A New Tower Over Cubic Finite Fields

Alp Bassa, Arnaldo Garcia^{†‡}and Henning Stichtenoth*

We present a new explicit tower of function fields $(F_n)_{n\geq 0}$ over the finite field with $\ell=q^3$ elements, where the limit of the ratios (number of rational places of F_n)/(genus of F_n) is bigger or equal to $2(q^2-1)/(q+2)$. This tower contains as a subtower the tower which was introduced by Bezerra–Garcia–Stichtenoth (see [3]), and in the particular case q=2 it coincides with the tower of van der Geer–van der Vlugt (see [12]). Many features of the new tower are very similar to those of the optimal wild tower in [8] over the quadratic field \mathbb{F}_{q^2} (whose modularity was shown in [6] by Elkies).

1 Introduction

Let F/\mathbb{F}_{ℓ} be an algebraic function field of one variable whose full constant field is the finite field \mathbb{F}_{ℓ} of cardinality ℓ . We denote by g(F) the genus and by N(F) the number of rational places (i.e., places of degree one) of F/\mathbb{F}_{ℓ} . The classical Hasse–Weil Theorem states that $N(F) \leq \ell + 1 + 2g(F)\sqrt{\ell}$.

Ihara [13] was the first to observe that this inequality can be improved substantially if the genus of F is large with respect to ℓ . He introduced the real number

$$A(\ell) := \limsup_{g(F) \to \infty} \frac{N(F)}{g(F)},$$

where F runs over all function fields over \mathbb{F}_{ℓ} . This number $A(\ell)$ is of fundamental importance to the theory of function fields over a finite field, since it gives information about how many rational places a function field F/\mathbb{F}_{ℓ} of large genus can have. While the Hasse-Weil Theorem gives that $A(\ell) \leq 2\sqrt{\ell}$, Ihara showed that $A(\ell) \leq \sqrt{2\ell}$ for any ℓ and that $A(\ell) \geq \sqrt{\ell} - 1$ for ℓ a square. Later Drinfel'd and Vlăduţ [4] showed that

$$A(\ell) \le \sqrt{\ell} - 1$$
 for any ℓ . (1)

^{*}Sabancı University, MDBF, Orhanlı, 34956 Tuzla, İstanbul, Turkey

[†]Instituto Nacional de Matemática Pura e Aplicada, IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, RJ, Brazil

[‡]A. Garcia was partially supported by PRONEX-FAPERJ and CNPq-Brazil (Proc. 307569/2006-3), and also by Sabancı University, İstanbul

Hence we have the equality $A(\ell) = \sqrt{\ell} - 1$ for ℓ a square (see also [5], [7], [17]). Much less is known if ℓ is not a square. One knows that for any ℓ (see Serre [15])

$$A(\ell) \ge c \cdot \log \ell$$
, for some constant $c > 0$.

For $\ell = p^3$ (p a prime number), the best known lower bound for $A(\ell)$ is due to Zink [18]:

$$A(p^3) \ge \frac{2(p^2 - 1)}{p + 2}. (2)$$

Zink obtained this result using degenerations of Shimura modular surfaces. Zink's bound was generalized by Bezerra, Garcia and Stichtenoth [3] who showed that

$$A(q^3) \ge \frac{2(q^2 - 1)}{q + 2} \tag{3}$$

holds for all prime powers q. For more information and references concerning Ihara's quantity $A(\ell)$ we refer to the recent survey article [11].

In order to obtain lower bounds for $A(\ell)$, it is natural to study towers of function fields; i.e., one considers sequences $\mathcal{G} = (G_0, G_1, G_2, \ldots)$ of function fields G_i over \mathbb{F}_{ℓ} with $G_0 \subseteq G_1 \subseteq G_2 \subseteq \ldots$ such that $g(G_i) \to \infty$. It is easy to see that the limit

$$\lambda(\mathcal{G}) := \lim_{i \to \infty} \frac{N(G_i)}{q(G_i)}$$

always exists (see [8]), and it is clear that $0 \le \lambda(\mathcal{G}) \le A(\ell)$.

A particularly interesting example is the tower $\mathcal{H} = (H_0, H_1, H_2, ...)$ over the field \mathbb{F}_{ℓ} with $\ell = q^2$, which is defined recursively as follows (see [8]): $H_0 = \mathbb{F}_{\ell}(u_0)$ is the rational function field, and for all $i \geq 0$ one considers the field $H_{i+1} = H_i(u_{i+1})$ with

$$u_{i+1}^q + u_{i+1} = \frac{u_i^q}{u_i^{q-1} + 1}. (4)$$

This tower over \mathbb{F}_{q^2} has the limit $\lambda(\mathcal{H}) = q - 1 = \sqrt{\ell} - 1$, and therefore it attains the Drinfel'd-Vlăduţ bound (1). Elkies [6] has shown that \mathcal{H} is in fact a modular tower.

In [3] the following tower $\mathcal{E} = (E_0, E_1, E_2, ...)$ over a cubic field \mathbb{F}_{ℓ} with $\ell = q^3$ is considered: again $E_0 = \mathbb{F}_{\ell}(v_0)$ is the rational function field, and for $i \geq 0$ one considers the field $E_{i+1} = E_i(v_{i+1})$ with

$$\frac{1 - v_{i+1}}{v_{i+1}^q} = \frac{v_i^q + v_i - 1}{v_i}.$$
 (5)

The limit $\lambda(\mathcal{E})$ satisfies the inequality (thus proving Inequality (3)):

$$\lambda(\mathcal{E}) \ge \frac{2(q^2 - 1)}{q + 2}.\tag{6}$$

The tower \mathcal{H} over the quadratic field \mathbb{F}_{ℓ} with $\ell = q^2$ which is defined by Eqn. (4) has some nice features which allow a rather simple proof of the equality $\lambda(\mathcal{H}) = q - 1$, see [9]. The most important one is that all extensions H_{i+1}/H_i are Galois of degree q, and for all places Q|P with ramification index e = e(Q|P) > 1 in H_{i+1}/H_i , the different exponent is d(Q|P) = 2(e-1).

In contrast, the tower \mathcal{E} over the cubic field \mathbb{F}_{ℓ} with $\ell = q^3$ which is defined by Eqn. (5) is much more complicated. Here (for $q \neq 2$) the extensions E_{i+1}/E_i are not even Galois, and there occurs tame and also wild ramification in E_{i+1}/E_i . The determination of the genus of E_n in [3] requires long and rather technical calculations. In [1] these calculations were replaced by a structural argument, thus obtaining a simpler proof of Inequality (6) without the explicit determination of $g(E_n)$. In [14], Ihara provides a construction of an infinite Galois extension, which contains the tower \mathcal{E} and exhibits the splitting places of \mathcal{E} in a more natural way. He also introduces a higher order differential which is invariant under the action of the associated infinite Galois group.

In this paper we present a new tower \mathcal{F} over the cubic field \mathbb{F}_{ℓ} with $\ell = q^3$, whose limit also satisfies the inequality $\lambda(\mathcal{F}) \geq 2(q^2-1)/(q+2)$ and which has nicer properties than the tower given by the recursion in Eqn. (5). This new tower $\mathcal{F} = (F_0, F_1, F_2, \ldots)$ over \mathbb{F}_{ℓ} is defined as follows: $F_0 = \mathbb{F}_{\ell}(x_0)$ is the rational function field over \mathbb{F}_{ℓ} , and for $n \geq 0$ one sets $F_{n+1} = F_n(x_{n+1})$ with

$$(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}. (7)$$

We would like to point out that our proof, that the limit of this new tower also satisfies the inequality $\lambda(\mathcal{F}) \geq 2(q^2-1)/(q+2)$, is much easier, shorter and less computational than the proofs in [3] and [1] for the tower \mathcal{E} . Moreover, since we show that \mathcal{E} is a subtower of \mathcal{F} we also get a new and simpler proof of Inequality (6); in fact, it follows from [8] that $\lambda(\mathcal{E}) \geq \lambda(\mathcal{F})$ when \mathcal{E} is a subtower of \mathcal{F} .

Another remark is that while for the two towers over \mathbb{F}_{q^2} presented in [7] and [8] the subtower (i.e., the tower \mathcal{H} in [8]) was easier to handle, for the two towers \mathcal{E} and \mathcal{F} over \mathbb{F}_{q^3} the supertower (i.e., the tower \mathcal{F}) turns out to be much easier to handle.

Finally we note that the tower \mathcal{F} coincides with the van der Geer-van der Vlugt tower in [12] when q=2, and also that the towers \mathcal{F} and \mathcal{H} have surprising similarities (see Section 8).

This paper is organized as follows: In Sec. 2 we introduce the sequence of function fields F_0, F_1, F_2, \ldots over a field $K \supseteq \mathbb{F}_q$ recursively given by Eqn. (7) and we show in Theorem 2.2 that they define a tower \mathcal{F} over K (i.e., $F_0 \subsetneq F_1 \subsetneq F_2 \subsetneq \ldots$, and K is the full constant field of all fields F_n). In Sec. 3 it is shown that for $K = \mathbb{F}_{q^3}$ there exist $q^3 - q$ rational places of F_0 which split completely in all extensions F_n/F_0 , thus providing many rational places of the function fields F_n/\mathbb{F}_{q^3} . In Sec. 4 and Sec. 5 we study ramification in the first steps $F_0 \subseteq F_1 \subseteq F_2$ of the tower. We note that the methods in Sec. 4 and Sec. 5 involve just simple calculations about ramification in certain Galois extensions K(x)/K(w) of rational function fields. Section 6 is the core of this paper. The results from Sec. 4 and Sec. 5 are used in Sec. 6 to give an upper bound for the genus of the

n-th function field F_n of the tower (see Thm. 6.5). The main tool here is a variant of Abhyankar's Lemma (see Lemma 6.2) dealing with ramification in composites of certain wildly ramified extensions. Putting together the results from Sec. 3 and Sec. 6 we obtain in Sec. 7 the inequality $\lambda(\mathcal{F}) \geq 2(q^2-1)/(q+2)$ for $K = \mathbb{F}_{q^3}$, which is the main result of the paper. Finally, in Sec. 8 we point out some surprising analogies between the tower \mathcal{F} over \mathbb{F}_{q^3} and the tower \mathcal{H} over \mathbb{F}_{q^2} which is defined by Eqn. (4). We also show that the above-mentioned tower \mathcal{E} is a subtower of \mathcal{F} .

NOTATIONS: We consider function fields F/K where K is the full constant field of F. In most cases K will be a finite field or the algebraic closure $\overline{\mathbb{F}}_q$ of a finite field. We denote by $\mathbb{P}(F)$ the set of places of F/K. For $P \in \mathbb{P}(F)$, we will denote by v_P the corresponding discrete valuation of F/K and by \mathcal{O}_P the valuation ring of P. For $z \in \mathcal{O}_P$ we denote by z(P) the residue class of z in \mathcal{O}_P/P . We denote by $\deg(P)$ the degree of P. In particular, if P is a place of degree one, then $z(P) \in K$.

For a finite separable extension E of F and a place $Q \in \mathbb{P}(E)$ we will denote by $Q|_F$ the restriction of Q to F. We write $Q|_P$ if the place $Q \in \mathbb{P}(E)$ lies over the place $P \in \mathbb{P}(F)$. In this situation, we denote by $e(Q|_P)$ and $d(Q|_P)$ the ramification index and the different exponent of $Q|_P$, respectively. The place $P \in \mathbb{P}(F)$ is said to be totally ramified in E/F if there is a place $Q \in \mathbb{P}(E)$ above P with $e(Q|_P) = [E : F]$. It is said to be completely splitting in E/F if there are P = [E : F] distinct places of E above P.

Let E/F be a Galois extension of function fields, let $P \in \mathbb{P}(F)$ and $Q \in \mathbb{P}(E)$ above the place P. We say that Q|P is weakly ramified if the second ramification group $G_2(Q|P) = 1$; in other words, if $e(Q|P) = e_0 \cdot e_1$ where $(e_0, p) = 1$ and $e_1 = p^j$ is a power of the characteristic p of F, then $d(Q|P) = (e_0e_1 - 1) + (e_1 - 1)$.

If F = K(x) is a rational function field, we will write $(x = \alpha)$ for the place of F which is the zero of $x - \alpha$ (where $\alpha \in K$), and $(x = \infty)$ for the pole of x in K(x)/K.

2 The tower

Let K be a field of characteristic p > 0, let q be a power of p and assume that $\mathbb{F}_q \subseteq K$. We study the sequence $\mathcal{F} = (F_0, F_1, F_2, \ldots)$ of function fields F_i/K which is defined recursively as follows: $F_0 = K(x_0)$ is the rational function field, and for $n \geq 0$ let $F_{n+1} = F_n(x_{n+1})$ where x_{n+1} satisfies the equation over F_n below:

$$(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}.$$
 (8)

Remark 2.1. We set

$$f(T) := (T^q - T)^{q-1} + 1 \in K[T]. \tag{9}$$

Then Eqn. (8) can be written as

$$f(x_{n+1}) = \frac{1}{1 - f(1/x_n)}. (10)$$

We also remark that $f(T) = (T^{q^2} - T)/(T^q - T)$, hence the roots of f(T) are exactly the elements $\beta \in \mathbb{F}_{q^2} \backslash \mathbb{F}_q$. This property of the polynomial f(T) will play an important role in Sections 3 and 4.

Theorem 2.2. Let \mathcal{F} be the sequence of function fields F_n over K which is defined by Eqn. (8). Then \mathcal{F} is a tower over K, and more precisely the following hold:

- (i) The extensions F_{n+1}/F_n are Galois for all $n \geq 0$.
- (ii) $[F_1:F_0]=q(q-1)$ and $[F_{n+1}:F_n]=q$ for all $n \ge 1$.
- (iii) K is the full constant field of F_n , for all $n \geq 0$.

The proof of Thm. 2.2 is given in several steps.

Lemma 2.3. F_{n+1}/F_n is Galois and $[F_{n+1}:F_n]$ divides q(q-1), for all $n \geq 0$.

Proof. We set

$$u_n := \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}. (11)$$

Then x_{n+1} is a root of the polynomial $f_n(T) := (T^q - T)^{q-1} + 1 - u_n \in F_n[T]$. The other roots of $f_n(T)$ are the elements $ax_{n+1} + b$ with $a \in \mathbb{F}_q^{\times}$ and $b \in \mathbb{F}_q$. Therefore F_{n+1} is the splitting field of $f_n(T)$ over F_n and the extension F_{n+1}/F_n is Galois.

Let G_{n+1} be the Galois group of F_{n+1}/F_n . Every element $\sigma \in G_{n+1}$ acts on the function x_{n+1} as $\sigma(x_{n+1}) = a_{\sigma}x_{n+1} + b_{\sigma}$, and the map

$$\sigma \mapsto \left(\begin{array}{cc} a_{\sigma} & 0 \\ b_{\sigma} & 1 \end{array}\right)$$

is a monomorphism of G_{n+1} into the group of invertible 2×2 -matrices over \mathbb{F}_q of the form $\begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix}$. This group has order q(q-1), and hence $\operatorname{ord}(G_{n+1})$ divides q(q-1). \square

Lemma 2.4. Let $P_0 = (x_0 = \infty)$ be the pole of x_0 in F_0 and let P_n be a place of F_n above P_0 . For i = 1, ..., n we set $P_i := P_n|_{F_i}$ and $e^{(i)} := e(P_i|P_{i-1})$. Then the place P_i is a pole of x_i . Moreover, $v_{P_i}(x_i)$ divides $(q-1)^i$, and $e^{(i)} \equiv 0 \mod q$, for $1 \le i \le n$.

Proof. Let $u_i \in F_i$ be defined as in Eqn. (11). We prove the lemma by induction. For the case i = 1, we have $v_{P_1}(u_0) = e^{(1)} \cdot v_{P_0}(u_0) = -e^{(1)} \cdot (q-1)$. From the equation $(x_1^q - x_1)^{q-1} + 1 = u_0$, it follows that $v_{P_1}(x_1) < 0$ and therefore

$$v_{P_1}((x_1^q - x_1)^{q-1} + 1) = q \cdot (q-1) \cdot v_{P_1}(x_1).$$

We conclude that $q \cdot v_{P_1}(x_1) = -e^{(1)}$. To finish this case, notice that $e^{(1)}$ divides the degree $[F_1 : F_0]$, and $[F_1 : F_0]$ divides q(q-1) (by Lemma 2.3). Hence it follows that $v_{P_1}(x_1)$ divides (q-1) and that $e^{(1)} \equiv 0 \mod q$.

Now we assume that $v_{P_i}(x_i) < 0$ and $v_{P_i}(x_i)$ divides $(q-1)^i$ for some $i \in \{1, \ldots, n-1\}$. From Eqn. (11) we obtain $v_{P_i}(u_i) = (q-1) \cdot v_{P_i}(x_i)$, hence

$$v_{P_{i+1}}(u_i) = e^{(i+1)} \cdot (q-1) \cdot v_{P_i}(x_i) < 0.$$

Since $(x_{i+1}^q - x_{i+1})^{q-1} + 1 = u_i$, it follows that P_{i+1} is a pole of x_{i+1} and

$$q(q-1) \cdot v_{P_{i+1}}(x_{i+1}) = e^{(i+1)} \cdot (q-1) \cdot v_{P_i}(x_i).$$

Now we finish as in the case i=1; we conclude that $e^{(i+1)} \equiv 0 \mod q$ and that $v_{P_{i+1}}(x_{i+1})$ divides $(q-1)^{i+1}$.

Lemma 2.5. $[F_{n+1} : F_n] \equiv 0 \mod q \text{ for all } n \geq 0.$

Proof. Follows directly from Lemmas 2.3 and 2.4.

Lemma 2.6. $[F_1:F_0]=q(q-1)$, and K is the full constant field of F_1 .

Proof. By definition, $F_1 = K(x_0, x_1)$ with

$$(x_1^q - x_1)^{q-1} + 1 = \frac{-x_0^{q(q-1)}}{(x_0^{q-1} - 1)^{q-1}} = u_0.$$
(12)

It follows that

$$[K(x_0):K(u_0)] = [K(x_1):K(u_0)] = q(q-1).$$
(13)

From Eqn. (12) it is obvious that the place $(u_0 = 0)$ of $K(u_0)$ is totally ramified in the extension $K(x_0)/K(u_0)$. The place of $K(x_0)$ above $(u_0 = 0)$ is the place $(x_0 = 0)$, and we have $e((x_0 = 0)|(u_0 = 0)) = q(q - 1)$.

However, in the extension $K(x_1)/K(u_0)$ the place $(u_0 = 0)$ is unramified, since the polynomial $(x_1^q - x_1)^{q-1} + 1$ does not have multiple roots. Let Q be a place of $K(x_1)$ lying above $(u_0 = 0)$ and let R be a place of $K(x_0, x_1)$ above Q. It follows from above that e(R|Q) = q(q-1). Therefore $[K(x_0, x_1) : K(x_1)] = q(q-1)$, and K is algebraically closed in $K(x_0, x_1) = F_1$ (as there is a place which is totally ramified in $F_1/K(x_1)$). The assertion $[F_1 : F_0] = q(q-1)$ follows since $[F_1 : F_0] = [F_1 : K(x_1)]$ by Eqn. (13).

The next lemma shows a striking property of the recursion in Eqn. (8) for $n \ge 1$. It gives a simple Artin-Schreier equation for the extension F_{n+1}/F_n of degree q.

Lemma 2.7. For each $n \geq 1$ there is some $\mu \in \mathbb{F}_q^{\times}$ such that

$$x_{n+1}^q - x_{n+1} = \mu \cdot \frac{x_{n-1}^q}{(x_{n-1}^{q-1} - 1) \cdot (x_n^{q-1} - 1)}.$$

Proof. By Eqn. (8) we have

$$(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}$$
 and $(x_n^q - x_n)^{q-1} + 1 = \frac{-x_{n-1}^{q(q-1)}}{(x_{n-1}^{q-1} - 1)^{q-1}}$. (14)

Hence we get

$$(x_{n+1}^q - x_{n+1})^{q-1} = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}} - 1 = \frac{-((x_n^q - x_n)^{q-1} + 1)}{(x_n^{q-1} - 1)^{q-1}}$$

$$= \frac{x_{n-1}^{q(q-1)}}{(x_{n-1}^{q-1} - 1)^{q-1} \cdot (x_n^{q-1} - 1)^{q-1}} = \left(\frac{x_{n-1}^q}{(x_{n-1}^{q-1} - 1) \cdot (x_n^{q-1} - 1)}\right)^{q-1}.$$

Proof of Theorem 2.2. Putting together the results of the lemmas above, one gets the assertions of Thm. 2.2. \Box

3 Splitting places in the tower over $K=\mathbb{F}_\ell$ for $\ell=q^3$

In this section we consider the tower $\mathcal{F} = (F_0, F_1, F_2, ...)$ which was introduced in Sec. 2, over the field $K = \mathbb{F}_{\ell}$ with $\ell = q^3$. We will show that many rational places of the field $F_0 = \mathbb{F}_{\ell}(x_0)$ split completely in \mathcal{F} ; i.e., they split completely in all extensions F_n/F_0 . This means that the function fields F_n/\mathbb{F}_{ℓ} have "many" rational places. As in Sec. 2, let

$$f(T) = (T^q - T)^{q-1} + 1 \in \mathbb{F}_q[T]. \tag{15}$$

For q=2 we have obviously that f(T)-c is separable for all elements $c\in\overline{\mathbb{F}}_2$.

Lemma 3.1. Let $c \in \overline{\mathbb{F}}_q$ be an element of the algebraic closure of \mathbb{F}_q . Then

$$f(T) - c$$
 is inseparable if and only if $q \neq 2$ and $c = 1$.

For an element $\beta \in \overline{\mathbb{F}}_q$ we have that $f(\beta) = 1$ if and only if β belongs to \mathbb{F}_q . Proof. Just notice that the derivative of f(T) satisfies $f'(T) = (T^q - T)^{q-2}$.

Lemma 3.2. For an element $\beta \in \overline{\mathbb{F}}_q$ we have that $f(\beta) = 0$ if and only if $\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$. Proof. Just notice that we have (see Rem. 2.1)

$$f(T) = (T^{q^2} - T)/(T^q - T). (16)$$

Now we consider the recursive equation for the tower \mathcal{F} (see Eqn. (10)):

$$f(Y) = \frac{1}{1 - f(1/X)}. (17)$$

We will show that if $X = \alpha$ belongs to $\mathbb{F}_{q^3} \setminus \mathbb{F}_q$ then all solutions $Y = \beta \in \overline{\mathbb{F}}_q$ of Eqn. (17) with $X = \alpha$ are such that $\beta \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q$. The assertion that $\beta \notin \mathbb{F}_q$ follows directly from Eqn. (17) and the lemmas above.

Using Eqn. (16) we have:

$$\frac{1}{1 - f(T)} = \frac{T - T^q}{T^{q^2} - T^q}. (18)$$

7

Lemma 3.3. For an element $\beta \in \overline{\mathbb{F}}_q$ we have that

$$f(\beta)^q = \frac{1}{1 - f(\beta)}$$
 if and only if $\beta \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q$.

Proof. Straightforward using Eqn. (16) and Eqn. (18).

Eqn. (17) can also be written as below:

$$f(\frac{1}{X}) = 1 - \frac{1}{f(Y)}. (19)$$

Consider now a solution (α, β) of Eqn. (17) with $\alpha \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q$. Then $1/\alpha \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q$. We have:

$$f(\beta) = \frac{1}{1 - f(\frac{1}{\alpha})} = f(\frac{1}{\alpha})^q = 1 - \frac{1}{f(\beta)^q}.$$

In the last two equalities above we have used Lemma 3.3 and Eqn. (19), respectively. Hence we obtained that $f(\beta)^q = 1/(1 - f(\beta))$; i.e., $\beta \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q$.

We have thus proved the main result of this section:

Theorem 3.4. Let $\mathcal{F} = (F_0, F_1, \dots)$ be the tower over \mathbb{F}_{q^3} given recursively by Eqn. (17). Then the places $(x_0 = \alpha)$ with $\alpha \in \mathbb{F}_{q^3} \setminus \mathbb{F}_q$ split completely in all extensions F_n/F_0 . In particular the number of \mathbb{F}_{q^3} -rational places satisfies:

$$N(F_n) \ge (q^3 - q) \cdot [F_n : F_0]$$
 for all $n \in \mathbb{N}$.

4 The extensions K(x)/K(w) and K(x)/K(u)

Throughout this section, K is a field with $\mathbb{F}_{q^2} \subseteq K$. Let K(x)/K be a rational function field over K. We will consider certain subfields $K(w) \subseteq K(x)$ and $K(u) \subseteq K(x)$ which are related to the recursive definition of the tower \mathcal{F} . Detailed information about ramification in K(x)/K(w) and in K(x)/K(u) will enable us to study in Sec. 5 and Sec. 6 the ramification behaviour in the tower \mathcal{F} .

As in Sec. 2 we consider the polynomial $f(T) = (T^q - T)^{q-1} + 1 \in K[T]$, and we set

$$w := f(x) = (x^{q} - x)^{q-1} + 1 \in K(x).$$
(20)

Lemma 4.1. (i) The extension K(x)/K(w) is Galois of degree q(q-1).

- (ii) The place $(w = \infty)$ of K(w) is totally ramified in K(x)/K(w); the place above it is the place $(x = \infty)$. We have $d((x = \infty)|(w = \infty)) = q^2 2$; i.e., $(x = \infty)|(w = \infty)$ is weakly ramified.
- (iii) Above the place (w = 1) there are the q places $(x = \theta)$ of K(x) with $\theta \in \mathbb{F}_q$, with ramification index $e((x = \theta)|(w = 1)) = q 1$.
- (iv) All other places of K(w) are unramified in K(x)/K(w).

$$(x = \infty) \qquad (x = \theta) \text{ with } \theta \in \mathbb{F}_q \qquad (x = \beta) \text{ with } \beta \in \mathbb{F}_{q^2} \backslash \mathbb{F}_q$$

$$e = q(q-1) \Big| \qquad e = q-1 \Big| \Big| \Big| \Big| \Big| e = q-1 \qquad e = 1 \Big| \Big| \Big| \Big| \Big| e = 1 \qquad (w = 0)$$

Figure 1: Ramification and splitting in K(x)/K(w).

(v) The places above (w=0) are exactly the places $(x=\beta)$ with $\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.

Proof. i) One checks easily that K(w) is the fixed field of the following group H of automorphisms of K(x)/K:

$$H:=\{\sigma\in \operatorname{Aut}(K(x)/K)\mid \sigma(x)=ax+b, a\in \mathbb{F}_q^\times, b\in \mathbb{F}_q\}.$$

- ii) It is clear from Eqn. (20) that $(x = \infty)$ is the only place of K(x) lying above $(w = \infty)$, and that the ramification index is $e((x = \infty)|(w = \infty)) = q(q 1)$. Since K(x)/K(w) is Galois, it follows from ramification theory (cf. [16, Sec. III.8]) that $d((x = \infty)|(w = \infty)) \ge (q(q 1) 1) + (q 1) = q^2 2$. We will show below that equality holds; i.e., that $(x = \infty)|(w = \infty)$ is weakly ramified.
 - iii) This assertion is obvious from the equation $w-1=(x^q-x)^{q-1}$.
 - iv) It follows from above that the degree of the different Diff(K(x)/K(w)) satisfies

deg Diff
$$(K(x)/K(w)) \ge d((x = \infty)|(w = \infty)) + \sum_{\theta \in \mathbb{F}_q} d((x = \theta)|(w = 1))$$

 $\ge (q^2 - 2) + q(q - 2) = 2(q^2 - q - 1).$

On the other hand, by Hurwitz genus formula for K(x)/K(w) we have

deg Diff
$$(K(x)/K(w)) = -2 + 2[K(x) : K(w)] = 2(q^2 - q - 1).$$

Now the assertions iv) and ii) follow immediately.

v) Observing that (see Eqn. (16)) $w = f(x) = (x^{q^2} - x)/(x^q - x)$, we see that the places above (w = 0) are exactly the places $(x = \beta)$ with $\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.

Next we consider the subfield $K(u) \subseteq K(x)$ where u is defined by

$$u := \frac{-x^{q(q-1)}}{(x^{q-1} - 1)^{q-1}}. (21)$$

Lemma 4.2. (i) The extension K(x)/K(u) is Galois of degree q(q-1).

(ii) The place (u=0) of K(u) is totally ramified in K(x)/K(u); the place above it is the place (x=0). We have $d((x=0)|(u=0)) = q^2 - 2$; i.e., (x=0)|(u=0) is weakly ramified.

- (iii) Above the place $(u = \infty)$ lie exactly q places P of K(x); namely the places $(x = \infty)$ and $(x = \alpha)$ with $\alpha \in \mathbb{F}_q^{\times}$. We have $e(P|(u = \infty)) = q 1$.
- (iv) No other place of K(u) is ramified in K(x).
- (v) The places above (u=1) are exactly the places $(x=\beta)$ with $\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.

Figure 2: Ramification and splitting in K(x)/K(u).

Proof. Note that u = 1/(1 - f(1/x)) by Rem. 2.1 and therefore f(1/x) = (u - 1)/u. The result follows directly from Lemma 4.1 with the change of variables

$$x \mapsto 1/x$$
 and $w \mapsto (u-1)/u$.

5 The fields F_1 and F_2

In this section we assume again that $\mathbb{F}_{q^2} \subseteq K$. We want to study ramification in the first two steps of the tower \mathcal{F} over K. So we consider the fields $F_0 = K(x_0)$, $F_1 = K(x_0, x_1)$ and $F_2 = K(x_0, x_1, x_2)$ where

$$(x_1^q - x_1)^{q-1} + 1 = \frac{-x_0^{q(q-1)}}{(x_0^{q-1} - 1)^{q-1}}$$
 and $(x_2^q - x_2)^{q-1} + 1 = \frac{-x_1^{q(q-1)}}{(x_1^{q-1} - 1)^{q-1}}$. (22)

Lemma 5.1. The extensions $F_1/K(x_0)$ and $F_1/K(x_1)$ are both Galois of degree q(q-1).

Proof. We proved the assertion for $F_1/K(x_0)$ in Thm. 2.2. As in Eqn. (11) we set

$$u_0 := \frac{-x_0^{q(q-1)}}{(x_0^{q-1} - 1)^{q-1}}.$$

The field F_1 is the compositum of $K(x_0)$ and $K(x_1)$ over $K(u_0)$ as in Figure 3. By Lemma 4.2 the extension $K(x_0)/K(u_0)$ is Galois, hence $F_1/K(x_1)$ is Galois as well.

Lemma 5.2. Let $\Omega := \mathbb{F}_{q^2} \cup \{\infty\}$.

(i) For a place $P \in \mathbb{P}(F_1)$ the following are equivalent:

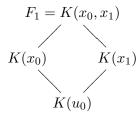
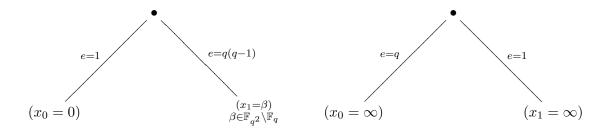


Figure 3: The extension $F_1/K(u_0)$

- a) $P|_{K(x_0)} = (x_0 = \omega)$ for some $\omega \in \Omega$.
- b) $P|_{K(x_1)} = (x_1 = \omega')$ for some $\omega' \in \Omega$.
- (ii) If a place $Q \in \mathbb{P}(F_1)$ does not lie above a place $(x_0 = \omega)$ with $\omega \in \Omega$ then Q is unramified over $K(x_0)$ and over $K(x_1)$.
- (iii) The ramification indices of the places $(x_0 = \omega)$ and $(x_1 = \omega')$ with $\omega, \omega' \in \Omega$ in the extensions $F_1/K(x_0)$ and $F_1/K(x_1)$ are as depicted in Figure 4. All places of F_1 are weakly ramified over $K(x_0)$ and over $K(x_1)$.



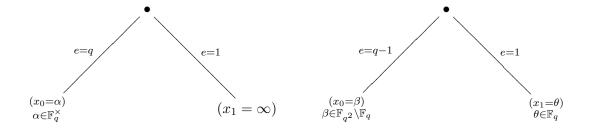


Figure 4: Ramification in $F_1/K(x_0)$ and in $F_1/K(x_1)$.

Proof. According to the notations in Sec. 4 we write $u_0 := -x_0^{q(q-1)}/(x_0^{q-1}-1)^{q-1}$ and $w_1 := (x_1^q - x_1)^{q-1} + 1$. Hence $u_0 = w_1$ by Eqn. (22). We consider the diagram of fields

in Figure 3 where all extensions are Galois of degree q(q-1). We have

$$P|_{K(x_0)} = (x_0 = \omega)$$
 for some $\omega \in \Omega$
 $\Leftrightarrow P|_{K(u_0)} \in \{(u_0 = 0), (u_0 = 1), (u_0 = \infty)\}$ (by Lemma 4.2)
 $\Leftrightarrow P|_{K(x_1)} = (x_1 = \omega')$ for some $\omega' \in \Omega$ (by Lemma 4.1).

By Lemma 4.1 and Lemma 4.2 we know that only the places $(u_0 = 0)$, $(u_0 = 1)$ and $(u_0 = \infty)$ are ramified in $K(x_0)/K(u_0)$ or in $K(x_1)/K(u_0)$. We will consider here only the case $(u_0 = \infty)$; the other two cases are similar (even easier). Denote by Q a place of F_1 above $(u_0 = \infty)$. The situation is depicted in Figure 5. It follows

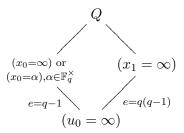


Figure 5: Ramification in $F_1/K(u_0)$

from Abhyankar's Lemma (see [16, Prop. III.8.9]) that Q is unramified over $K(x_1)$ and that the ramification index of Q over $K(x_0)$ is e = q. Since $(x_1 = \infty)|(u_0 = \infty)$ is weakly ramified by Lemma 4.1, it follows from the transitivity of different exponents in $F_1 \supseteq K(x_0) \supseteq K(u_0)$ that Q is weakly ramified over $K(x_0)$.

Lemma 5.3. The extensions $F_2/K(x_0, x_1)$ and $F_2/K(x_1, x_2)$ are Galois extensions of degree q. All places that are ramified in $F_2/K(x_0, x_1)$ or in $F_2/K(x_1, x_2)$ are totally and weakly ramified.

Proof. The field F_2 is the compositum of $K(x_0, x_1)$ and $K(x_1, x_2)$ over $K(x_1)$. Since the extensions $K(x_0, x_1)/K(x_1)$ and $K(x_1, x_2)/K(x_1)$ are Galois by Lemma 5.1, it is clear that $F_2/K(x_0, x_1)$ and $F_2/K(x_1, x_2)$ are Galois. The assertion about the degrees follows from Lemma 2.7. Now we consider a place $Q \in \mathbb{P}(F_2)$ which is ramified in $F_2/K(x_1, x_2)$. Then the place $P := Q|_{K(x_0, x_1)}$ is ramified over $K(x_1)$ and therefore $Q|_{K(x_1)} = (x_1 = \beta)$ with some $\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$, by Lemma 5.2. So we have the situation depicted in Figure 6, where R denotes the restriction of Q to $K(x_1, x_2)$.

As in the proof of Lemma 5.2, we use Abhyankar's lemma to get that e(Q|R) = q, and the transitivity of different exponents to get that $d(Q|R) = 2 \cdot (q-1)$.

Now if Q is a place of F_2 which is ramified over F_1 , then one also concludes (and it is simpler) that it is totally and weakly ramified over F_1 .

Remark 5.4. It is clear that all statements in this section remain valid when the fields $K(x_0)$, $K(x_0, x_1)$ and $K(x_0, x_1, x_2)$ are replaced by the fields $K(x_n)$, $K(x_n, x_{n+1})$ and $K(x_n, x_{n+1}, x_{n+2})$, respectively.

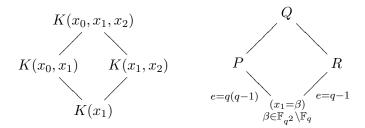


Figure 6:

6 The genus of F_n

In order to estimate the limit $\lambda(\mathcal{F})$ of the tower \mathcal{F} over \mathbb{F}_{q^3} we need an upper bound for the genus of the n-th function field F_n ; therefore one has to study ramification in the extension F_n/F_0 . Without changing the ramification behaviour (i.e., ramification index and different exponent) and the genus, we can extend the constant field such that it contains \mathbb{F}_{q^2} . So we assume in this section that $\mathbb{F}_{q^2} \subseteq K$ and denote $\operatorname{char}(K) = p$.

A place $P \in \mathbb{P}(F_0)$ is said to be ramified in the tower \mathcal{F} if P is ramified in F_m/F_0 for some $m \geq 1$, and the ramification locus $V(\mathcal{F}/F_0)$ is defined as

$$V(\mathcal{F}/F_0) := \{ P \in \mathbb{P}(F_0) \mid P \text{ is ramified in } \mathcal{F} \}.$$

Lemma 6.1. The ramification locus of \mathcal{F} over F_0 satisfies

$$V(\mathcal{F}/F_0) \subseteq \{(x_0 = \omega) \mid \omega \in \mathbb{F}_{q^2} \text{ or } \omega = \infty\}.$$

Proof. Assume that a place $Q \in \mathbb{P}(F_n)$ is ramified in F_{n+1}/F_n . Then the restriction $Q|_{K(x_n)}$ ramifies in the extension $K(x_n, x_{n+1})/K(x_n)$. We conclude from Lemma 5.2 ii) that $Q|_{K(x_n)} = (x_n = \omega')$ with $\omega' \in \mathbb{F}_{q^2} \cup \{\infty\}$. By induction it follows from Lemma 5.2 i) that $Q|_{F_0} = (x_0 = \omega)$ with $\omega \in \mathbb{F}_{q^2} \cup \{\infty\}$. This proves the lemma. We remark that in fact $V(\mathcal{F}/F_0) = \{(x_0 = \omega) \mid \omega \in \mathbb{F}_{q^2} \text{ or } \omega = \infty\}$ but we do not need this here.

In the proof of Lemma 6.3 below, the following result is crucial:

Lemma 6.2. Consider an extension E/F of function fields over K such that $E = E_1 \cdot E_2$ is the composite field of two intermediate fields $F \subseteq E_i \subseteq E$, i = 1, 2 and the extensions E_1/F and E_2/F are Galois p-extensions. Let Q be a place of E, and let $Q_i := Q|_{E_i}$ and $P := Q|_F$ be the restrictions of Q. Suppose that $Q_1|_P$ and $Q_2|_P$ are weakly ramified. Then $Q|_{Q_1}$ and $Q|_{Q_2}$ are also weakly ramified.

Proof. See [10, Prop. 1.10] and also [9, Lemma 1].
$$\Box$$

A Galois extension E/F is weakly ramified if all places are weakly ramified in E/F.

Lemma 6.3. Let $n \ge 1$. Then the extension F_{n+1}/F_n is weakly ramified.

Proof. For $0 \le i \le j \le n+1$ we define the subfield $E_{i,j} \subseteq F_{n+1}$ by

$$E_{i,j} := K(x_i, x_{i+1}, \dots, x_j).$$

The extensions $E_{i,i+2}/E_{i,i+1}$ and $E_{i,i+2}/E_{i+1,i+2}$ are weakly ramified Galois p-extensions by Lemma 5.3 (see Figure 7). By induction it follows for all $j \geq i+2$ that $E_{i,j}/E_{i,j-1}$ and $E_{i,j}/E_{i+1,j}$ are weakly ramified Galois p-extensions (using Lemma 6.2). Since $F_n = E_{0,n}$ and $F_{n+1} = E_{0,n+1}$, the assertion of Lemma 6.3 follows.

Lemma 6.4. Let E_1/F be a Galois extension of function fields over K and let E/E_1 be a finite and separable extension. Let Q be a place of the field E and denote by P_1 and P the restrictions of Q to E_1 and F, respectively. Suppose that we have:

- (i) $e(Q|P_1)$ is a power of p = char(K) and $d(Q|P_1) = 2e(Q|P_1) 2$.
- (ii) The place P_1 is weakly ramified over P.

Then the different exponent d(Q|P) satisfies

$$d(Q|P) = (e_0e_1 - 1) + (e_1 - 1) < e(Q|P) \cdot \left(1 + \frac{1}{e_0}\right),$$

where $e(Q|P) = e_0e_1$ with $(p, e_0) = 1$ and e_1 is a p-power.

Proof. Straightforward, using transitivity of different exponents.

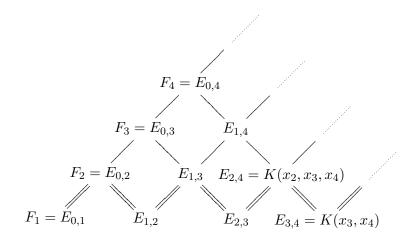


Figure 7: Double lines denote weakly ramified Galois p-extensions

Theorem 6.5. The genus of the n-th function field of the tower $\mathcal{F} = (F_0, F_1, F_2, ...)$ defined by Eqn. (8), satisfies

$$g(F_n) \le \frac{q^2 + 2q}{2} \cdot [F_n : F_0].$$

Proof. Let $n \geq 1$. First we observe that for a place $Q \in \mathbb{P}(F_n)$ and the restriction $P_1 := Q|_{F_1}$ of Q to F_1 we have that

$$e(Q|P_1)$$
 is a *p*-power and $d(Q|P_1) = 2e(Q|P_1) - 2$.

This follows from Lemma 6.3 and repeated applications of Lemma 6.4.

Now we consider the places $P \in \mathbb{P}(F_0)$ which are in the ramification locus $V(\mathcal{F}/F_0)$. According to item (iii) of Lemma 5.2 we distinguish 2 cases:

Case 1: $P = (x_0 = \theta)$ with $\theta \in \mathbb{F}_q$ or $P = (x_0 = \infty)$.

By Lemma 5.2 and Lemma 6.4 we obtain

$$\sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q \mid P}} d(Q|P) \cdot \deg Q < \sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q \mid P}} 2e(Q|P) \cdot \deg Q = 2[F_n : F_0]. \tag{23}$$

Case 2: $P = (x_0 = \beta)$ with $\beta \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.

In this case, Lemma 5.2 and Lemma 6.4 yield

$$\sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q|P}} d(Q|P) \cdot \deg Q < \sum_{\substack{Q \in \mathbb{P}(F_n) \\ Q|P}} \left(1 + \frac{1}{q-1}\right) e(Q|P) \cdot \deg Q = \frac{q}{q-1} [F_n : F_0]. \tag{24}$$

There are q+1 places $P \in \mathbb{P}(F_0)$ as in Case 1, and q^2-q places as in Case 2. By Hurwitz genus formula for the extension F_n/F_0 we obtain

$$2g(F_n) \le -2[F_n : F_0] + (q+1) \cdot 2[F_n : F_0] + (q^2 - q) \cdot \frac{q}{q-1}[F_n : F_0]$$
$$= (q^2 + 2q)[F_n : F_0].$$

7 The limit of the tower over $K=\mathbb{F}_\ell$ with $\ell=q^3$

Putting together the results of the previous sections we obtain our main result:

Theorem 7.1. Let $K = \mathbb{F}_{\ell}$ with $\ell = q^3$, and let $\mathcal{F} = (F_0, F_1, F_2, ...)$ be the tower over K which is recursively defined by $F_0 = K(x_0)$ and $F_{n+1} = F_n(x_{n+1})$, where

$$(x_{n+1}^q - x_{n+1})^{q-1} + 1 = \frac{-x_n^{q(q-1)}}{(x_n^{q-1} - 1)^{q-1}}$$
 for all $n \ge 0$.

Then the limit $\lambda(\mathcal{F}) = \lim_{n \to \infty} N(F_n)/g(F_n)$ satisfies

$$\lambda(\mathcal{F}) \ge 2(q^2 - 1)/(q + 2).$$

Proof. By Thm. 3.4 and Thm. 6.5 we have

$$N(F_n) \ge (q^3 - q) \cdot [F_n : F_0]$$
 and $g(F_n) \le \frac{q^2 + 2q}{2} \cdot [F_n : F_0]$.

Hence

$$\frac{N(F_n)}{q(F_n)} \ge \frac{(q^3 - q) \cdot 2}{q^2 + 2q} = \frac{2(q^2 - 1)}{q + 2} \quad \text{for all } n \ge 0.$$

8 Remarks

We finish this paper with a few remarks.

Remark 8.1. Our tower $\mathcal{F} = (F_0, F_1, F_2, ...)$ over $K = \mathbb{F}_{q^3}$ bears remarkable analogy to the tower $\mathcal{H} = (H_0, H_1, H_2, ...)$ over the quadratic field $K = \mathbb{F}_{q^2}$ which is defined recursively by the equation

$$u_{i+1}^q + u_{i+1} = \frac{u_i^q}{u_i^{q-1} + 1}$$

and which attains the Drinfel'd–Vlăduţ bound (1). The analogies between \mathcal{H} and \mathcal{F} become even more evident if we substitute $u_i = \xi y_i$ with $\xi^{q-1} = -1$; then the above equation becomes $y_{i+1}^q - y_{i+1} = -y_i^q/(y_i^{q-1} - 1)$. We now compare some features of the towers \mathcal{F} over \mathbb{F}_{q^3} and \mathcal{H} over \mathbb{F}_{q^2} , see [8].

1) The tower $\mathcal{H} = (H_0, H_1, H_2, ...)$ is defined recursively over the field $K = \mathbb{F}_{q^2}$ by $H_0 = K(y_0)$ and $H_{i+1} = H_i(y_{i+1})$, where

$$y_{i+1}^q - y_{i+1} = \frac{-y_i^q}{y_i^{q-1} - 1}$$
 for all $i \ge 0$. (25)

2) Setting $h(T) := T^q - T$, Eqn. (25) can be written as

$$h(y_{i+1}) = \frac{1}{h(1/y_i)}. (26)$$

- 3) The extensions H_{i+1}/H_i (for $i \ge 0$) are weakly ramified Galois extensions of degree $[H_{i+1}: H_i] = q$.
- 4) The ramification locus of \mathcal{H} over H_0 is

$$V(\mathcal{H}/H_0) = \{ (y_0 = \omega) \mid \omega \in \mathbb{F}_q \cup \{\infty\} \}.$$

5) The places $(y_0 = \alpha)$ with $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ are completely splitting in the extensions H_n/H_0 , for all $n \geq 0$.

The analogous properties of the tower \mathcal{F} are:

1*) The tower $\mathcal{F} = (F_0, F_1, F_2, \ldots)$ is defined recursively over the field $K = \mathbb{F}_{q^3}$ by $F_0 = K(x_0)$ and $F_{i+1} = F_i(x_{i+1})$, where

$$(x_{i+1}^q - x_{i+1})^{q-1} + 1 = \frac{-x_i^{q(q-1)}}{(x_i^{q-1} - 1)^{q-1}} \quad \text{for all } i \ge 0.$$
 (27)

 2^*) Setting $f(T) := (T^q - T)^{q-1} + 1$, Eqn. (27) can be written as

$$f(x_{i+1}) = \frac{1}{1 - f(1/x_i)}. (28)$$

- 3*) The extensions F_{i+1}/F_i (for $i \ge 1$) are weakly ramified Galois extensions of degree $[F_{i+1}:F_i]=q$.
- 4^*) The ramification locus of \mathcal{F} over F_0 is

$$V(\mathcal{F}/F_0) = \{ (x_0 = \omega) \mid \omega \in \mathbb{F}_{q^2} \cup \{\infty\} \}.$$

5*) The places $(x_0 = \alpha)$ with $\alpha \in \mathbb{F}_{q^3} \backslash \mathbb{F}_q$ are completely splitting in the extensions F_n/F_0 , for all $n \geq 0$.

We also note that the polynomials h(T) and f(T) in Eqn. (26) and Eqn. (28) are defined in a very similar manner:

6) The polynomial $h(T) \in \mathbb{F}_q[T]$ generates the fixed field of K(T) under the group of automorphisms

$$G = \{ \sigma : K(T) \to K(T) \mid \sigma(T) = T + b \text{ with } b \in \mathbb{F}_q \}.$$

6*) The polynomial $f(T) \in \mathbb{F}_q[T]$ generates the fixed field of K(T) under the group of automorphisms

$$G^* = \{ \sigma : K(T) \to K(T) \mid \sigma(T) = aT + b \text{ with } a \in \mathbb{F}_q^\times \text{ and } b \in \mathbb{F}_q \}.$$

Another interesting observation is that the generators x_i of the tower \mathcal{F} satisfy

$$x_{i+2}^{q} - x_{i+2} = \frac{-x_{i}^{q}}{(x_{i}^{q-1} - 1)(x_{i+1}^{q-1} - 1)}$$
(29)

for all $i \geq 0$ (with an appropriate choice of the roots x_{i+1} , x_{i+2} of Eqn. (27); see Lemma 2.7). Compare with Eqn. (25).

Remark 8.2. The first explicit tower over a field with cubic cardinality $\ell = q^3$ which attains the Zink bound (Inequality (2)) was found by van der Geer-van der Vlugt [12]. It is a tower over the field \mathbb{F}_{p^3} with p=2, recursively defined by the equation

$$x_{i+1}^2 + x_{i+1} = x_i + 1 + \frac{1}{x_i}. (30)$$

This is the special case q=2 of Eqn. (27) (after the change of variables $x_i \to x_i+1$).

Remark 8.3. Again we consider the tower $\mathcal{F} = (F_0, F_1, F_2, ...)$ over $K = \mathbb{F}_{q^3}$. We set

$$v_i := -\frac{1}{x_i^{q-1} - 1}$$
 for all $i \ge 0$. (31)

It follows by straightforward calculations from Eqn. (27) that

$$\frac{1 - v_{i+1}}{v_{i+1}^q} = \frac{v_i^q + v_i - 1}{v_i}, \quad \text{for all } i \ge 0.$$
 (32)

This means that \mathcal{F} contains as a subtower the tower $\mathcal{E} = (E_0, E_1, E_2, \ldots)$ (see [3]) with $E_0 = K(v_0)$ and $E_{i+1} = E_i(v_{i+1})$, where v_{i+1} satisfies Eqn. (32) over E_i . Since the limit of a subtower is at least as big as the limit of the tower itself (see [8]), we obtain that

$$\lambda(\mathcal{E}) \ge \lambda(\mathcal{F}) \ge \frac{2(q^2 - 1)}{q + 2}.$$

This gives another (in fact, much simpler) proof of the main result of [3].

Here is another striking analogy between \mathcal{F} and \mathcal{H} ; again we consider the tower $\mathcal{H} = (H_0, H_1, H_2, \dots)$ over $K = \mathbb{F}_{q^2}$ given recursively by

$$u_{i+1}^q + u_{i+1} = \frac{u_i^q}{u_i^{q-1} + 1}. (33)$$

Performing the analogous change of variables as in Eqn. (31); i.e., setting

$$w_i := -\frac{1}{u_i^{q-1} + 1}$$
 for all $i \ge 0$,

it follows by straightforward calculations from Eqn. (33) that

$$\frac{w_{i+1}+1}{w_{i+1}^q} = \frac{w_i^q+1}{w_i}, \quad \text{for all } i \ge 0.$$
 (34)

The subtower \mathcal{G} of \mathcal{H} given recursively by Eqn. (34) was studied in [2].

Remark 8.4. We end up this paper with a closer look on the relations between the towers \mathcal{F} and \mathcal{E} given by Eqns. (27) and (32), respectively. One can show that F_1/E_1 is a Galois extension of degree $(q-1)^2$ with group $\mathbb{F}_q^{\times} \times \mathbb{F}_q^{\times}$; in fact the automorphisms of $F_1 = \mathbb{F}_{q^3}(x_0, x_1)$ over the subfield $E_1 = \mathbb{F}_{q^3}(v_0, v_1)$ are given by:

$$x_0 \mapsto ax_0 \text{ and } x_1 \mapsto bx_1, \text{ with } a, b \in \mathbb{F}_q^{\times}.$$

Moreover the *n*-th field F_n of the tower \mathcal{F} is the compositum with F_1 of the *n*-th field E_n of the tower \mathcal{E} ; i.e., we have

$$F_n = E_n \cdot F_1$$
, for all $n > 1$.

The assertions above follow from Eqns. (31) and (29). We note however that for $q \neq 2$ the towers \mathcal{F} and \mathcal{E} are not K-isomorphic; i.e., there is no K-isomorphism

$$\sigma: \bigcup_{i=0}^{\infty} F_i \longrightarrow \bigcup_{j=0}^{\infty} E_j$$
.

In order to prove this we assume that such an isomorphism σ exists. Then we find integers $n \geq 2$ and $s \geq 2$ such that

$$\sigma(F_1) \subseteq E_n \subseteq E_{n+1} \subseteq \sigma(F_s)$$
.

In the extension $\sigma(F_s)/\sigma(F_1)$ there occurs only wild ramification by Theorem 2.2, but in the extension E_{n+1}/E_n there is also some tame ramification with ramification index e = q - 1, cf. [3], p.177, Fig.1.

Acknowledgment

We would like to thank Y. Ihara for his interest in and helpful discussions about splitting places in the tower \mathcal{E} , cf. [14].

References

- [1] A. Bassa, H. Stichtenoth, A simplified proof for the limit of a tower over a cubic finite field, J. Number Theory 123, 2007, 154-169.
- [2] J. Bezerra, A. Garcia, A tower with non-Galois steps which attains the Drinfeld-Vladut bound, J. Number Theory 106, 2004, 142–154.
- [3] J. Bezerra, A. Garcia, H. Stichtenoth, An explicit tower of function fields over cubic finite fields and Zink's lower bound, J. Reine Angew. Math. 589, 2005, 159-199.
- [4] V. G. Drinfel'd, S. G. Vlăduţ, The number of points of an algebraic curve, Func. Anal. 17, 1983, 53-54.
- [5] N. Elkies, Explicit modular towers, Proceedings of the 35th Annual Allerton Conference on Communication, Control and Computing (eds. T. Basar et al.) Urbana IL, 1997, 23-32.
- [6] N. Elkies, Explicit towers of Drinfeld modular curves, European Congress of Math.
 (Barcelona, 2000) Vol. II, 189–198, Progr. Math., 202, Birkhäuser, Basel, 2001.
- [7] A. Garcia, H. Stichtenoth, A tower of Artin–Schreier extensions of function fields attaining the Drinfeld-Vladut bound, Inventiones Math. 121, 1995, 211-222.
- [8] A. Garcia, H. Stichtenoth, On the asymptotic behaviour of some towers of functions fields over finite fields, J. Number Theory **61**, 1996, 248-273.
- [9] A. Garcia, H. Stichtenoth, Some Artin-Schreier towers are easy, Mosc. Math. J. 5, 2005, 767-774.

- [10] A. Garcia, H. Stichtenoth, On the Galois closure of towers, Recent Trends in Coding Theory and its Applications (W. Li, ed.), to appear.
- [11] A. Garcia, H. Stichtenoth, Explicit towers of function fields over finite fields, Topics in geometry, coding theory and cryptography, 1-58, Algebr. Appl., 6, Springer, Dordrecht, 2007.
- [12] G. van der Geer, M. van der Vlugt, An asymptotically good tower of curves over the field with eight elements, Bull. London Math. Soc. **34**, 2002, 291-300.
- [13] Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 1981, 721-724.
- [14] Y. Ihara, Some Remarks on the BGS Tower over Finite Cubic Fields, Proceedings of the conference "Arithmetic Geometry, Related Area and Applications" held at Chuo University, April 2006, 127-131.
- [15] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris 296, 1983, 397-402.
- [16] H. Stichtenoth, Algebraic function fields and codes, Springer Verlag, Berlin, 1993.
- [17] M. A. Tsfasman, S. G. Vlăduţ, T. Zink, Modular curves, Shimura curves, and Goppa codes, better than the Varshamov-Gilbert bound, Math. Nachr. 109, 1982, 21-28.
- [18] T. Zink, Degeneration of Shimura surfaces and a problem in coding theory, in Fundamentals of Computation Theory (L. Budach, ed.), Lecture Notes in Computer Science, Vol. 199, Springer Verlag, Berlin, 1985, 503-511.