A New Tower Over Cubic Finite Fields

Alp Bassa∗, Arnaldo Garcia†‡ and Henning Stichtenoth∗

We present a new explicit tower of function fields \((F_n)_{n \geq 0}\) over the finite field with \(\ell = q^3\) elements, where the limit of the ratios (number of rational places of \(F_n\))/(genus of \(F_n\)) is bigger or equal to \(2(q^2 - 1)/(q + 2)\). This tower contains as a subtower the tower which was introduced by Bezerra–Garcia–Stichtenoth (see [3]), and in the particular case \(q = 2\) it coincides with the tower of van der Geer–van der Vlugt (see [12]). Many features of the new tower are very similar to those of the optimal wild tower in [8] over the quadratic field \(\mathbb{F}_{q^2}\) (whose modularity was shown in [6] by Elkies).

1 Introduction

Let \(F/\mathbb{F}_\ell\) be an algebraic function field of one variable whose full constant field is the finite field \(\mathbb{F}_\ell\) of cardinality \(\ell\). We denote by \(g(F)\) the genus and by \(N(F)\) the number of rational places (i.e., places of degree one) of \(F/\mathbb{F}_\ell\). The classical Hasse–Weil Theorem states that \(N(F) \leq \ell + 1 + 2g(F)\sqrt{\ell}\).

Ihara [13] was the first to observe that this inequality can be improved substantially if the genus of \(F\) is large with respect to \(\ell\). He introduced the real number

\[
A(\ell) := \limsup_{g(F) \to \infty} \frac{N(F)}{g(F)},
\]

where \(F\) runs over all function fields over \(\mathbb{F}_\ell\). This number \(A(\ell)\) is of fundamental importance to the theory of function fields over a finite field, since it gives information about how many rational places a function field \(F/\mathbb{F}_\ell\) of large genus can have. While the Hasse–Weil Theorem gives that \(A(\ell) \leq 2\sqrt{\ell}\), Ihara showed that \(A(\ell) \leq \sqrt{2\ell}\) for any \(\ell\) and that \(A(\ell) \geq \sqrt{\ell} - 1\) for \(\ell\) a square. Later Drinfel’d and Vlăduț [4] showed that

\[
A(\ell) \leq \sqrt{\ell} - 1 \quad \text{for any} \quad \ell.
\]

∗Sabancı University, MDBF, Orhanlı, 34956 Tuzla, ˙Istanbul, Turkey
†Instituto Nacional de Matemática Pura e Aplicada, IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, RJ, Brazil
‡A. Garcia was partially supported by PRONEX-FAPERJ and CNPq-Brazil (Proc. 307569/2006-3), and also by Sabancı University, ˙Istanbul
Hence we have the equality $A(\ell) = \sqrt{\ell} - 1$ for ℓ a square (see also [5], [7], [17]).

Much less is known if ℓ is not a square. One knows that for any ℓ (see Serre [15])

$$A(\ell) \geq c \cdot \log \ell,$$

for some constant $c > 0$.

For $\ell = p^3$ (p a prime number), the best known lower bound for $A(\ell)$ is due to Zink [18]:

$$A(p^3) \geq \frac{2(p^2 - 1)}{p + 2}. \quad (2)$$

Zink obtained this result using degenerations of Shimura modular surfaces. Zink’s bound was generalized by Bezerra, Garcia and Stichtenoth [3] who showed that

$$A(q^3) \geq \frac{2(q^2 - 1)}{q + 2} \quad (3)$$

holds for all prime powers q. For more information and references concerning Ihara’s quantity $A(\ell)$ we refer to the recent survey article [11].

In order to obtain lower bounds for $A(\ell)$, it is natural to study towers of function fields; i.e., one considers sequences $G = (G_0, G_1, G_2, \ldots)$ of function fields G_i over \mathbb{F}_ℓ with $G_0 \subseteq G_1 \subseteq G_2 \subseteq \ldots$ such that $g(G_i) \to \infty$. It is easy to see that the limit

$$\lambda(G) := \lim_{i \to \infty} \frac{N(G_i)}{g(G_i)}$$

always exists (see [8]), and it is clear that $0 \leq \lambda(G) \leq A(\ell)$.

A particularly interesting example is the tower $H = (H_0, H_1, H_2, \ldots)$ over the field \mathbb{F}_q with $\ell = q^2$, which is defined recursively as follows (see [8]): $H_0 = \mathbb{F}_q(u_0)$ is the rational function field, and for all $i \geq 0$ one considers the field $H_{i+1} = H_i(u_{i+1})$ with

$$u_{i+1}^q + u_{i+1} = \frac{u_i^q}{u_i^{q-1} + 1}. \quad (4)$$

This tower over \mathbb{F}_q^2 has the limit $\lambda(H) = q - 1 = \sqrt{\ell} - 1$, and therefore it attains the Drinfel’d–Vlăduţ bound (1). Elkies [6] has shown that H is in fact a modular tower.

In [3] the following tower $E = (E_0, E_1, E_2, \ldots)$ over a cubic field \mathbb{F}_ℓ with $\ell = q^3$ is considered: again $E_0 = \mathbb{F}_\ell(u_0)$ is the rational function field, and for $i \geq 0$ one considers the field $E_{i+1} = E_i(v_{i+1})$ with

$$\frac{1 - v_{i+1}}{v_{i+1}^q} = \frac{v_i^q + v_i - 1}{v_i} \quad (5)$$

The limit $\lambda(E)$ satisfies the inequality (thus proving Inequality (3)):

$$\lambda(E) \geq \frac{2(q^2 - 1)}{q + 2}. \quad (6)$$
The tower \mathcal{H} over the quadratic field \mathbb{F}_ℓ with $\ell = q^2$ which is defined by Eqn. (4) has some nice features which allow a rather simple proof of the equality $\lambda(\mathcal{H}) = q - 1$, see [9]. The most important one is that all extensions H_{i+1}/H_i are Galois of degree q, and for all places $Q|P$ with ramification index $e = e(Q|P) > 1$ in H_{i+1}/H_i, the different exponent is $d(Q|P) = 2(e - 1)$.

In contrast, the tower \mathcal{E} over the cubic field \mathbb{F}_ℓ with $\ell = q^3$ which is defined by Eqn. (5) is much more complicated. Here (for $q \neq 2$) the extensions E_{i+1}/E_i are not even Galois, and there occurs tame and also wild ramification in E_{i+1}/E_i. The determination of the genus of E_n in [3] requires long and rather technical calculations. In [1] these calculations were replaced by a structural argument, thus obtaining a simpler proof of Inequality (6) without the explicit determination of $g(E_n)$. In [14], Ihara provides a construction of an infinite Galois extension, which contains the tower \mathcal{E} and exhibits the splitting places of \mathcal{E} in a more natural way. He also introduces a higher order differential which is invariant under the action of the associated infinite Galois group.

In this paper we present a new tower \mathcal{F} over the cubic field \mathbb{F}_ℓ with $\ell = q^3$, whose limit also satisfies the inequality $\lambda(\mathcal{F}) \geq 2(q^2 - 1)/(q + 2)$ and which has nicer properties than the tower given by the recursion in Eqn. (5). This new tower $\mathcal{F} = (F_0, F_1, F_2, \ldots)$ over \mathbb{F}_ℓ is defined as follows: $F_0 = \mathbb{F}_\ell(x_0)$ is the rational function field over \mathbb{F}_ℓ, and for $n \geq 0$ one sets $F_{n+1} = F_n(x_{n+1})$ with

$$
(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}.
$$

We would like to point out that our proof, that the limit of this new tower also satisfies the inequality $\lambda(\mathcal{F}) \geq 2(q^2 - 1)/(q + 2)$, is much easier, shorter and less computational than the proofs in [3] and [1] for the tower \mathcal{E}. Moreover, since we show that \mathcal{E} is a subtower of \mathcal{F} we also get a new and simpler proof of Inequality (6); in fact, it follows from [8] that $\lambda(\mathcal{E}) \geq \lambda(\mathcal{F})$ when \mathcal{E} is a subtower of \mathcal{F}.

Another remark is that while for the two towers over \mathbb{F}_{q^2} presented in [7] and [8] the subtower (i.e., the tower \mathcal{H} in [8]) was easier to handle, for the two towers \mathcal{E} and \mathcal{F} over \mathbb{F}_{q^3} the supertower (i.e., the tower \mathcal{F}) turns out to be much easier to handle.

Finally we note that the tower \mathcal{F} coincides with the van der Geer–van der Vlugt tower in [12] when $q = 2$, and also that the towers \mathcal{F} and \mathcal{H} have surprising similarities (see Section 8).

This paper is organized as follows: In Sec. 2 we introduce the sequence of function fields F_0, F_1, F_2, \ldots over a field $K \supseteq \mathbb{F}_q$ recursively given by Eqn. (7) and we show in Theorem 2.2 that they define a tower \mathcal{F} over K (i.e., $F_0 \subsetneq F_1 \subsetneq F_2 \subsetneq \ldots$, and K is the full constant field of all fields F_n). In Sec. 3 it is shown that for $K = \mathbb{F}_{q^3}$ there exist $q^3 - q$ rational places of F_0 which split completely in all extensions F_n/F_0, thus providing many rational places of the function fields F_n/\mathbb{F}_{q^3}. In Sec. 4 and Sec. 5 we study ramification in the first steps $F_0 \subsetneq F_1 \subsetneq F_2$ of the tower. We note that the methods in Sec. 4 and Sec. 5 involve just simple calculations about ramification in certain Galois extensions $K(x)/K(w)$ of rational function fields. Section 6 is the core of this paper. The results from Sec. 4 and Sec. 5 are used in Sec. 6 to give an upper bound for the genus of the
n-th function field F_n of the tower (see Thm. 6.5). The main tool here is a variant of Abhyankar’s Lemma (see Lemma 6.2) dealing with ramification in composites of certain wildly ramified extensions. Putting together the results from Sec. 3 and Sec. 6 we obtain in Sec. 7 the inequality $\lambda(F) \geq 2(q^2 - 1)/(q + 2)$ for $K = \mathbb{F}_q^2$, which is the main result of the paper. Finally, in Sec. 8 we point out some surprising analogies between the tower \mathcal{F} over \mathbb{F}_{q^2} and the tower \mathcal{H} over \mathbb{F}_{q^2} which is defined by Eqn. (4). We also show that the above-mentioned tower \mathcal{E} is a subtower of \mathcal{F}.

NOTATIONS: We consider function fields F/K where K is the full constant field of F. In most cases K will be a finite field or the algebraic closure $\overline{\mathbb{F}}_q$ of a finite field. We denote by $\mathbb{P}(F)$ the set of places of F/K. For $P \in \mathbb{P}(F)$, we will denote by v_P the corresponding discrete valuation of F/K and by \mathcal{O}_P the valuation ring of P. For $z \in \mathcal{O}_P$ we denote by $z(P)$ the residue class of z in \mathcal{O}_P/P. We denote by $\deg(P)$ the degree of P. In particular, if P is a place of degree one, then $z(P) \in K$.

For a finite separable extension E of F and a place $Q \in \mathbb{P}(E)$ we will denote by $Q|_F$ the restriction of Q to F. We write $Q|P$ if the place $Q \in \mathbb{P}(E)$ lies over the place $P \in \mathbb{P}(F)$. In this situation, we denote by $e(Q|P)$ and $d(Q|P)$ the ramification index and the different exponent of $Q|P$, respectively. The place $P \in \mathbb{P}(F)$ is said to be totally ramified in E/F if there is a place $Q \in \mathbb{P}(E)$ above P with $e(Q|P) = [E : F]$. It is said to be completely splitting in E/F if there are $n = [E : F]$ distinct places of E above P.

Let E/F be a Galois extension of function fields, let $P \in \mathbb{P}(F)$ and $Q \in \mathbb{P}(E)$ above the place P. We say that $Q|P$ is **weakly ramified** if the second ramification group $G_2(Q|P) = 1$; in other words, if $e(Q|P) = e_0 \cdot e_1$ where $(e_0, p) = 1$ and $e_1 = p^j$ is a power of the characteristic p of F, then $d(Q|P) = (e_0 e_1 - 1) + (e_1 - 1)$.

If $F = K(x)$ is a rational function field, we will write $(x = \alpha)$ for the place of F which is the zero of $x - \alpha$ (where $\alpha \in K$), and $(x = \infty)$ for the pole of x in $K(x)/K$.

2 The tower

Let K be a field of characteristic $p > 0$, let q be a power of p and assume that $\mathbb{F}_q \subseteq K$. We study the sequence $\mathcal{F} = (F_0, F_1, F_2, \ldots)$ of function fields F_i/K which is defined recursively as follows: $F_0 = K(x_0)$ is the rational function field, and for $n \geq 0$ let $F_{n+1} = F_n(x_{n+1})$ where x_{n+1} satisfies the equation over F_n below:

$$
(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}.
$$

(8)

Remark 2.1. We set

$$
f(T) := (T^q - T)^{q-1} + 1 \in K[T].
$$

(9)

Then Eqn. (8) can be written as

$$
f(x_{n+1}) = \frac{1}{1 - f(1/x_n)}.
$$

(10)
We also remark that \(f(T) = (T^{q^2} - T)/(T^q - T) \), hence the roots of \(f(T) \) are exactly the elements \(\beta \in \mathbb{F}_{q^2}\backslash \mathbb{F}_q \). This property of the polynomial \(f(T) \) will play an important role in Sections 3 and 4.

Theorem 2.2. Let \(\mathcal{F} \) be the sequence of function fields \(F_n \) over \(K \) which is defined by Eqn. (8). Then \(\mathcal{F} \) is a tower over \(K \), and more precisely the following hold:

(i) The extensions \(F_{n+1}/F_n \) are Galois for all \(n \geq 0 \).

(ii) \([F_1 : F_0] = q(q - 1)\) and \([F_{n+1} : F_n] = q\) for all \(n \geq 1 \).

(iii) \(K \) is the full constant field of \(F_n \), for all \(n \geq 0 \).

The proof of Thm. 2.2 is given in several steps.

Lemma 2.3. \(F_{n+1}/F_n \) is Galois and \([F_{n+1} : F_n]\) divides \(q(q - 1)\), for all \(n \geq 0 \).

Proof. We set

\[
 u_n := \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}. \tag{11}
\]

Then \(x_{n+1} \) is a root of the polynomial \(f_n(T) := (T^q - T)^{q-1} + 1 - u_n \in F_n[T] \). The other roots of \(f_n(T) \) are the elements \(ax_{n+1} + b \) with \(a \in \mathbb{F}_q^\times \) and \(b \in \mathbb{F}_q \). Therefore \(F_{n+1} \) is the splitting field of \(f_n(T) \) over \(F_n \) and the extension \(F_{n+1}/F_n \) is Galois.

Let \(G_{n+1} \) be the Galois group of \(F_{n+1}/F_n \). Every element \(\sigma \in G_{n+1} \) acts on the function \(x_{n+1} \) as \(\sigma(x_{n+1}) = a_\sigma x_{n+1} + b_\sigma \), and the map

\[
 \sigma \mapsto \left(\begin{array}{cc} a_\sigma & 0 \\ b_\sigma & 1 \end{array} \right)
\]

is a monomorphism of \(G_{n+1} \) into the group of invertible \(2 \times 2 \)-matrices over \(\mathbb{F}_q \) of the form \(\left(\begin{array}{cc} a & 0 \\ b & 1 \end{array} \right) \). This group has order \(q(q-1) \), and hence \(\text{ord}(G_{n+1}) \) divides \(q(q-1) \). \(\square \)

Lemma 2.4. Let \(P_0 = (x_0 = \infty) \) be the pole of \(x_0 \) in \(F_0 \) and let \(P_n \) be a place of \(F_n \) above \(P_0 \). For \(i = 1, \ldots, n \) we set \(P_i := P_n|_{F_i} \) and \(e^{(i)} := e(P_i|_{P_{i-1}}) \). Then the place \(P_i \) is a pole of \(x_i \). Moreover, \(v_{P_i}(x_i) \) divides \((q - 1)^i \), and \(e^{(i)} \equiv 0 \mod q \), for \(1 \leq i \leq n \).

Proof. Let \(u_i \in F_i \) be defined as in Eqn. (11). We prove the lemma by induction. For the case \(i = 1 \), we have \(v_{P_1}(u_0) = e^{(1)} \cdot v_{P_0}(u_0) = e^{(1)} \cdot (q - 1) \). From the equation \((x_1^q - x_1)^{q-1} + 1 = u_0 \), it follows that \(v_{P_1}(x_1) < 0 \) and therefore

\[
 v_{P_1}((x_1^q - x_1)^{q-1} + 1) = q \cdot (q - 1) \cdot v_{P_1}(x_1).
\]

We conclude that \(q \cdot v_{P_1}(x_1) = -e^{(1)} \). To finish this case, notice that \(e^{(1)} \) divides the degree \([F_1 : F_0]\), and \([F_1 : F_0]\) divides \(q(q - 1) \) (by Lemma 2.3). Hence it follows that \(v_{P_1}(x_1) \) divides \((q - 1) \) and that \(e^{(1)} \equiv 0 \mod q \).
Now we assume that \(v_{P_i}(x_i) < 0 \) and \(v_{P_i}(x_i) \) divides \((q-1)^i\) for some \(i \in \{1, \ldots, n-1\} \). From Eqn. (11) we obtain \(v_{P_i}(u_i) = (q-1) \cdot v_{P_i}(x_i) \), hence
\[
 v_{P_{i+1}}(u_i) = e^{(i+1)} \cdot (q-1) \cdot v_{P_i}(x_i) < 0.
\]
Since \((x_{i+1}^q - x_{i+1})^{q-1} + 1 = u_i \), it follows that \(P_{i+1} \) is a pole of \(x_{i+1} \) and
\[
 q(q-1) \cdot v_{P_{i+1}}(x_{i+1}) = e^{(i+1)} \cdot (q-1) \cdot v_{P_i}(x_i).
\]
Now we finish as in the case \(i = 1 \); we conclude that \(e^{(i+1)} \equiv 0 \mod q \) and that \(v_{P_{i+1}}(x_{i+1}) \) divides \((q-1)^{i+1}\).

Lemma 2.5. \([F_{n+1} : F_n] \equiv 0 \mod q\) for all \(n \geq 0 \).

Proof. Follows directly from Lemmas 2.3 and 2.4.

Lemma 2.6. \([F_1 : F_0] = q(q-1)\), and \(K \) is the full constant field of \(F_1 \).

Proof. By definition, \(F_1 = K(x_0, x_1) \) with
\[
(x_1^q - x_1)^{q-1} + 1 = \frac{-x_0^{q(q-1)}}{(x_0^{q-1} - 1)^{q-1}} = u_0. \tag{12}
\]
It follows that
\[
[K(x_0) : K(u_0)] = [K(x_1) : K(u_0)] = q(q-1). \tag{13}
\]
From Eqn. (12) it is obvious that the place \((u_0 = 0)\) of \(K(u_0) \) is totally ramified in the extension \(K(x_0)/K(u_0) \). The place of \(K(x_0) \) above \((u_0 = 0)\) is the place \((x_0 = 0)\), and we have \(e((x_0 = 0)|(u_0 = 0)) = q(q-1) \).

However, in the extension \(K(x_1)/K(u_0) \) the place \((u_0 = 0)\) is unramified, since the polynomial \((x_1^q - x_1)^{q-1} + 1\) does not have multiple roots. Let \(Q \) be a place of \(K(x_1) \) lying above \((u_0 = 0)\) and let \(R \) be a place of \(K(x_0, x_1) \) above \(Q \). It follows from above that \(e(R(Q)) = q(q-1) \). Therefore \([K(x_0, x_1) : K(x_1)] = q(q-1) \), and \(K \) is algebraically closed in \(K(x_0, x_1) = F_1 \) (as there is a place which is totally ramified in \(F_1/K(x_1) \)). The assertion \([F_1 : F_0] = q(q-1)\) follows since \([F_1 : F_0] = [F_1 : K(x_1)]\) by Eqn. (13).

The next lemma shows a striking property of the recursion in Eqn. (8) for \(n \geq 1 \). It gives a simple Artin-Schreier equation for the extension \(F_{n+1}/F_n \) of degree \(q \).

Lemma 2.7. For each \(n \geq 1 \) there is some \(\mu \in \mathbb{F}_q^\times \) such that
\[
x_{n+1}^q - x_{n+1} = \mu \cdot \frac{x_n^q - x_n}{(x_n^q - 1)^{q-1} - 1}.
\]

Proof. By Eqn. (8) we have
\[
(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}} \quad \text{and} \quad (x_n^q - x_n)^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}. \tag{14}
\]
Hence we get

\[
(x_{n+1}^q - x_n)^{q-1} = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}} - 1 = -\left(\frac{x_n^q - x_n}{(x_n^{q-1} - 1)^{q-1}}\right)^{q-1}.
\]

Proof of Theorem 2.2. Putting together the results of the lemmas above, one gets the assertions of Thm. 2.2.

3 Splitting places in the tower over \(K = \mathbb{F}_\ell \) for \(\ell = q^3 \)

In this section we consider the tower \(\mathcal{F} = (F_0, F_1, F_2, \ldots) \) which was introduced in Sec. 2, over the field \(K = \mathbb{F}_\ell \) with \(\ell = q^3 \). We will show that many rational places of the field \(F_0 = \mathbb{F}_\ell(x_0) \) split completely in \(\mathcal{F} \); i.e., they split completely in all extensions \(F_n/F_0 \).

This means that the function fields \(F_n/\mathbb{F}_\ell \) have “many” rational places. As in Sec. 2, let

\[
f(T) = (T^q - T)^{q-1} + 1 \in \mathbb{F}_q[T].
\]

For \(q = 2 \) we have obviously that \(f(T) - c \) is separable for all elements \(c \in \mathbb{F}_2 \).

Lemma 3.1. Let \(c \in \overline{\mathbb{F}}_q \) be an element of the algebraic closure of \(\mathbb{F}_q \). Then

\[
f(T) - c \text{ is inseparable if and only if } q \neq 2 \text{ and } c = 1.
\]

For an element \(\beta \in \overline{\mathbb{F}}_q \) we have that \(f(\beta) = 1 \) if and only if \(\beta \) belongs to \(\mathbb{F}_q \).

Proof. Just notice that the derivative of \(f(T) \) satisfies \(f'(T) = (T^q - T)^{q-2} \).

Lemma 3.2. For an element \(\beta \in \overline{\mathbb{F}}_q \) we have that \(f(\beta) = 0 \) if and only if \(\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q \).

Proof. Just notice that we have (see Rem. 2.1)

\[
f(T) = (T^{q^2} - T)/(T^q - T).
\]

Now we consider the recursive equation for the tower \(\mathcal{F} \) (see Eqn. (10)):

\[
f(Y) = \frac{1}{1 - f(1/X)}.
\]

We will show that if \(X = \alpha \) belongs to \(\mathbb{F}_{q^3} \setminus \mathbb{F}_q \) then all solutions \(Y = \beta \in \mathbb{F}_q \) of Eqn. (17) with \(X = \alpha \) are such that \(\beta \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q \). The assertion that \(\beta \notin \mathbb{F}_q \) follows directly from Eqn. (17) and the lemmas above.

Using Eqn. (16) we have:

\[
\frac{1}{1 - f(T)} = \frac{T - T^q}{T^{q^2} - T^q}.
\]
Lemma 3.3. For an element $\beta \in \overline{F}_q$ we have that
\[f(\beta)^q = \frac{1}{1 - f(\beta)} \quad \text{if and only if} \quad \beta \in \overline{F}_q \setminus F_q. \]

Proof. Straightforward using Eqn. (16) and Eqn. (18). \qed

Eqn. (17) can also be written as below:
\[f\left(\frac{1}{X}\right) = 1 - \frac{1}{f(Y)}. \tag{19} \]

Consider now a solution (α, β) of Eqn. (17) with $\alpha \in \overline{F}_{q^3} \setminus F_q$. Then $1/\alpha \in \overline{F}_{q^3} \setminus F_q$. We have:
\[f(\beta) = \frac{1}{1 - f\left(\frac{1}{\alpha}\right)} = f\left(\frac{1}{\alpha}\right)^q = 1 - \frac{1}{f(\beta)^q}. \]

In the last two equalities above we have used Lemma 3.3 and Eqn. (19), respectively. Hence we obtained that $f(\beta)^q = 1/(1 - f(\beta))$; i.e., $\beta \in \overline{F}_{q^3} \setminus F_q$.

We have thus proved the main result of this section:

Theorem 3.4. Let $\mathcal{F} = (F_0, F_1, \ldots)$ be the tower over \overline{F}_{q^3} given recursively by Eqn. (17). Then the places $(x_0 = \alpha)$ with $\alpha \in \overline{F}_{q^3} \setminus F_q$ split completely in all extensions F_n/F_0. In particular the number of \overline{F}_{q^3}-rational places satisfies:
\[N(F_n) \geq (q^3 - q) \cdot [F_n : F_0] \quad \text{for all} \ n \in \mathbb{N}. \]

4 The extensions $K(x)/K(w)$ and $K(x)/K(u)$

Throughout this section, K is a field with $\mathbb{F}_{q^2} \subseteq K$. Let $K(x)/K$ be a rational function field over K. We will consider certain subfields $K(w) \subseteq K(x)$ and $K(u) \subseteq K(x)$ which are related to the recursive definition of the tower \mathcal{F}. Detailed information about ramification in $K(x)/K(w)$ and in $K(x)/K(u)$ will enable us to study in Sec. 5 and Sec. 6 the ramification behaviour in the tower \mathcal{F}.

As in Sec. 2 we consider the polynomial $f(T) = (T^q - T)^{q-1} + 1 \in K[T]$, and we set
\[w := f(x) = (x^q - x)^{q-1} + 1 \in K(x). \tag{20} \]

Lemma 4.1. (i) The extension $K(x)/K(w)$ is Galois of degree $q(q-1)$.

(ii) The place $(w = \infty)$ of $K(w)$ is totally ramified in $K(x)/K(w)$; the place above it is the place $(x = \infty)$. We have $d((x = \infty)|(w = \infty)) = q^2 - 2$; i.e., $(x = \infty)|(w = \infty)$ is weakly ramified.

(iii) Above the place $(w = 1)$ there are the q places $(x = \theta)$ of $K(x)$ with $\theta \in \mathbb{F}_q$, with ramification index $e((x = \theta)|(w = 1)) = q - 1$.

(iv) All other places of $K(w)$ are unramified in $K(x)/K(w)$.

8
(v) The places above \((w = 0)\) are exactly the places \((x = \beta)\) with \(\beta \in \mathbb{F}_q^2 \setminus \mathbb{F}_q\).

Proof. i) One checks easily that \(K(w)\) is the fixed field of the following group \(H\) of automorphisms of \(K(x)/K\):

\[
H := \{ \sigma \in \text{Aut}(K(x)/K) \mid \sigma(x) = ax + b, a \in \mathbb{F}_q^\times, b \in \mathbb{F}_q \}.
\]

ii) It is clear from Eqn. (20) that \((x = \infty)\) is the only place of \(K(x)\) lying above \((w = \infty)\), and that the ramification index is \(e((x = \infty)|(w = \infty)) = q(q - 1)\). Since \(K(x)/K(w)\) is Galois, it follows from ramification theory (cf. [16, Sec. III.8]) that \(d((x = \infty)|(w = \infty)) \geq (q(q - 1) - 1) + (q - 1) = q^2 - 2\). We will show below that equality holds; i.e., that \((x = \infty)|(w = \infty)\) is weakly ramified.

iii) This assertion is obvious from the equation \(w - 1 = (x^q - x)q - 1\).

iv) It follows from above that the degree of the different \(\text{Diff}(K(x)/K(w))\) satisfies

\[
\deg \text{Diff}(K(x)/K(w)) \geq d((x = \infty)|(w = \infty)) + \sum_{\theta \in \mathbb{F}_q} d((x = \theta)|(w = 1)) \\
\geq (q^2 - 2) + q(q - 2) = 2(q^2 - q - 1).
\]

On the other hand, by Hurwitz genus formula for \(K(x)/K(w)\) we have

\[
\deg \text{Diff}(K(x)/K(w)) = -2 + 2[K(x): K(w)] = 2(q^2 - q - 1).
\]

Now the assertions iv) and ii) follow immediately.

v) Observing that (see Eqn. (16)) \(w = f(x) = (x^q - x)/x^q - x\), we see that the places above \((w = 0)\) are exactly the places \((x = \beta)\) with \(\beta \in \mathbb{F}_q^2 \setminus \mathbb{F}_q\). \qed

Next we consider the subfield \(K(u) \subseteq K(x)\) where \(u\) is defined by

\[
u := -\frac{x^{q(q-1)}}{(x^q - 1)^q - 1}.
\]

Lemma 4.2. (i) The extension \(K(x)/K(u)\) is Galois of degree \(q(q - 1)\).

(ii) The place \((u = 0)\) of \(K(u)\) is totally ramified in \(K(x)/K(u)\); the place above it is the place \((x = 0)\). We have \(d((x = 0)|(u = 0)) = q^2 - 2\); i.e., \((x = 0)|(u = 0)\) is weakly ramified.
(iii) Above the place \((u = \infty)\) lie exactly \(q\) places \(P\) of \(K(x)\); namely the places \((x = \infty)\) and \((x = \alpha)\) with \(\alpha \in \mathbb{F}_q^\times\). We have \(e(P|_{(u = \infty)}) = q - 1\).

(iv) No other place of \(K(u)\) is ramified in \(K(x)\).

(v) The places above \((u = 1)\) are exactly the places \((x = \beta)\) with \(\beta \in \mathbb{F}_{q^2}\setminus \mathbb{F}_q\). We have \(e(P|_{(u = 1)}) = q - 1\).

\[\begin{array}{ccc}
(x = 0) & (x = \infty), (x = \alpha) with \alpha \in \mathbb{F}_q^\times & (x = \beta) with \beta \in \mathbb{F}_{q^2}\setminus \mathbb{F}_q \\
(u = 0) & (u = \infty) & (u = 1)
\end{array}\]

Figure 2: Ramification and splitting in \(K(x)/K(u)\).

Proof. Note that \(u = 1/(1 - f(1/x))\) by Rem. 2.1 and therefore \(f(1/x) = (u - 1)/u\). The result follows directly from Lemma 4.1 with the change of variables \(x \mapsto 1/x\) and \(w \mapsto (u - 1)/u\).

\[\square\]

5 The fields \(F_1\) and \(F_2\)

In this section we assume again that \(\mathbb{F}_{q^2} \subseteq K\). We want to study ramification in the first two steps of the tower \(\mathcal{F}\) over \(K\). So we consider the fields \(F_0 = K(x_0), F_1 = K(x_0, x_1)\) and \(F_2 = K(x_0, x_1, x_2)\) where

\[(x_1^q - x_1)^{q-1} + 1 = -\frac{x_0^{q(q-1)}}{(x_0^{q-1} - 1)^{q-1}} \quad \text{and} \quad (x_2^q - x_2)^{q-1} + 1 = -\frac{x_1^{q(q-1)}}{(x_1^{q-1} - 1)^{q-1}}. \tag{22}\]

Lemma 5.1. The extensions \(F_1/K(x_0)\) and \(F_1/K(x_1)\) are both Galois of degree \(q(q-1)\).

Proof. We proved the assertion for \(F_1/K(x_0)\) in Thm. 2.2. As in Eqn. (11) we set

\[u_0 := -\frac{x_0^{q(q-1)}}{(x_0^{q-1} - 1)^{q-1}}.\]

The field \(F_1\) is the compositum of \(K(x_0)\) and \(K(x_1)\) over \(K(u_0)\) as in Figure 3. By Lemma 4.2 the extension \(K(x_0)/K(u_0)\) is Galois, hence \(F_1/K(x_1)\) is Galois as well.

\[\square\]

Lemma 5.2. Let \(\Omega := \mathbb{F}_{q^2} \cup \{\infty\}\).

(i) For a place \(P \in \mathbb{P}(F_1)\) the following are equivalent:
\[F_1 = K(x_0, x_1) \]
\[K(x_0) \quad K(x_1) \]
\[K(u_0) \]

Figure 3: The extension \(F_1/K(u_0) \)

a) \(P|_{K(x_0)} = (x_0 = \omega) \) for some \(\omega \in \Omega \).
b) \(P|_{K(x_1)} = (x_1 = \omega') \) for some \(\omega' \in \Omega \).

(ii) If a place \(Q \in \mathbb{P}(F_1) \) does not lie above a place \((x_0 = \omega) \) with \(\omega \in \Omega \) then \(Q \) is unramified over \(K(x_0) \) and over \(K(x_1) \).

(iii) The ramification indices of the places \((x_0 = \omega) \) and \((x_1 = \omega') \) with \(\omega, \omega' \in \Omega \) in the extensions \(F_1/K(x_0) \) and \(F_1/K(x_1) \) are as depicted in Figure 4. All places of \(F_1 \) are weakly ramified over \(K(x_0) \) and over \(K(x_1) \).

\[\bullet \]
\[e=1 \]
\[(x_0 = 0) \]
\[(x_0 = \infty) \]
\[(x_1 = \infty) \]
\[e=q(q-1) \]
\[\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q \]

\[\bullet \]
\[e=q \]
\[e=1 \]
\[(x_0 = \infty) \]
\[(x_0 = \beta) \]
\[\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q \]
\[\alpha \in \mathbb{F}_q^* \]

\[\bullet \]
\[e=q \]
\[e=1 \]
\[(x_1 = \infty) \]
\[(x_1 = \beta) \]
\[\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q \]
\[\theta \in \mathbb{F}_q \]

Figure 4: Ramification in \(F_1/K(x_0) \) and in \(F_1/K(x_1) \).

Proof. According to the notations in Sec. 4 we write \(u_0 := -x_0^{q(q-1)}/(x_0^{q-1} - 1)^{q-1} \) and \(w_1 := (x_1^{q} - x_1)^{q-1} + 1 \). Hence \(u_0 = w_1 \) by Eqn. (22). We consider the diagram of fields
in Figure 3 where all extensions are Galois of degree $q(q-1)$. We have

$$P|_{K(x_0)} = (x_0 = \omega) \text{ for some } \omega \in \Omega$$

$$\iff P|_{K(u_0)} \in \{(u_0 = 0), (u_0 = 1), (u_0 = \infty)\} \text{ (by Lemma 4.2)}$$

$$\iff P|_{K(x_1)} = (x_1 = \omega') \text{ for some } \omega' \in \Omega \text{ (by Lemma 4.1).}$$

By Lemma 4.1 and Lemma 4.2 we know that only the places $(u_0 = 0), (u_0 = 1)$ and $(u_0 = \infty)$ are ramified in $K(x_0)/K(u_0)$ or in $K(x_1)/K(u_0)$. We will consider here only the case $(u_0 = \infty)$; the other two cases are similar (even easier). Denote by Q a place of F_1 above $(u_0 = \infty)$. The situation is depicted in Figure 5. It follows

\[
\begin{tikzcd}
& Q \\
(x_0 = \infty) \quad \text{or} \\
(x_0 = \alpha), \alpha \in \mathbb{F}_q^* \\
& (x_1 = \infty) \\
\end{tikzcd}
\]

Figure 5: Ramification in $F_1/K(u_0)$

from Abhyankar’s Lemma (see [16, Prop. III.8.9]) that Q is unramified over $K(x_1)$ and that the ramification index of Q over $K(x_0)$ is $e = q$. Since $(x_1 = \infty)|(u_0 = \infty)$ is weakly ramified by Lemma 4.1, it follows from the transitivity of different exponents in $F_1 \supseteq K(x_0) \supseteq K(u_0)$ that Q is weakly ramified over $K(x_0)$.

\[\square\]

Lemma 5.3. The extensions $F_2/K(x_0, x_1)$ and $F_2/K(x_1, x_2)$ are Galois extensions of degree q. All places that are ramified in $F_2/K(x_0, x_1)$ or in $F_2/K(x_1, x_2)$ are totally and weakly ramified.

Proof. The field F_2 is the compositum of $K(x_0, x_1)$ and $K(x_1, x_2)$ over $K(x_1)$. Since the extensions $K(x_0, x_1)/K(x_1)$ and $K(x_1, x_2)/K(x_1)$ are Galois by Lemma 5.1, it is clear that $F_2/K(x_0, x_1)$ and $F_2/K(x_1, x_2)$ are Galois. The assertion about the degrees follows from Lemma 2.7. Now we consider a place $Q \in \mathbb{P}(F_2)$ which is ramified in $F_2/K(x_1, x_2)$. Then the place $P := Q|_{K(x_0, x_1)}$ is ramified over $K(x_1)$ and therefore $P|_{K(x_1)} = (x_1 = \beta)$ with some $\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$, by Lemma 5.2. So we have the situation depicted in Figure 6, where R denotes the restriction of Q to $K(x_1, x_2)$.

As in the proof of Lemma 5.2, we use Abhyankar’s lemma to get that $d(Q|R) = q$, and the transitivity of different exponents to get that $d(Q|R) = 2 \cdot (q-1)$.

Now if Q is a place of F_2 which is ramified over F_1, then one also concludes (and it is simpler) that it is totally and weakly ramified over F_1.

\[\square\]

Remark 5.4. It is clear that all statements in this section remain valid when the fields $K(x_0), K(x_0, x_1)$ and $K(x_0, x_1, x_2)$ are replaced by the fields $K(x_n), K(x_n, x_{n+1})$ and $K(x_n, x_{n+1}, x_{n+2})$, respectively.
6 The genus of F_n

In order to estimate the limit $\lambda(F)$ of the tower F over \mathbb{F}_{q^3} we need an upper bound for the genus of the n-th function field F_n: therefore one has to study ramification in the extension F_n/F_0. Without changing the ramification behaviour (i.e., ramification index and different exponent) and the genus, we can extend the constant field such that it contains \mathbb{F}_{q^2}. So we assume in this section that $\mathbb{F}_{q^2} \subseteq K$ and denote $\text{char}(K) = p$.

A place $P \in \mathcal{P}(F_0)$ is said to be ramified in the tower F_n if P is ramified in F_m/F_0 for some $m \geq 1$, and the ramification locus $V(F/F_0)$ is defined as

$$V(F/F_0) := \{ x_0 = \omega \mid \omega \in \mathbb{F}_{q^2} \text{ or } \omega = \infty \}.$$

Lemma 6.1. The ramification locus of F over F_0 satisfies

$$V(F/F_0) \subseteq \{ (x_0 = \omega) \mid \omega \in \mathbb{F}_{q^2} \text{ or } \omega = \infty \}.$$

Proof. Assume that a place $Q \in \mathcal{P}(F_0)$ is ramified in F_{n+1}/F_n. Then the restriction $Q|_{K(x_n)}$ ramifies in the extension $K(x_n, x_{n+1})/K(x_n)$. We conclude from Lemma 5.2 ii) that $Q|_{K(x_n)} = (x_n = \omega')$ with $\omega' \in \mathbb{F}_{q^2} \cup \{\infty\}$. By induction it follows from Lemma 5.2 i) that $Q|_{F_0} = (x_0 = \omega)$ with $\omega \in \mathbb{F}_{q^2} \cup \{\infty\}$. This proves the lemma. We remark that in fact $V(F/F_0) = \{ (x_0 = \omega) \mid \omega \in \mathbb{F}_{q^2} \text{ or } \omega = \infty \}$ but we do not need this here.

In the proof of Lemma 6.3 below, the following result is crucial:

Lemma 6.2. Consider an extension E/F of function fields over K such that $E = E_1 \cdot E_2$ is the composite field of two intermediate fields $F \subseteq E_i \subseteq E$, $i = 1, 2$ and the extensions E_1/F and E_2/F are Galois p-extensions. Let Q be a place of E, and let $Q_i := Q|_{E_i}$ and $P := Q|_F$ be the restrictions of Q. Suppose that $Q_1|P$ and $Q_2|P$ are weakly ramified. Then $Q|Q_1$ and $Q|Q_2$ are also weakly ramified.

Proof. See [10, Prop. 1.10] and also [9, Lemma 1].

A Galois extension E/F is weakly ramified if all places are weakly ramified in E/F.

Lemma 6.3. Let $n \geq 1$. Then the extension F_{n+1}/F_n is weakly ramified.
Proof. For $0 \leq i \leq j \leq n + 1$ we define the subfield $E_{i,j} \subseteq F_{n+1}$ by

$$E_{i,j} := K(x_i, x_{i+1}, \ldots, x_j).$$

The extensions $E_{i,i+2}/E_{i,i+1}$ and $E_{i+1,i+2}/E_{i,i+1}$ are weakly ramified Galois p-extensions by Lemma 5.3 (see Figure 7). By induction it follows for all $j \geq i + 2$ that $E_{i,j}/E_{i,j-1}$ and $E_{i,j}/E_{i+1,j}$ are weakly ramified Galois p-extensions (using Lemma 6.2). Since $F_n = E_{0,n}$ and $F_{n+1} = E_{0,n+1}$, the assertion of Lemma 6.3 follows.

Lemma 6.4. Let E_1/F be a Galois extension of function fields over K and let E/E_1 be a finite and separable extension. Let Q be a place of the field E and denote by P_1 and P the restrictions of Q to E_1 and F, respectively. Suppose that we have:

(i) $e(Q|P_1)$ is a power of $p = \text{char}(K)$ and $d(Q|P_1) = 2e(Q|P_1) - 2$.

(ii) The place P_1 is weakly ramified over P.

Then the different exponent $d(Q|P)$ satisfies

$$d(Q|P) = (e_0e_1 - 1) + (e_1 - 1) < e(Q|P) \cdot \left(1 + \frac{1}{e_0}\right),$$

where $e(Q|P) = e_0e_1$ with $(p,e_0) = 1$ and e_1 is a p-power.

Proof. Straightforward, using transitivity of different exponents.

Figure 7: Double lines denote weakly ramified Galois p-extensions

Theorem 6.5. The genus of the n-th function field of the tower $\mathcal{F} = (F_0, F_1, F_2, \ldots)$ defined by Eqn. (8), satisfies

$$g(F_n) \leq \frac{q^2 + 2q}{2} \cdot [F_n : F_0].$$

14
Proof. Let \(n \geq 1 \). First we observe that for a place \(Q \in \mathbb{P}(F_n) \) and the restriction \(P_1 := Q|_{F_1} \) of \(Q \) to \(F_1 \) we have that
\[
e(Q|P_1) \text{ is a } p\text{-power and } d(Q|P_1) = 2e(Q|P_1) - 2.
\]
This follows from Lemma 6.3 and repeated applications of Lemma 6.4.

Now we consider the places \(P \in \mathbb{P}(F_0) \) which are in the ramification locus \(V(F/F_0) \).

According to item (iii) of Lemma 5.2 we distinguish 2 cases:

Case 1: \(P = (x_0 = \theta) \) with \(\theta \in \mathbb{F}_q \) or \(P = (x_0 = \infty) \).

By Lemma 5.2 and Lemma 6.4 we obtain
\[
\sum_{Q \in \mathbb{P}(F_n)} d(Q|P) \cdot \deg Q < \sum_{Q \in \mathbb{P}(F_n)} 2e(Q|P) \cdot \deg Q = 2[F_n : F_0]. \tag{23}
\]

Case 2: \(P = (x_0 = \beta) \) with \(\beta \in \mathbb{F}_q^2 \setminus \mathbb{F}_q \).

In this case, Lemma 5.2 and Lemma 6.4 yield
\[
\sum_{Q \in \mathbb{P}(F_n)} d(Q|P) \cdot \deg Q < \sum_{Q \in \mathbb{P}(F_n)} \left(1 + \frac{1}{q-1}\right)e(Q|P) \cdot \deg Q = \frac{q}{q-1}[F_n : F_0]. \tag{24}
\]

There are \(q + 1 \) places \(P \in \mathbb{P}(F_0) \) as in Case 1, and \(q^2 - q \) places as in Case 2. By Hurwitz genus formula for the extension \(F_n/F_0 \) we obtain
\[
2g(F_n) \leq -2[F_n : F_0] + (q + 1) \cdot 2[F_n : F_0] + (q^2 - q) \cdot \frac{q}{q-1}[F_n : F_0]
\]
\[
= (q^2 + 2q)[F_n : F_0].
\]

\(\square \)

7 The limit of the tower over \(K = \mathbb{F}_\ell \) with \(\ell = q^3 \)

Putting together the results of the previous sections we obtain our main result:

Theorem 7.1. Let \(K = \mathbb{F}_\ell \) with \(\ell = q^3 \), and let \(\mathcal{F} = (F_0, F_1, F_2, \ldots) \) be the tower over \(K \) which is recursively defined by \(F_0 = K(x_0) \) and \(F_{n+1} = F_n(x_{n+1}) \), where
\[
(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}} \quad \text{for all } n \geq 0.
\]

Then the limit \(\lambda(\mathcal{F}) = \lim_{n \to \infty} N(F_n)/g(F_n) \) satisfies
\[
\lambda(\mathcal{F}) \geq 2(q^2 - 1)/(q + 2).
\]
Proof. By Thm. 3.4 and Thm. 6.5 we have

\[N(F_n) \geq (q^3 - q) \cdot [F_n : F_0] \quad \text{and} \quad g(F_n) \leq \frac{q^2 + 2q}{2} \cdot [F_n : F_0]. \]

Hence

\[\frac{N(F_n)}{g(F_n)} \geq \frac{(q^3 - q) \cdot 2}{q^2 + 2q} = \frac{2(q^2 - 1)}{q + 2} \quad \text{for all } n \geq 0. \]

\[\square \]

8 Remarks

We finish this paper with a few remarks.

Remark 8.1. Our tower \(F = (F_0, F_1, F_2, \ldots) \) over \(K = \mathbb{F}_{q^3} \) bears remarkable analogy to the tower \(H = (H_0, H_1, H_2, \ldots) \) over the quadratic field \(K = \mathbb{F}_{q^2} \) which is defined recursively by the equation

\[u_{i+1}^q + u_{i+1} = \frac{u_i^q}{u_i^{q-1} + 1} \]

and which attains the Drinfel’d–Vlăduţ bound (1). The analogies between \(H \) and \(F \) become even more evident if we substitute \(u_i = \xi y_i \) with \(\xi^{q-1} = -1 \); then the above equation becomes \(y_{i+1}^q - y_{i+1} = -y_i^q/(y_i^{q-1} - 1) \). We now compare some features of the towers \(F \) over \(\mathbb{F}_{q^3} \) and \(H \) over \(\mathbb{F}_{q^2} \), see [8].

1) The tower \(H = (H_0, H_1, H_2, \ldots) \) is defined recursively over the field \(K = \mathbb{F}_{q^2} \) by \(H_0 = K(y_0) \) and \(H_{i+1} = H_i(y_{i+1}) \), where

\[y_{i+1}^q - y_{i+1} = \frac{-y_i^q}{y_i^{q-1} - 1} \quad \text{for all } i \geq 0. \] \hspace{1cm} (25)

2) Setting \(h(T) := T^q - T \), Eqn. (25) can be written as

\[h(y_{i+1}) = \frac{1}{h(1/y_i)}. \] \hspace{1cm} (26)

3) The extensions \(H_{i+1}/H_i \) (for \(i \geq 0 \)) are weakly ramified Galois extensions of degree \([H_{i+1} : H_i] = q \).

4) The ramification locus of \(H \) over \(H_0 \) is

\[\mathcal{V}(H/H_0) = \{(y_0 = \omega) \mid \omega \in \mathbb{F}_q \cup \{\infty\}\}. \]

5) The places \((y_0 = \alpha) \) with \(\alpha \in \mathbb{F}_{q^2}\setminus\mathbb{F}_q \) are completely splitting in the extensions \(H_n/H_0 \), for all \(n \geq 0 \).

The analogous properties of the tower \(F \) are:
1*) The tower \(\mathcal{F} = (F_0, F_1, F_2, \ldots) \) is defined recursively over the field \(K = \mathbb{F}_{q^3} \) by \(F_0 = K(x_0) \) and \(F_{i+1} = F_i(x_{i+1}) \), where
\[
(x_{i+1}^q - x_{i+1})^{q-1} + 1 = \frac{-x_i^{q(q-1)}}{(x_i^{q-1} - 1)^{q-1}} \quad \text{for all } i \geq 0. \tag{27}
\]

2*) Setting \(f(T) := (T^q - T)^{q-1} + 1 \), Eqn. (27) can be written as
\[
f(x_{i+1}) = \frac{1}{1 - f(1/x_i)}. \tag{28}\]

3*) The extensions \(F_{i+1}/F_i \) (for \(i \geq 1 \)) are weakly ramified Galois extensions of degree \([F_{i+1} : F_i] = q\).

4*) The ramification locus of \(\mathcal{F} \) over \(F_0 \) is
\[
V(\mathcal{F}/F_0) = \{(x_0 = \omega) \mid \omega \in \mathbb{F}_{q^2} \cup \{\infty\}\}.
\]

5*) The places \((x_0 = \alpha)\) with \(\alpha \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q \) are completely splitting in the extensions \(F_n/F_0 \), for all \(n \geq 0 \).

We also note that the polynomials \(h(T) \) and \(f(T) \) in Eqn. (26) and Eqn. (28) are defined in a very similar manner:

6) The polynomial \(h(T) \in \mathbb{F}_q[T] \) generates the fixed field of \(K(T) \) under the group of automorphisms
\[
G = \{ \sigma : K(T) \to K(T) \mid \sigma(T) = T + b \text{ with } b \in \mathbb{F}_q \}.
\]

6*) The polynomial \(f(T) \in \mathbb{F}_q[T] \) generates the fixed field of \(K(T) \) under the group of automorphisms
\[
G^* = \{ \sigma : K(T) \to K(T) \mid \sigma(T) = aT + b \text{ with } a \in \mathbb{F}_q^\times \text{ and } b \in \mathbb{F}_q \}.
\]

Another interesting observation is that the generators \(x_i \) of the tower \(\mathcal{F} \) satisfy
\[
x_{i+2}^q - x_{i+2} = \frac{-x_i^q}{(x_i^{q-1} - 1)(x_i^{q-1} + 1)} \tag{29}
\]
for all \(i \geq 0 \) (with an appropriate choice of the roots \(x_{i+1}, x_{i+2} \) of Eqn. (27); see Lemma 2.7). Compare with Eqn. (25).

Remark 8.2. The first explicit tower over a field with cubic cardinality \(\ell = q^3 \) which attains the Zink bound (Inequality (2)) was found by van der Geer–van der Vlugt [12]. It is a tower over the field \(\mathbb{F}_{p^3} \) with \(p = 2 \), recursively defined by the equation
\[
x_{i+1}^2 + x_{i+1} = x_i + 1 + \frac{1}{x_i}. \tag{30}\]
This is the special case \(q = 2 \) of Eqn. (27) (after the change of variables \(x_i \to x_i + 1 \)).
Remark 8.3. Again we consider the tower $F = (F_0, F_1, F_2, \ldots)$ over $K = \mathbb{F}_{q^3}$. We set
\[v_i := -\frac{1}{x_i^{q-1} - 1} \quad \text{for all} \quad i \geq 0. \quad (31) \]

It follows by straightforward calculations from Eqn. (27) that
\[\frac{1 - v_{i+1}}{v_{i+1}^q} = \frac{v_{i+1}^q + v_i - 1}{v_i}, \quad \text{for all} \quad i \geq 0. \quad (32) \]

This means that F contains as a subtower the tower $E = (E_0, E_1, E_2, \ldots)$ (see [3]) with $E_0 = K(v_0)$ and $E_{i+1} = E_i(v_{i+1})$, where v_{i+1} satisfies Eqn. (32) over E_i. Since the limit of a subtower is at least as big as the limit of the tower itself (see [8]), we obtain that
\[\lambda(E) \geq \lambda(F) \geq \frac{2(q^2 - 1)}{q + 2}. \]

This gives another (in fact, much simpler) proof of the main result of [3].

Here is another striking analogy between F and H: again we consider the tower $H = (H_0, H_1, H_2, \ldots)$ over $K = \mathbb{F}_{q^2}$ given recursively by
\[u_i^{q+1} + u_{i+1} = \frac{u_i^q}{u_i^{q-1} + 1}. \quad (33) \]

Performing the analogous change of variables as in Eqn. (31); i.e., setting
\[w_i := -\frac{1}{u_i^{q-1} + 1} \quad \text{for all} \quad i \geq 0, \]

it follows by straightforward calculations from Eqn. (33) that
\[\frac{w_{i+1} + 1}{w_{i+1}^q} = \frac{w_i^q + 1}{w_i}, \quad \text{for all} \quad i \geq 0. \quad (34) \]

The subtower G of H given recursively by Eqn. (34) was studied in [2].

Remark 8.4. We end up this paper with a closer look on the relations between the towers F and E given by Eqns. (27) and (32), respectively. One can show that F_1/E_1 is a Galois extension of degree $(q - 1)^2$ with group $\mathbb{F}_q^\times \times \mathbb{F}_q^\times$; in fact the automorphisms of $F_1 = \mathbb{F}_{q^3}(x_0, x_1)$ over the subfield $E_1 = \mathbb{F}_{q^3}(v_0, v_1)$ are given by:
\[x_0 \mapsto ax_0 \text{ and } x_1 \mapsto bx_1, \] with $a, b \in \mathbb{F}_q^\times$.

Moreover the n-th field F_n of the tower F is the compositum with F_1 of the n-th field E_n of the tower E; i.e., we have
\[F_n = E_n \cdot F_1, \quad \text{for all} \quad n \geq 1. \]

18
The assertions above follow from Eqns. (31) and (29). We note however that for $q \neq 2$ the towers \mathcal{F} and \mathcal{E} are not K-isomorphic; i.e., there is no K-isomorphism

$$\sigma : \bigcup_{i=0}^{\infty} F_i \rightarrow \bigcup_{j=0}^{\infty} E_j .$$

In order to prove this we assume that such an isomorphism σ exists. Then we find integers $n \geq 2$ and $s \geq 2$ such that

$$\sigma(F_1) \subseteq E_n \subseteq E_{n+1} \subseteq \sigma(F_s) .$$

In the extension $\sigma(F_s)/\sigma(F_1)$ there occurs only wild ramification by Theorem 2.2, but in the extension E_{n+1}/E_n there is also some tame ramification with ramification index $e = q - 1$, cf. [3], p.177, Fig.1.

Acknowledgment

We would like to thank Y. Ihara for his interest in and helpful discussions about splitting places in the tower \mathcal{E}, cf. [14].

References

