g − 2) + degZ. Suppose that the equality
holds and let ω ∈ Ω(G−D) be a differential yielding a codeword of weight degG−(2g−2)+degZ.
Proceeding as in the proof of Theorem 2.4, we can assume that ω ∈ Ω(G − D′) for D′ =
P1 + · · ·+ Pd. Then, there exists a positive divisor E with degE = degZ such that

(ω) = G−D′ + E.

We claim that supp(E) ∩ supp(Z) = ∅. Suppose not and let Q be a place in the supports of
both divisors. Then we can write

(ω) = G+Q−D′ + E′

with E′ ≥ 0. Hence ω ∈ Ω(G + Q − D). Note that if we view G + Q = A + (B + Q), then
Theorem 2.4 applies to the code CΩ(D,G+Q) to yield

d(CΩ(D,G+Q)) ≥ deg(G+Q)− (2g − 2) + degZ.

This means that ω cannot yield a vector of weight degG− (2g − 2) + degZ, which is a contra-
diction. Hence,

(2.6) supp(E) ∩ supp(Z) = ∅.

We clearly have

(2.7) hE(A) = `(A+ E)− `(A) ≤ degE = degZ.

If P is the place in (iv), then

hE(A) = hE(A− P ) + degP (by Lemma 2.11)

≥ hE(B + Z) + degP (by (ii), (iv), (2.6) & Lemma 2.10)(2.8)

≥ hE(B) + degZ + degP (by Lemma 2.11)

However, (2.7) and (2.8) contradict each other. Therefore, our initial assumption is wrong, i.e.
d ≥ degG− (2g − 2) + degZ + 1. �

The following is the main result of Garcia-Kim-Lax in [6] which gives an improvement over
the Goppa bound for certain residue codes. Theorem 2.12 generalizes this result.

Corollary 2.13. ([6, Theorem 4]) Let D be as in (1.2), H be a divisor and P be a rational
place that satisfy the following conditions:

(i)
(

supp(H) ∪ {P}
)⋂

supp(D) = ∅,
(ii) the integers α, α+ 1, . . . , α+ t and β − (t− 1), . . . , β − 1, β are H-gaps at P ,

(iii) α+ t ≤ β and t ≥ 1.
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If G = (α+ β − 1)P + 2H, then the minimum distance d of the code CΩ(D,G) satisfies

d ≥ degG− (2g − 2) + (t+ 1).

Proof. By definition of H-gaps ([9, Remark 3.2]), (ii) is equivalent to the following equalities of
Riemann-Roch spaces:

L((β − t)P +H) = · · · = L((β − 1)P +H) = L(βP +H),

L((α− 1)P +H) = L(αP +H) = · · · = L((α+ t)P +H).

Letting A = βP + H, B = (α − 1)P + H and Z = tP , the hypotheses of Theorem 2.12 are
satisfied and the result follows. �

Remark 2.14. Assume that a hypothesis stronger than (iv) in Theorem 2.12 holds:

“There exists P ∈ supp(Z) with A− Z ≤ B + Z + P ≤ A”

Note that this amounts to changing (iii) in Corollary 2.13 to β − t ≤ α+ t ≤ β. In this case, we
have L(B) = L(A−Z) = L(B+Z +P ) = L(A) and Theorem 2.12 is a special case of Theorem
2.4. In fact, Theorem 2.4 yields a better improvement for the same code CΩ(D,A+B):

degA− degB = degZ + deg(A− Z −B) ≥ degZ + 1.

Example 2.15. Consider the Suzuki function field F over F8 as in Example 2.7. Let G =
27P∞+6P0,0 and D be the sum of the remaining rational places. Let us decompose G as A+B,
where A = 14P∞ + 6P0,0, B = 13P∞, and let Z = P∞ + P0,0. Then, assumptions (i,ii) in
Theorem 2.12 are satisfied. Moreover, we have

L(13P∞ + 5P0,0) = L(14P∞ + 6P0,0),

L(13P∞) = L(14P∞ + P0,0) = L(15P∞ + P0,0) = L(14P∞ + 2P0,0).

Hence, assumptions (iii,iv) of Theorem 2.12 are also satisfied. Therefore, the improvement over
the Goppa bound via Theorem 2.12 is degZ + 1 = 3. In [10], the improvement for the same
code is 2 (see [10, Table 2]).

Similarly, we increase the Lundell-McCullough improvement over Goppa bound from 2 to 3
for the codes in Table 2 over the Suzuki function field. We use the same notation as in Table 1.
We denote the bound obtained from Theorem 2.12 by dGST2. Also, (a, b) = (c, d) means that
the Riemann-Roch spaces of the associated divisors are the same. Note that among the codes
in Tables 1 and 2, only CΩ(D, 17P∞ + 11P0,0) is common, i.e. both Theorem 2.4 and Theorem
2.12 apply and yield the same improvement on this code.

In the remaining examples, our goal will be to obtain further improvements over Theorems
2.4 and 2.12. This is possible if the Riemann-Roch spaces involved satisfy extra conditions,
which are listed in the following Lemma.

Lemma 2.16. Let A,B,D′, E, Z be divisors which satisfy

(iv) supp(A− Z −B) ∩ supp(E) = ∅,
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G A B Z L space equalities dG dLM dGST2

(16, 11) (14, 6) (2, 5) (1, 1)
(13, 5) = (14, 6)

(2, 5) = (3, 6) = (3, 7) = (4, 6)
1 3 4

(17, 11) (14, 6) (3, 5) (1, 1)
(13, 5) = (14, 6)

(3, 5) = (4, 6) = (4, 7) = (5, 6)
2 4 5

(18, 11) (14, 6) (4, 5) (1, 1)
(13, 5) = (14, 6)

(4, 5) = (5, 6) = (5, 7) = (6, 6)
3 5 6

(19, 11) (14, 6) (5, 5) (1, 1)
(13, 5) = (14, 6)

(5, 5) = (6, 6) = (6, 7) = (7, 6)
4 6 7

(27, 4) (14, 4) (13, 0) (1, 1)
(13, 3) = (14, 4)

(13, 0) = (14, 1) = (14, 2) = (15, 1)
5 7 8

(27, 6) (14, 6) (13, 0) (1, 1)
(13, 5) = (14, 6)

(13, 0) = (14, 1) = (14, 2) = (15, 1)
7 9 10

(30, 1) (17, 1) (13, 0) (1, 1)
(16, 0) = (17, 1)

(13, 0) = (14, 1) = (14, 2) = (15, 1)
5 7 8

(32, 1) (19, 1) (13, 0) (1, 1)
(18, 0) = (19, 1)

(13, 0) = (14, 1) = (14, 2) = (15, 1)
7 9 10

Table 2. Improvements on the Suzuki function field over F8 via Theorem 2.12

in addition to the hypothesis (i,ii,iii) in Lemma 2.11. Let G = A + B, P ∈ supp(Z)\supp(E)
and

A0 := B, A1, . . . , An−2, An−1 := A− Z, An := A

be a sequence of divisors satisfying

(v) L(Ai) = L(Ai + P ), for all i = 0, 1, . . . , n− 1,
(vi) L(G−Ai) = L(G−Ai − P ), for all i = 0, 1, . . . , n− 1,

(vii) Ai + P ≤ Ai+1, for all i = 0, 1, . . . , n− 1.

Then, hE(A) ≥ (n− 1) degP + degZ.

Proof. We give a sketch since analogous arguments have already been used in the proofs of
earlier results of the article. First, we prove that

(2.9) hE(Ai + P )− hE(Ai) = degP, for all i = 0, 1, . . . , n− 1.

The proof is very similar to the proof of Lemma 2.11. We use (v), Riemann-Roch Theorem,
(iii), (vi) and Corollary 2.2. Then, we see that

(2.10) hE(Ai+1) ≥ hE(Ai + P ), for all i = 0, 1, . . . , n− 1.
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We use the assumptions (iv) and (vii) in order to employ Lemma 2.10 here. Using Equations
2.9 and 2.10, we conclude that

hE(A− Z) = hE(An−1) ≥ hE(An−2 + P )

= hE(An−2) + degP
...

...

≥ hE(A0) + (n− 1) degP ≥ (n− 1) degP.

By Lemma 2.11 we have hE(A) = hE(A− Z) + degZ. Hence, the proof is finished. �

Example 2.17. Let F be the Suzuki function field over F8 as in the previous examples. Let
G = 27P∞ and D be the sum of the remaining 64 F8-rational places. The gap sequence at P∞
is

(2.11) 1, 2, . . . , 7, 9, 11, 14, 15, 17, 19, 27.

Hence, by choosing A = 27P∞, B = 0 and Z = P∞ in Theorem 2.12, we improve the Goppa
bound by 2 and obtain

d ≥ 27− 26 + 2 = 3.

Note that the result of Garcia-Kim-Lax is also applicable here since the code is a one-point code
(let H = 0 in Corollary 2.13). The improvement for the same code CΩ(D,G) is 1 in [10, Table
2].

Now, we would like to improve the lower bound further by using Lemma 2.16. Assume that
d = 3. Let (ω) = W = G−D′ +E be a canonical divisor, where ω ∈ Ω(G−D) is a differential
yielding a weight 3 codeword, D′ ≤ D is of degree 3 and E ≥ 0 with degE = 2. We proceed as
in the proof of Theorem 2.12 to conclude that P∞ /∈ supp(E). Namely, assuming the opposite
we can construct the code CΩ(D, 28P∞) which contains the codeword produced by ω and whose
minimum distance is at least 28− 26 + 2 = 4, by Theorem 2.4 via tha gap sequence (2.11). This
is a contradiction.

Consider the sequence of divisors:

A0 = 0, A1 = 8P∞, A2 = 10P∞, A3 = 13P∞, A4 = 16P∞, A5 = 18P∞, A6 = 26P∞, A7 = 27P∞.

By the gap sequence (2.11) and the fact that P∞ /∈ supp(E), this sequence satisfies the hypothe-
ses of Lemma 2.16. Hence, hE(27P∞) ≥ 6 + 1 = 7. However, we also have hE(27P∞) ≤ degE =
2, by definition of hE . This contradiction implies that d(CΩ(D, 27P∞) ≥ 4 and we improve the
Goppa bound by 3.

Example 2.18. We continue working with the Suzuki function field F/F8. LetG = 27P∞+2P0,0

and D be the sum of the remaining rational places. Let A = 17P∞ + 2P0,0, B = 10P∞ and
Z = P∞ + 2P0,0. Using the equalities

L(17P∞ + 2P0,0) = L(16P∞) and L(10P∞) = L(11P∞ + 2P0,0),
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we improve the Goppa bound by degZ = 3 to conclude that d(CΩ(D,G)) ≥ 6 (cf. Theorem
2.4). This is the same as the improvement of Lundell-McCullough ([10, Table 2]).

Assume that d = 6 and proceed as in Example 2.17. Let (ω) = W = G−D′+E be a canonical
divisor, where ω ∈ Ω(G−D) is a differential yielding a weight 6 codeword, D′ ≤ D is of degree
6 and E ≥ 0 with degE = 3. If we assume that P∞ ∈ supp(E), then we can construct the code
CΩ(D,G+ P∞) = CΩ(D, 28P∞ + 2P0,0) which contains the weight 6 codeword produced by ω.
However, the minimum distance of CΩ(D, 28P∞ + 2P0,0) is at least 30 − 26 + (17 − 13) = 8,
since 28P∞ + 2P0,0 = (15P∞ + 2P0,0) + (13P∞) and we have L(15P∞ + 2P0,0) = L(13P∞) (cf.
Theorem 2.4). This is a contradiction and hence, P∞ /∈ supp(E).

Due to the fact that P∞ /∈ supp(E) and the properties of the relevant Riemann-Roch spaces,
the following sequence satisfies the hypotheses of Lemma 2.16:

A0 = 10P∞, A1 = 13P∞, A2 = 16P∞, A3 = 17P∞ + 2P0,0.

Hence, hE(17P∞+2P0,0) ≥ 2+3 = 5. However, we also have hE(17P∞+2P0,0) ≤ degE = 3, by
definition of hE . This contradiction implies that d(CΩ(D, 27P∞ + 2P0,0)) ≥ 7 and we improve
the Goppa bound by 4. In fact, a similar argument can be carried out one more time to further
improve the estimate to d(CΩ(D, 27P∞ + 2P0,0)) ≥ 8.

In [2], Beelen introduced the generalized order bound and obtained improved minimum dis-
tance estimates for codes of the form Ci,j = CΩ(D, iP∞ + jP0,0) (j = 1, 2, i + j ≥ 26) on the
Suzuki function field over F8. Here, D is the sum of the remaining 63 rational places of the
function field, as in Example 2.18. For many Ci,j ’s his bound coincides with that of Lundell-
McCullough (cf. [2, page 674]). Therefore, our bounds in Theorems 2.4 and 2.12 perform at
least as good as the estimate of Beelen in those cases. In Table 3, we list some examples where
our results yield a better estimate than one of the two bounds mentioned above. Except for one
case ((i, j) = (30, 1), cf. Table 2), we use arguments as in Examples 2.17 and 2.18 to obtain
these improvements. We denote Lundell-McCullough, Beelen and our bounds by dLM , dB, d̃

respectively.

(i, j) (27, 1) (29, 1) (30, 1) (31, 1) (32, 1) (33, 1) (24, 2) (27, 2) (28, 2) (30, 2)
dLM 4 6 7 8 9 10 3 6 8 9
dB 7 8 8 9 10 11 4 7 7 9
d̃ 6 8 8 9 10 11 4 8 8 10

Table 3. Comparison of the bounds for Ci,j = CΩ(D, iP∞ + jP0,0)

3. A New Equivalence Relation on Div(F )

Results of Section 2 motivates the study of the following relation on Div(F ):

(3.1) M ≈ N ⇐⇒ L(M) = L(N)
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In this case we call the divisors M and N equivalent. Clearly, this is an equivalence relation on
Div(F ) and we denote the class of a divisor M by c(M). Note that this relation is different
from the usual notion of linear equivalence of divisors (cf. [13, page 16]).

Let us recall the definition of a closely related concept: floor of a divisor. For a divisor M
with `(M) > 0, the floor of M is defined to be the unique divisor bMc of the least degree
such that L(M) = L(bMc) (see [11]). In particular, bMc ∈ c(M). Note that Theorems 2.4
and 2.12 demand divisors M whose class with respect to the new equivalence is nontrivial, i.e.
c(M) ) {M}. Clearly, if c(M) = {M} then M = bMc. The converse of this is not true in
general.

We start with a lemma that contains some observations to be used in this section. For two
divisors M and N , set

gcd(M,N) :=
∑
P

min{vP (M), vP (N)}P.

Lemma 3.1. (i) L(gcd(M,N)) = L(M) ∩ L(N). Hence, if M ≈ N , then gcd(M,N) ∈ c(M).
(ii) If M = bMc, then N ≥M for any N ∈ c(M).
(iii) If M is nonspecial (i.e. `(M) = degM + 1− g), then there exists no N > M such that

L(N) = L(M).

Proof. (i) Since gcd(M,N) is less than or equal to both M and N , the inclusion from left to
right is clear. Let z ∈ F be the element of the intersection. Then we have

vP (z) ≥ max{−vP (M),−vP (N)} = −min{vP (M), vP (N)} = −vP (gcd(M,N))

for any place P . Hence, z ∈ L(gcd(M,N)).
(ii) Since M = bMc is the unique divisor of the least degree in c(M), for any N ∈ c(M) we

have gcd(M,N) = M by (i). This implies M ≤ N .
(iii) Since M is nonspecial, any divisor N ≥M is also nonspecial. If N 6= M , then

`(N) = degN + 1− g > degM + 1− g = `(M).

Hence, L(N) ) L(M). �

Proposition 3.2. If degM ≥ 2g, then c(M) = {M}.

Proof. Since M is nonspecial, there exists no divisor N > M in c(M) by Lemma 3.1(iii). Hence,
if we can show that bMc = M the proof will be finished.

Suppose bMc < M . If degbMc > 2g − 2, then

`(bMc) = degbMc+ 1− g < degM + 1− g = `(M).

Since bMc ∈ c(M), this is a contradiction. Therefore, we have degbMc ≤ 2g − 2. Then by
Clifford’s Theorem ([13, Theorem 1.6.11]), we have

`(bMc) ≤ 1 +
degbMc

2
≤ g.

However, `(M) = degM + 1 − g ≥ g + 1 by hypothesis. This is a contradiction and hence,
bMc = M . �
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Proposition 3.2 shows that the divisor G = A + B in Theorems 2.4 and 2.12 must satisfy
degG < 4g, since we would like both of the divisors A and B to have nontrivial classes c(A)
and c(B).

The following observation shows that the lower bound on degM in Proposition 3.2 is sharp.

Proposition 3.3. Let M be a divisor of degree degM = 2g − 1. Then, either c(M) = {M}
or M = W + P for a canonical divisor W and a rational place P . In the latter case, we have
bMc = W and

c(M) = {W} ∪ {W +Q : Q is a rational place}.

Proof. Assume that c(M) 6= {M}. By Riemann-Roch theorem, we have `(M) = g. Note that
a divisor N > M cannot be in c(M), since `(N) > g for such N . Assume that N ∈ c(M) and
N < M . If degN < 2g − 2, then `(N) < g by Clifford’s bound. So, degN = 2g − 2. Moreover,
`(N) = `(M) = g and hence, N = W is a canonical divisor. Since W < M , we must have
M = W + P for a rational place P . Note that there is no divisor smaller than W in c(M) and
for any rational place Q, `(W +Q) = g. Hence, bMc = W and W +Q ∈ c(M) for any rational
place Q. �

The next result shows that among the divisors of interest with respect to Proposition 3.2,
those meeting the Clifford bound are equal to their floor.

Proposition 3.4. If 0 ≤ degM ≤ 2g − 2 and `(M) = 1 + (degM)/2, then M = bMc.

Proof. If degM = 0, then `(M) = 1. Note that `(M−P ) = 0 for any place P since deg(M−P ) <
0. Therefore, M = bMc in this case.

For a divisorM with 0 < degM ≤ 2g−2 that meet the Clifford bound, assume that bMc 6= M .
Then, L(M) = L(M − P ) for some place P . On one hand

`(M − P ) = `(M) = 1 +
degM

2
,

and on the other hand

`(M − P ) ≤ 1 +
deg(M − P )

2
( by Clifford’s Theorem).

This yields a contradiction, hence bMc = M . �

Remark 3.5. By Proposition 3.4 we have W = bW c for any canonical divisor.

Our discussion on the triviality of the class of a divisor will end with a result that relates this
to the index of speciality of its floor (cf. Corollary 3.7). For this purpose we need the following
lemma which is a slight generalization of [13, Proposition 1.6.10]. We will denote the set of
rational places of the function field F by P(1)

F .

Lemma 3.6. Let M be a special divisor of F and assume that F has at least 2g − 1 − degM
rational places. Then, there exists a rational place P ∈ P(1)

F such that L(M) = L(M + P ).
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Proof. Suppose that L(M + P ) 6= L(M) for any rational place P . This implies that

`(M + P ) = `(M) + 1 and i(M + P ) = i(M),

for any P ∈ P(1)
F . Hence, L(W −M − P ) = L(W −M) for a canonical divisor W of F and for

any P ∈ P(1)
F . Then we have

L(W −M) =
⋂

P∈P(1)
F

L(W −M − P )

= L
(

gcd
({
W −M − P : P ∈ P(1)

F

}))
(by Lemma 3.1 )

= L

W −M − ∑
P∈P(1)

F

P

 .

By assumption `(W −M) = i(M) > 0 whereas the dimension of the last divisor is 0, since its
degree is negative. So, there must exist a rational place P with L(M) = L(M + P ). �

Corollary 3.7. Let M be a divisor of F with `(M) ≥ 1.
(i) If bMc is nonspecial, then bMc = M and c(M) = {M}.
(ii) Assume that F has at least 2g − 1 − degM many rational places. Then the converse of

part (i) is true, i.e. if c(M) = {M}, then bMc is nonspecial.

Proof. (i) By Lemma 3.1(iii), there exists no divisor in c(M) that is greater than bMc. From
the minimality of the floor, we reach the conclusion.

(ii) Assume that bMc is special. Then, Lemma 3.6 implies that L(bMc + P ) = L(bMc) for
some rational place P . Hence bMc+P ∈ c(M), which is a contradiction to triviality of the class
of M . �

For a divisor M with `(M) ≥ 1, define the height of its class c(M) as

ht(c(M)) := max{degN − degL : N,L ∈ c(M)}.

Since the floor of divisors in the same class are the same, the height of any two such divisors are
also the same. In the rest of this section, we are interested in the maximum possible height for
a given class.

Proposition 3.8. Let M be such that `(M) ≥ 1. Then,

ht(c(M)) ≤ i(bMc)(3.2)

≤ g + 1− `(M)(3.3)

≤ g(3.4)

Proof. If degM ≥ 2g or i(bMc) = 0, we know by Proposition 3.2 and Corollary 3.7 that c(M) =
{M}, which is not interesting. Therefore we assume that degM ≤ 2g − 1 and i(bMc) > 0. Let
N be a divisor in c(M). Since `(N) = `(bMc), from Riemann-Roch theorem we have

degN − degbMc = i(bMc)− i(N) ≤ i(bMc).
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This proves (3.2). Let W be a canonical divisor of the function field. Since we assumed that
i(bMc) = `(W − bMc) > 0 and `(bMc) = `(M) ≥ 1, by [13, Lemma 1.6.12] we have that

`(W − bMc) = `(W − bMc) + `(bMc)− `(bMc) ≤ 1 + `(W )− `(M) = g + 1− `(M).

This proves (3.3). Note that the last inequality is trivial. �

The bound (3.2) on the size of ht(c(M)) is sharp under a mild assumption as the following
theorem shows.

Theorem 3.9. Assume that a function field F has at least 2g − 1 − degbMc rational places,
where M is a divisor with `(M) ≥ 1 and i(bMc) ≥ 1. Then for any 1 ≤ i ≤ i(bMc), there exists
Ni ∈ c(M) such that degNi − degbMc = i. In particular, ht(c(M)) = i(bMc).

Proof. By Lemma 3.6, there exists a divisor N1 ∈ c(bMc) = c(M) with degN1 − degbMc = 1.
If N1 is nonspecial, then

`(bMc) = `(N1) = degN1 + 1− g = degbMc+ 1− g + 1.

Hence, i(bMc) = 1 and this shows the sharpness of the bound (3.2). If N1 is special, then apply
Lemma 3.6 to N1 to construct N2 ∈ c(N1) = c(bMc) with degN2 = degN1 + 1. Continuing this
way, we can construct divisors N1, . . . , Ni(bMc) ∈ c(bMc) such that

degNi − degbMc = i, for each 1 ≤ i ≤ i(bMc).

�

Remark 3.10. By [1, Proposition 9], most function fields F/Fq of genus g ≥ 2 have an effective
nonspecial divisor of degree g. The dimension of such a divisor M satisfies

`(M) = degM + 1− g = 1.

Hence, L(M) = Fq = L(0). Therefore, the bound 3.4 is reached by some pair of divisors for
many function fields, regardless of the number of rational places.

4. Concluding Remarks

In this section we have two goals. The first is to discuss the improvements on the Goppa
bound for CL codes, and the second is to point out that the notion of ceiling of a divisor is not
needed for the existing improvements on the Goppa bound for CΩ codes.

Results on improving the Goppa bound on the functional AG codes is scarce compared to
residue codes. Among the articles mentioned in Section 1, there are only two results known
to us: [6, Theorem 3] and [11, Theorem 2.9]. However the former is implied by the latter,
hence there is only one improved bound for CL codes. Let D be as in (1.2) and G be such that
Pi /∈ supp(bGc) for 1 ≤ i ≤ n. Then, [11, Theorem 2.9] states that

(4.1) d (CL(D,G)) ≥ n− degbGc.

Note that L(G) = L(bGc) by definition of the floor, hence CL(D,G) = CL(D, bGc). Applying
the Goppa bound (1.1) on the floor divisor, one gets (4.1).
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We finish by commenting on the role of the ceiling of a divisor on the minimum distance
estimates of AG codes. For a divisor M with i(M) > 0, the ceiling is defined to be the unique
divisor dMe of the largest degree such that Ω(M) = Ω(dMe) (see [12]). For a canonical divisor
W , we have

(4.2) W − dMe = bW −Mc and W − bMc = dW −Me (cf. [12, Theorem 11]).

These essentially follow from the isomorphism between Ω(M) and L(W −M) (cf. [13, Theorem
I.5.14]).

Maharaj and Matthews use the ceiling of a divisor to obtain bounds on some residue codes.
Their proofs are based on the idea of the proof of (4.1), i.e. use the Goppa bound on the ceiling
rather than the original divisor. Using the duality between floor and ceiling (cf. (4.2)), we now
show that these results can be proved using the notion of floor.

Proposition 4.1. ([12, Theorem 16, Proposition 20]) Let D be as in (1.2).

(i) If G is such that Pi /∈ supp (dG−De+D) for 1 ≤ i ≤ n, then

d (CΩ(D,G)) ≥ degG− (2g − 2) + deg ((W −G+D)− bW −G+Dc) ,

where W is a canonical divisor.
(ii) If G is such that Pi /∈ supp (dGe) for 1 ≤ i ≤ n, then

d (CΩ(D, dGe)) ≥ degG− (2g − 2) + deg (dGe −G) .

Proof. (i) We know that CΩ(D,G) = CL(D,W − (G − D)) for a canonical divisor W with
vPi(W ) = −1 for each i (cf. [13, Proposition 2.2.10]). By assumption, we also have vPi(dG −
De) = −1 for 1 ≤ i ≤ n. Using (4.2), we have

vPi(bW − (G−D)c) = vPi(W − dG−De) = 0, for 1 ≤ i ≤ n.

Therefore, the code CL(D, bW − (G−D)c) exists. Since CL(D, bW − (G−D)c) = CL(D,W −
(G−D)) = CΩ(D,G) and using (4.1), we have

d (CΩ(D,G)) ≥ n− deg (bW − (G−D)c)

= n− deg(W − (G−D)) + deg ((W −G+D)− bW −G+Dc)

= degG− (2g − 2) + deg ((W −G+D)− bW −G+Dc) .

(ii) We know that CΩ(D, dGe) = CL(D,W − (dGe − D)) for a canonical divisor W . From
Goppa’s bound (1.1), we conclude

d (CΩ(D, dGe)) ≥ n− deg(W − (dGe −D))

= degdGe − (2g − 2)

= degG− (2g − 2) + deg (dGe −G) .

�
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